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Outline
Cryptographic tools for secure communication:

Hash Functions, Digital Signatures and Block Ciphers

Other cryptographic tools (potentially) useful in blockchains

Zero-Knowledge (ZK) Proofs, SNARKs

Ring Signatures

VRFs

ZK Sets

Secure Multi-Party Computation & Computation on encrypted data



Hash Functions
An efficiently computable function H that maps arbitrarily long strings to 
short fixed-length strings

Main property sought:  Collision Resistance

It should be computationally infeasible to find two different strings x, y 
s.t. H(x) = H(y)

Output cannot be too short: will be able to find collisions by random 
search  (“birthday  attack”)

Several other properties assumed in many applications

For any input, the output should be “random”; cannot find (x,y) s.t. x is 
short and y=H(x), except by picking x first and evaluating it; … 

A formal model: Random Oracle Model

⚠ ROM is a heuristic model: Can do provably impossible tasks in this 
model!



Merkle Trees

Originally devised (and patented) as part of a  
signature scheme, by Merkle [1979]

A general technique for “domain extension” of  
hash functions

Given H that maps 2n-bit strings to n-bit 
strings, design a hash function H* that  
can handle arbitrarily long strings

Preserves collision resistance

Internally used in many standard hash functions (e.g. SHA256)
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Merkle Trees

A blockchain has a Merkle tree in it

The “Genesis” block is a leaf

(Length not needed, since the genesis 
block is known)

New block added at a new root



Merkle Trees

Supports succinctly proving that  
“y=H(msg) for some msg whose ith block is z”

Collision resistance ensures that one cannot  
give a proof for two different values z

In a balanced tree, the proof length is  
logarithmic in the total number of blocks
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Digital Signatures
Message authentication is a basic goal of cryptography

Message Authentication Codes: Sender authenticates a message to a 
receiver by encoding it using a secret key; receiver uses the key to 
verify

Digital Signature: Key used to encode (sign) is different from the key 
used to verify. Sender’s “public key” is used to verify her signature 
(and it serves as her “virtual identity”)

One approach: Uses a “trapdoor function” (f,f-1), where f-1 is the 
secret trapdoor key, and f is the public key. H is a public hash 
function (modelled as a Random Oracle)

Sign(M) = f-1( H(M) ).     Verify(M,s): Check H(M) = f(s)

e.g., RSA function



PRF & Block Cipher
A Pseudorandom Function is an important primitive in symmetric key 
cryptography

A PRF F takes a key K and an input x and outputs y = FK(x)

Suppose Alice picks K at random, and then Bob queries her with x’s 
of his choice to get back FK(x). Bob can’t tell if Alice is simply 
sending back random values instead!

Used to build symmetric key encryption and Message Authentication 
Codes [e.g., if m short, EncK(m;r) = (r,FK(r)⊕m) and MACK(m) = FK(m) ]

A Block-Cipher is a practical version of a PRF, with more features 

In particular, a Pseudorandom Permutation (for each K a one-to-one 
function) that is invertible given K

Several modes of operation, to handle long messages



Zero-Knowledge Proof

In cryptographic settings, often need to be able to verify various 
claims

e.g., 3 encryptions A,B,C are of values a,b,c s.t. a=b+c

Proof 1: Reveal a,b,c and how they get encrypted into A,B,C

Proof 2: Without revealing anything at all about a,b,c except the 
fact that a=b+c ?

Zero-Knowledge Proof!





Commitment
The functionality of Commitment:

Committing to a value: Alice puts the message in a box, locks it, 
and sends the locked box to Bob, who learns nothing about the 
message

Revealing a value: Alice sends the key to Bob. At this point she 
can’t influence the message that Bob will get on opening the box.

Implementation in the Random Oracle Model: Commit(x) = H(x,r) 
where r is a long enough random string. To reveal, send (x,r).

An Example: To prove that the nodes of a graph can 
be coloured with at most 3 colours, so that adjacent 
nodes have different colours





Zero-Knowledge Proof

ZK Proofs are typically interactive, with the verifier sending random 
challenges to the prover

e.g., in the graph colourability protocol

Non-interactive variants possible

One approach: In the Random Oracle Model

The random challenge by the verifier is replaced by H(m1), where 
m1 is the first message (commitment) sent by the prover

Non-interactive Proof:  (m1,m3), where m3 is the response for the 
challenge H(m1)



ZK-SNARK
Succinct Non-Interactive Argument of Knowledge (SNARK)

Succinct means that the proofs are short and can be verified much faster 

than verifying the claim from the original witness (e.g., the colouring)

Argument is just a technical variant of a proof

… of Knowledge: Not just proving that there is a witness (e.g., colouring) 

but that the prover “knows” such a colouring

ZK-SNARK: also zero-knowledge

E.g., Construction from Probabilistically Checkable Proofs (not ZK, not short) 

combined with a Merkle Tree and Random Oracles

More efficient/practical schemes known, especially for proving special classes 

of statements



Ring Signatures
Signature: A proof that a message has been endorsed by a party

Unforgeability: Even after seeing many proofs, can’t create a new 
proof (for a new message). c.f. “Simulation Soundness"

Ring Signature: Proof that a message has been endorsed by one 
among a set of parties (w/o revealing who)

Recall trapdoor permutation based signature:  
Verifyf(M,s): Check H(M) = f(s)

Suppose we require H(M) = f1(s1) ⊕ … ⊕ fN(sN) where f1,…,fN are 

N permutations

Can sign using fk
-1

 : si random for i≠k, sk = fk
-1( H(M) ⊕ ⊕i≠k fi(si) )

Security? Replace ⊕ with a combining function



Ring Signatures
Signature: A proof that a message has been endorsed by a party

Unforgeability: Even after seeing many proofs, can’t create a new 
proof (for a new message). c.f. “Simulation Soundness"

Ring Signature: Proof that a message has been endorsed by one 
among a set of parties (w/o revealing who)

cf. Group Signatures: The group is pre-determined and involves a 
group manager who can trace the actual signer

More generally, “Attribute-Based Signatures”

Endorse a message with ones credentials, but claim/prove only 
some property about the credentials held



Verifiable Random Functions

VRFs are Pseudo-Random Function (PRFs) with an additional 
verifiability feature

Recall PRF:

If Alice picks a random key K, and answers Bob’s queries x with 
FK(x), to Bob it would look like Alice is answering with random values

What if Alice is actually sending random values?!

Alice publishes a “public key” PK related to K

With FK(x) Alice attaches a “ZK proof” that Bob can verify using PK



Verifiable Random Functions

Used in Algorand for selecting various committees (“sortition”)

Each party has a secret-key K

It computes FK(public info) to obtain a value that determines whether 
it is selected or not (also based on the “stake” of the party)

Nobody else knows the output of the VRF, until it is disclosed by the 
party

At that point, the party can prove to everyone that the purported 
output of the VRF is correct



ZK Sets
A commitment to a set of values (e.g., 256-bit strings)

Can prove in ZK, membership or non-membership of any element

Without revealing even the size of the set!

Set can contain say, crypto coins, (hash of) transactions, etc.

Construct from Merkle Trees, using hash functions which are also 
“mercurial commitments”

K can be sampled so that HK is collision resistant or to allow easily 
solving for r s.t. HK(x;r)=y, for any x,y. Can prove K sampled in one 
way or the other.

Can be based on the “hardness of discrete logarithm” assumption



ZK Sets
A commitment to a set of values (e.g., 256-bit strings)

Can prove in ZK, membership or non-membership of any element

Without revealing even the size of the set!

Set can contain say, crypto coins, (hash of) transactions, etc.

Alternate formulation: Statistically Hiding Sets

Hiding is information-theoretic (not necessarily admitting efficient 
simulation of proofs)

Only soundness relies on computational assumptions (while the 
proofs are given)

Everlasting security!



MPC
Secure Multi-Party Computation (a.k.a. MPC, a.k.a. SMC)

Mutually distrusting parties facilitate collaboration among themselves 
by collectively emulating a trusted party

If a trusted party were available, every party can send its inputs 
to it. The trusted party can carry out a computation on the 
collective data and send outputs to various parties

E.g., an auction without a trusted auctioneer

Most cryptographic tasks can be seen as special cases of MPC (with 
application-specific interaction pattern, security requirements, etc.)

e.g., ZK proofs are MPC for the “proof functionality.”  VRF used to 
implement the “sortition functionality” non-interactively.

Blockchains for MPC: e.g., implementing “fines” for aborting, to obtain 
“fair MPC”

functionality



Summary
Cryptographic tools for secure communication:

Hash Functions, Digital Signatures and Block Ciphers

Other cryptographic tools (potentially) useful in blockchains

Zero-Knowledge (ZK) Proofs, SNARKs

Ring Signatures

VRFs

ZK Sets

Secure Multi-Party Computation & Computation on encrypted data

Later


