Chiral vortices in relativistic

Manavendra N Mahato

IIT Indore

Outline

Chiral effects in heavy ion collisions
Relativistic hydrodynamic equations
Solution by uplifting
Solution using Hopf fibration
Sphaleron solution
Other Applications
Summary

Chiral effects in RHIC

Topological gauge field configurations lead to local disparity between left and right chiral parities.

It leads to generation of electric field in presence of an external magnetic field.
Leads to a flow of current- known as chiral magnetic effect.

Observations

Chiral magnetic effect is a candidate model to explain parity violating effects in HIC

Charge separation is reflected as sine terms in fourier decomposition of azimuthal distribution

Correlations between their coefficients are deduced from experimental data

Azimuthal correlations

$$
\begin{aligned}
\frac{d N_{ \pm}}{d \phi} & \propto 1+2 v_{1} \cos \left(\phi-\Psi_{R P}\right)+2 v_{2} \cos \left(2\left(\phi-\Psi_{R P}\right)\right)+ \\
& +\ldots+2 a_{ \pm} \sin \left(\phi-\Psi_{R P}\right)+\ldots
\end{aligned}
$$

\square Correlator <a + a -> is deduced by measuring

$$
\left\langle\operatorname{Cos}\left(\phi_{\alpha}+\phi_{\beta}-2 \Psi_{R P}\right)\right\rangle
$$

$\square a \pm$ are parity violating.

Relativistic equations

$$
\begin{gathered}
\partial_{\mu} T^{\mu \nu}=F^{\mu \lambda} j_{\lambda} \\
\partial_{\mu} j^{\mu}=C E^{\mu} B_{\mu} \\
T^{\mu \nu}=h u^{\mu} u^{v}+P g^{\mu v}-\left(\varsigma-\frac{2}{3} \eta\right) P^{\mu \nu} \partial_{\lambda} u^{\lambda} \\
-\eta P^{\mu \alpha} P^{\nu \beta}\left(\partial_{\alpha} u_{\beta}+\partial_{\beta} u_{\alpha}\right) \\
j^{\mu}=n u^{\mu}-\sigma T P^{\mu v} \partial_{v}\left(\frac{\mu}{T}\right)+\sigma E^{\mu}+\xi \omega^{\mu}+\xi_{B} B^{\mu}
\end{gathered}
$$

Solutions by uplifting

(Son, Rangamani, Ross,

$$
\begin{gathered}
u^{-}=\frac{1}{3}\left(\frac{1}{u^{+}}+u^{+} v^{2}\right) \\
u^{i}=u^{+} v^{i}
\end{gathered}
$$

$$
P=P_{n}
$$

$$
\rho=2 \varepsilon_{n}+\rho_{n}
$$

Taylor Green solution

$$
v^{1}=F(t) \sin x \cos y
$$

$$
v^{2}=-F(t) \cos x \sin y
$$

$$
F(t)=e^{-2 v t}
$$

$$
P_{n}=\frac{\rho_{n}}{4} F(t)(\cos 2 x+\cos 2 y)
$$

Velocity profile

$$
\begin{gathered}
\text { Re|ativistic SOUtiOn } \\
\chi^{-2}=\frac{2 \varepsilon_{n}}{\rho_{n}}+\frac{1}{2}(\cos 2 x+\cos 2 y) \\
h=\frac{\rho_{n}}{\chi^{2}} \quad u^{\mu}=\chi v^{\mu} \\
v^{+}=1 \quad v^{-}=\frac{1}{2}+\frac{\varepsilon_{n}}{\rho_{n}}-\sin ^{2} x \sin ^{2} y \\
v^{1}=\sin x \cos y \\
P=P_{0}+\frac{\rho_{n}}{4}(\cos 2 x+\cos 2 y) \quad n=\frac{\xi}{3} \chi \cos x \sin x \sin y
\end{gathered}
$$

Velocity profile (v-)

Enthalpy profile

Axial density profile

Pressure profile

Axial charge

Solutions using Hopf Fibration

$$
\begin{gathered}
A^{1}=\frac{(x z-y)}{2 r^{2}} \\
A^{2}=\frac{(y z+x)}{2 r^{2}} \\
A^{3}=\frac{\left(z^{2}+1-r / 2\right)}{2 r^{2}} \\
u^{\mu}=\left(v, f A^{i}\right) \quad \stackrel{\sqcup}{A}=\left(\beta, \alpha A^{i}\right)
\end{gathered}
$$

Using Hopf Fibration

 (Kamchatnov, 82) Hopf map f: S3 \rightarrow S2$f\left(z_{0}=x_{1}+i x_{2}, z_{1}=x_{3}+i x_{4}\right)=\left(2 z_{0} z_{1}^{*},\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}\right)$

Pull back of volume form gives a 2-form on 3sphere.
This 2-form is an exact differential.
Find the vector dual of corresponding one form

Project is on R3 stereographically to get Ai.

Velocity profile ($\mathrm{y}=-1$)

Velocity profile $(y=-0.5)$

Velocity profile ($\mathrm{y}=0$)

Velocity profile $(\mathrm{y}=0.5)$

Velocity profile ($\mathrm{y}=1$)

Using Hopf Fibration(Continued)

All the vector quantities in the relativistic equations can be expressed in terms of Ai and ai.
ai is $(-y, x, 1)$, anticlockwise moving vector field. Hydrodynamic equations reduce to terms with scalar functions and their derivatives with all vector directions along Ai , ai ,zAi and zai only.

Choosing their coefficients to be zero gives us a set of pde s of scalar functions. Still non linear.

Simplify equations further by looking only for steady state solutions.

Sphaleron solution

$$
v=\lambda f, \beta=\lambda \alpha, \alpha=k f
$$

$$
f=\frac{4 r}{\sqrt{16 \lambda^{2} r^{2}-1}} \quad h=-\frac{2}{9} \lambda C k^{3} \frac{f}{r}
$$

$$
n=\frac{2 \lambda f}{3 r}\left(C k^{2}+\xi+2 k \xi_{B}\right)
$$

$$
P=\frac{8}{3} \lambda k\left(\xi+2 k \xi_{B}+\frac{2}{3} C k^{2}\right)\left(\tan ^{-1} \frac{f}{4 r}-\frac{f}{4 r}\right)
$$

Velocity profile

Enthalpy and Pressure

Axial density profile

Equation of state

Chiral charge difference

$$
\Delta n_{A}=-\frac{\pi^{2}\left(3 C k^{2}+\xi+2 k \xi_{B}\right)}{3 \sqrt{\lambda}}(\sqrt{4 \lambda+1}+\sqrt{4 \lambda-1}-4 \sqrt{\lambda})
$$

Application to other areas

Baryon asymmetry in early universe
Vortices in neutron stars
Chiral electric effects in superfluids
Berry phase configuration in metal crystals

Summary

Constructed few representative solutions to evaluate chiral charge separation out of topologically non trivial configurations.
Calculated their charge separation
The methods used to generate these solutions are more general and can be used to generate many different solutions suitable for different contexts.

