Machine Learning @ Amazon

Rajeev Rastogi

Director, Machine Learning

Numerous ML Applications

- Abuse/Fraud
- Address Quality
- Packaging
- •Substitutes Prediction
- Payment Instruments Success Prediction

Operations

- Product Recommendations
- Product Search
- Product Ads
- Customer Targeting
- Lending

Custome rs

- Demand Forecasting
- Pricing
- Fraud Detection
- Seller Lead Generation

Sellers

- Product Classification
- Duplicate Products Detection
- Product Attributes
 Mismatch Detection
- Attributes Extraction from Titles/Images

Catalog

- Named-Entity Extraction
- •Reviews Summarization
- •Reviews Ranking and Insights
- Fraudulent Reviews

Text

- Visual Search
- Product Image Quality
- Celebrity Faces
- •Incorrect Postures
- Brand Tracking

Images

- Automatic Speech Recognition
- Natural Language Understanding
- Dialog Management

Speech

- Predicting Resource Requirements
- DDoS Detection
- Reputation Computation of MTurk Workers

AWS

Address Quality

Problem

• Identify and correct poor quality addresses

Product Packaging

Problem

 Determine the most cost-effective packaging to use for a product

SIOC

Poly bag

Bubble package

Variable depth box

Corrugated box

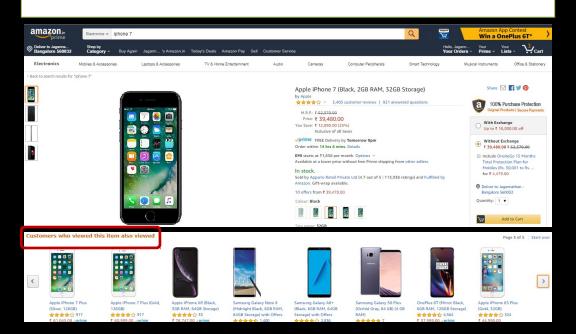
Low

Packaging Cost

Product Substitutes

Problem

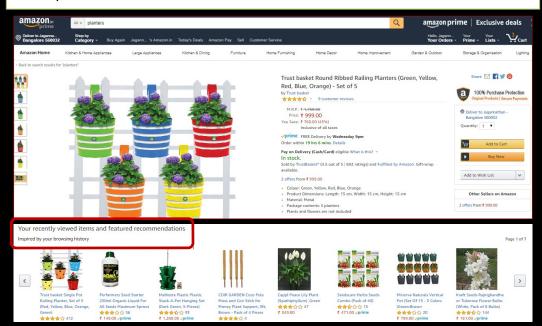
• Identify substitutes for a product



Product Recommendations

Problem

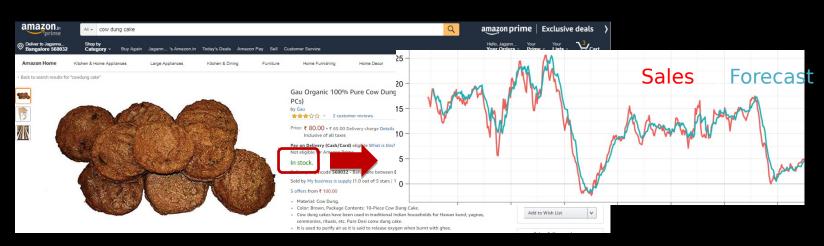
Recommend products to customers that match their preferences



Product Demand Forecasting

Problem

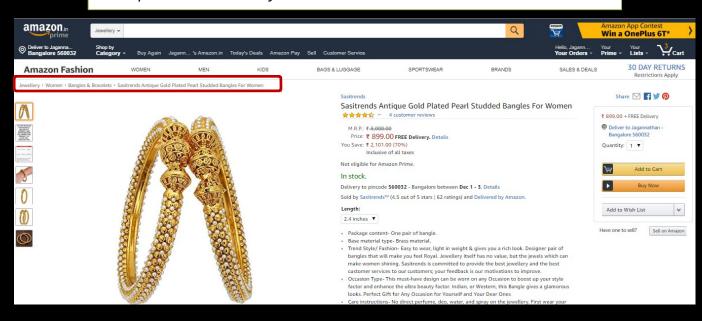
• Given past sales of a product in every region, predict regional demand up to one year into the future



Product Classification

Problem

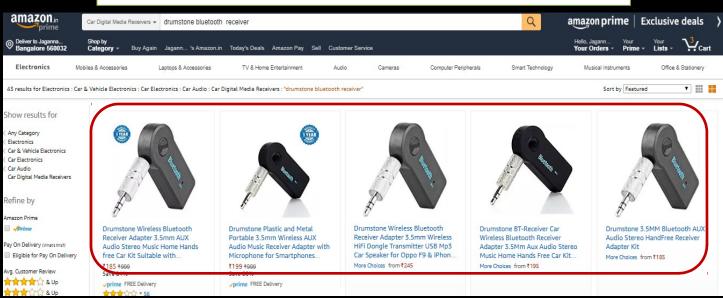
 Classify each product into the appropriate leaf node in product taxonomy



Product Matching

Problem

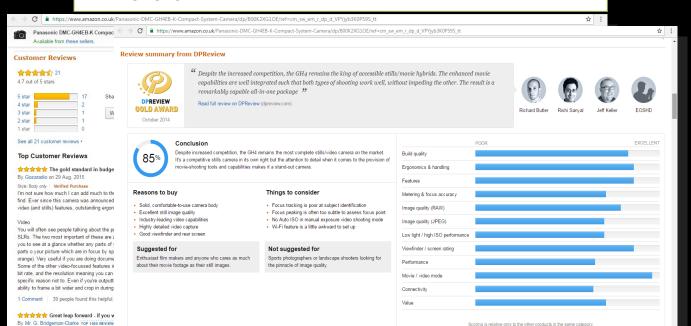
• Identify duplicate product listings in Amazon catalog



Insights Extraction from Reviews

Problem

 Extract fine-grained attribute ratings from product reviews



Outline

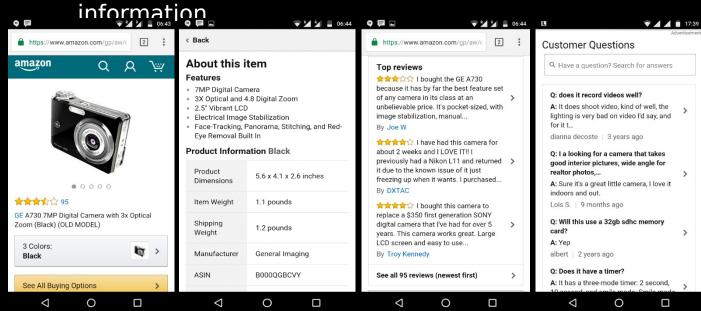
- Question Answering
- Catalog Quality
- Product Size Recommendations

Outline

- Question Answering
- Catalog Quality
- Product Size Recommendations

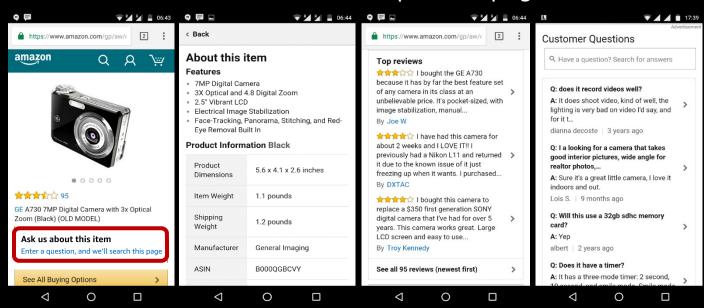
Amazon Product Pages

Amazon product pages contain a wealth of



Question & Answering Bot

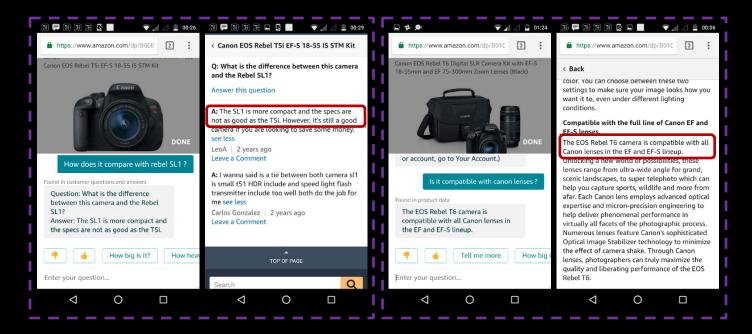
Question answering interface to make it easy for users to find information on product page



Product Feature Questions



Product Comparison/Compatibility Questions

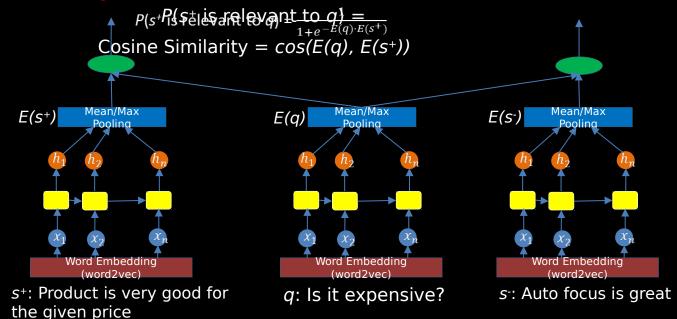


Key Challenges

- Question understanding
 - "What is ISO?" vs "What is the ISO [of this camera]?"
- Semantic matching
 - "cost", "price", "bang for buck", "expensive", "cheap"
- Natural language answer generation
 - e.g. "This is great value for money" for question "Is this expensive?"
- High precision (>90%) requirement
- Data availability
 - "Will this suitcase fit in the overhead of an airplane?"
- Data quality
 - "Dimensions: 1x1x1 inches" for the question "How big is it" on a "Tripod page"

Learning Semantically Rich Representations

- Training examples: <question (q), relevant snippet (s+), irrelevant snippet (s-)> triples
- Triplet network



Results for Different Loss Functions

- Learn question and snippet representations to minimize the following loss functions:
 - Log loss [EMNLP 2015]
 - Siamese loss [Wang et al. 2014] $\max\{0, M (\cos(E(q), E(s^+)) \cos(E(q), E(s^-)))\}$
 - Twin loss
- Metric: Precision at rank 1 (P@r1)
- Results:

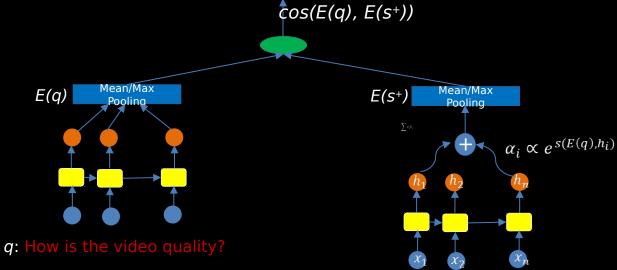
```
Loss Baseli Log loss Siamese Twin loss -f \cos(Er(q), E(s^+)) + \max\{0, \log(E(q), E(s^-))\} P@r1 56.8% 84.6% 96.1% 97.04%
```


Qualitative Results

Question	Matching Snippet
Is this camera good for pictures at a basketball game?	Works great for sports photography
What is the price ?	This item costs \$100.00. To see tax and shipping, add to cart
How big is it?	Item dimensions : 3 x 3.28 x 4.37 inches
How good is stabilization?	EVERY image came out blurry (and I held the camera still in a well-lit room).
Will it fit on Olympus air?	Fits very well the Olympus Air OA-01
How much weight can it hold?	Item weight: 2.2 pounds
What is the color of the paper on which the photo is printed?	the color of the camera and the pictures are great.

Learning Representations with Attention

 Only consider relevant portions of snippets when learning representations [Bahdanau et al. 2015]



s+: The camera has good video quality but the price is high

Highlighting Words with High Attention Weights

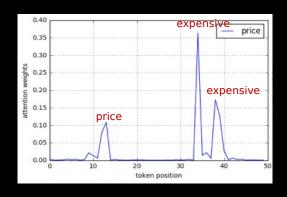
Review Statement:

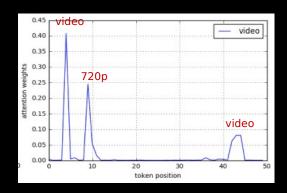
The package is good video quality is good for 720p but the price is excellent for what you get - especially if you do not want all the whistles and bells of the more expensive gopro 2-4x more expensive and the quality of video is superb and great.

Questions:

Question1: What is the price?

Question2: How good is the video?





Outline

- Question Answering
- Catalog Quality
- Product Size Recommendations

Amazon's Product Catalog

- Product catalog contains rich metadata on Amazon products
 - Title
 - Image
 - Description
- Must ensure that information is
 - Factually correct
 - Consistent
 - Adheres to pre-set guidelines

Title Defects

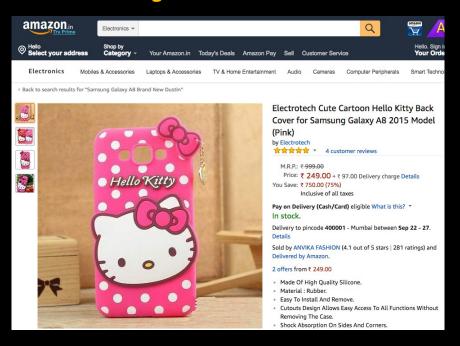
Title too long, Spam keywords

Email in Title

amazon

Image Defects

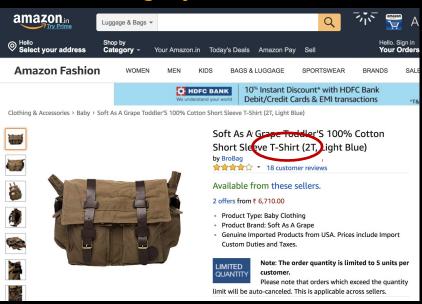
Background not white



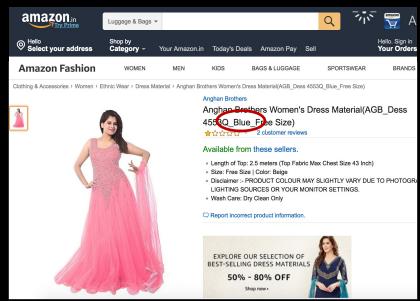
Incomplete image, Improper

Product Attribute Mismatches

Category Mismatch



Color Mismatch



Text Attribute Extraction

Brand

Objective: Extract attributes like brand, color, size, model from product title and description.

Example:

Samsung Galaxy A8 Brand New Dustin hard Silicon Transparent black Color edge Back CaseCover

Color

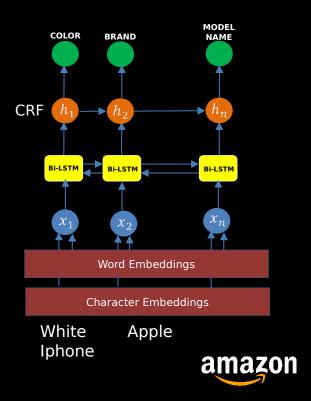


Image Classification/Attribute Extraction

Objective: Detect image defects, extract image attributes such as color, and classify images

Image Defects

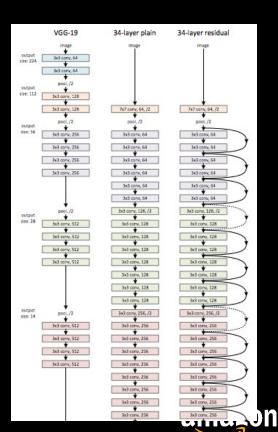
Poor Quality

Attribute Extraction

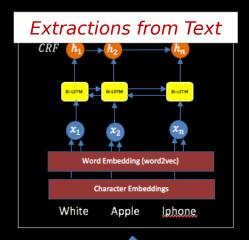
Color: Red

Category Classification

Category: T-Shirt



Mismatch Detection



Brand, Color,

Mismatch Logic

Outline

- Question Answering
- Catalog Quality
- Product Size Recommendations

Size Recommendation Problem

 Given a customer and product, recommend product size that would best fit the customer

Motivation

- No standardization of sizes across brands and locales for product categories such as shoes and apparel
- This leads to users making incorrect purchases, and then returning products
- Products belonging to shoe and apparel categories have high return rates due to fit issues
- Example:
 - Reebok size mapping convention: 6 = 15cm, 7 = 17cm, 8 = 21cm
 - Nike size mapping convention: 6 = 16cm, 7 = 18cm, 8 = 22cm

Key Challenges

- Scale: hundreds of millions of customers and products
- Data sparsity: bulk of users/products have very few purchases
- Cold start scenarios: new customers/products
 - User features: demographics (age, gender), location
 - Product features: catalog size, title, brand, product type
- Multiple personas: each customer i may involve multiple personas
 - E.g., family members sharing an account
 - Personas may have widely varying sizes

Our Approach

- Learn true (latent) size for each customer, product
 - True size for customer corresponds to the physical size of the customer (for shoes, it would be the feet size)
 - True size for product corresponds to it's physical size
- Leverage past customer transactions $\overline{T} = \{(i, j, y_{ij})\}$
 - y_{ij} takes ordinal values {small, fit, large}

	Adidas (9)	Nike (8)	Reebok (8)	Nike – (9)
Customer 1	large		fit	?
Customer 2		small		fit
Customer 3	fit		small	?

→Catalog siz

Predict fit outcome

Our Approach (Contd)

- Modelilion
 - Lateratisize for austriner: j; si
 - Laterentisize for product: jt., ti
 - Catalogsize for product $\dot{E}_i c_i$
- Moded I like i hood offfitaas aufumiction the biffere been been een ccustomer amdprodductalæterstzeszes

$$P(y_{ij} = fit) \propto f(s_i - t_j)$$

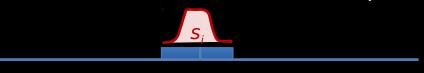
- Recommend product j with highest fit likelihood $P(y_{ij} = fit)$ to Recommend product j with highest fit likelihood to customer i

Bayesian Modeling Benefits

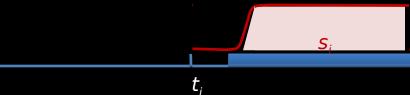
- Handles data sparsity by placing priors on latent size variables
- Models uncertainty in inferred latent sizes
 - Estimates posterior distribution of latent size variables
 - Fit probability is obtained by averaging over posterior size distribution
- Model can capture all the available data
 - Observations: transaction outcomes, customer and product features
 - Hidden variables: latent sizes, customer personas
- Efficient techniques for approximating posterior distributions of latent size variables

Intuition

• Transaction $(i, j, fit) \square$ very likely that s_i and t_j are close



• Transaction (i, j, small) \square very likely that s_i is much larger than t_j



• Transaction (i, j, large) \square very likely that s_i is much smaller than t_i s_i

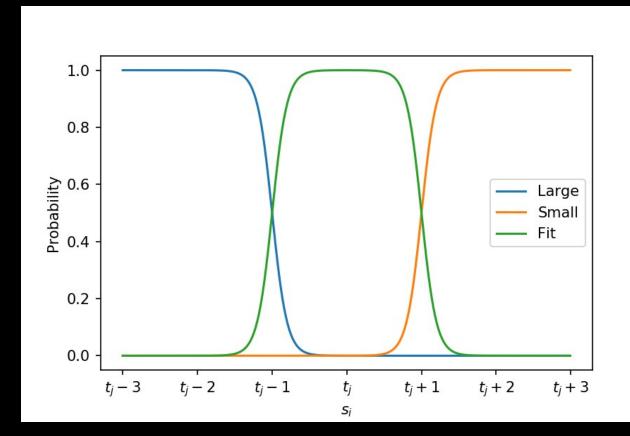
Data Likelihood

 $P(y_{ij} = small|s_i, t_j) = \frac{1}{1 + e^{-\alpha(s_i - t_j) + b_1}}$

$$P(y_{ij} = fit|s_i, t_j) = \frac{1}{1 + e^{\alpha(s_i - t_j) - b_1}} \cdot \frac{1}{1 + e^{-\alpha(s_i - t_j) + b_2}}$$

$$P(y_{ij} = large|s_i, t_j) = \frac{1}{1 + e^{\alpha(s_i - t_j) - b_1}} \cdot \frac{1}{1 + e^{\alpha(s_i - t_j) - b_2}}$$

Data Likelihood



Generative Model

```
for each customer i
for each customer i,
              draw latent size s_i \sim N(\mu_i, \sigma_s^2)
for each product j,
              draw latent size t_i \sim N(c_i, \sigma_t^2)
for each transaction (i, j, y_{ii}) \in T,
              select y_{ii} = small with probability P(y_{ii} = small|.)
              select y_{ii} = fit with probability P(y_{ii} = fit | .)
              select y_{ii} = large with probability P(y_{ii} = large | .)
large|.)
```


Bayesian Inference

Let β be the vacatof laterate sizes

Let
$$\beta$$
 the theoretof of lateraters sizes
$$\beta = \left(s_1, \ldots, s_c, t_1, \ldots, t_p, 1\right)^T$$
 Posterior distribution Posterior distribution

$$P(\beta|T) \propto P(T|\beta) \cdot P(\beta)$$

$$\propto \frac{e^{y\beta^T \cdot x}}{\ln t c^t \delta s^t d} \cdot \prod_{\substack{N(s_i|\mu_i,\sigma_s) \\ \text{form due to logistic}}} N(t_j|c_j,\sigma_t)$$
Not available, $\ln t c^t \delta s^t d$ form due to logistic

- likelihood terms and Normal priors 0/1
- Not available in closed form due to logistic likelihood terms and Normal priors

Polya-Gamma Augmentation [Polson et al. 2013]

- IntroduceoRalyanGamanantateattevariable, fo foevery
- Ďefine the joint likelihood distribution
- Define the joint likelihood distribution

• In [Polson et al., 3913] it is stab with at
$$w \cdot \frac{(\beta^T \cdot x)^2}{2}$$
. $P(w)$

• In [Polson et al. 2013], it is shown that

$$\int_0^\infty P(w, y | \beta, x) dw = \frac{e^{y\beta^T \cdot x}}{1 + e^{\beta^T \cdot x}}$$

Polya-Gamma Augmentation (Contd)

Let W/bbehthetsetpolf/Paly+Gaminablevariab(esy)ferD

$$P(\beta|\mathbf{D}) \propto \int P(W,\mathbf{D}|\beta) \cdot P(\beta)dW$$

Approximate the augmented joint distribution
 Approximate the augmented joint distribution P(W, D|β) · P(β)

$$\prod_{(x,y)\in\mathbf{D}} \frac{1}{2} e^{\left(\left(y-\frac{1}{2}\right)\cdot\left(\beta^{T}\cdot x\right)-w\cdot\frac{\left(\beta^{T}\cdot x\right)^{2}}{2}\right)} \cdot P(w) \cdot \prod_{i} N(s_{i}|\mu_{i},\sigma_{s}) \cdot \prod_{j} N(t_{j}|c_{j},\sigma_{t})$$

Gibbs Sampling Algorithm

- Conditional distribution of
- Conditional distribution of $E(q) F(s^+) \cos(E(q), E(s^-))$

• Conditional distribution for $\bar{\beta}_i$

Predictive Distribution

- Let resamples be drever from the posterior of
- Let the e^{th} be same by $e^{\beta l}$ $e^{-(s_1^l, \ldots, s_c^l, t_1^l, \ldots, t_p^l)}$

$$P(y_{ij} = fit | \mathbf{D}) = \int P(y_{ij} = fit | \beta) \cdot P(\beta | \mathbf{D}) d\beta$$

$$\approx \frac{1}{r} \sum_{l=1}^{r} \frac{1}{1 + e^{\alpha(s_l^l - t_j^l) - b_1}} \cdot \frac{1}{1 + e^{-\alpha(s_l^l - t_j^l) + b_2}}$$

Experimental Results

- Consider 6 real-life shoes datasets with between 10M and 33M transactions
- Baseline model
 - Product size $t_i = c_i$
 - Customer size s_i = Average size of products purchased by customer
 - Logistic regression model with feature (s_i-t_i) to predict outcome
- Bayesian Logit model
 - Predict outcome with highest probability
- Performance metric: weighted AUC
- Results (% improvements over baseline)

Datas et	A	В	С	D	E	F
Bayesi an	17.71	18.28	19.7	25.78	20.22	19.42

Leveraging Customer and Product Features

• Means of latent size priors are obtained by performing regression over customer (f_i) and product (g_j) features [AC 2009] for each customer i,

```
for each customer i,
    draw latent size s_i \sim N(w_f \cdot f_i, \sigma_s^2)

for each product j,
    draw latent size t_j \sim N(w_g \cdot g_j, \sigma_s^2)

for each transaction (i, j, y_{ij}) \in T,
    select y_{ij} = small with probability P(y_{ij} = small \mid .)
    select y_{ij} = fit with probability P(y_{ij} = fit \mid .)
    select y_{ij} = large with probability P(y_{ij} = large \mid .)
```

• Perform least squares regression to learn parameters w_f and w_g from customer and product size samples

Incorporating Customer Personas

- Latent size for persona k of customer i: s_{ik}
- Latent variable containing persona involved in transaction (i, j, y_{ij}) : z_{ij}
- Generative model:

```
for each customer i.

for each customer i,

draw persona distribution \theta_i \sim \text{Dir}(\alpha)

for each persona k draw latent size s_{ik} \sim N(w_f \cdot f_i, \sigma_s^2)

for each product j,

draw latent size t_j \sim N(w_g \cdot g_i, \sigma_t^2)

for each transaction (i, j, y_{ij}) \in T,

draw persona z_{ij} \sim \text{Mult}(\theta_i)

select y_{ij} = small, \dots with probability P(y_{ij} = small \mid z_{ij}), \dots

small |z_{ij}|, \dots
```

Gibbs Sampling algorithm can be extended to draw z_{ij} samples

Summary

- Learning semantically rich data representations improves predictive accuracy of models
 - Question answering, catalog quality, product search, product recommendations, ...
- Deep Learning to learn embeddings
 - Allows semantic matching between questions and snippets
 - Loss functions like Siamese loss that aim to maximize difference in class scores perform better
- Probabilistic Graphical Models to learn latent sizes
 - Priors handle data sparsity, prevent overfitting
 - Posteriors model uncertainty in data
 - Leverage all the available signals

Summary

- AI, ML at the core of Amazon's business
 - Address quality, recommendations, product search, catalog quality, question answering, demand forecasting, ...
- Learning semantically rich data representations improves predictive accuracy of models
 - Question answering, catalog quality, product search, ...
- Deep learning is an effective tool to learn semantically rich data representations

