Log algebraic surfaces

M. Miyanishi

- §1 Log algebraic surfaces
- §2 Theory of peelig and almost minimal models
- §3 Log algebraic surfaces, II
- §4 Structure theorems

1 Log algebraic surfaces

The ground field is an algebraically closed field of characteristic zero. Let \overline{V} be the spectrum of the local ring of a normal algebraic surface at a point P. We say that the pair (\overline{V}, P) is a germ of a normal algebraic surface. Let $f: V \to \overline{V}$ be the minimal resolution of singularity. Let $\{E_j\}_{1 \leq j \leq n}$ be the set of irreducible exceptional curves of f. We say that the germ (\overline{V}, P) has log terminal singularity if

- (i) the canonical divisor $K_{\overline{V}}$ is a **Q**-Cartier divisor, i.e., an integral multiple of $K_{\overline{V}}$ is a Cartier divisor, and
- (ii) $K_V = f^*(K_{\overline{V}}) + \sum_{j=1}^n a_j E_j$, where $a_j \in \mathbf{Q}$ and $-1 < a_j \leq 0$, where the equality holds in Pic $(V) \otimes_{\mathbf{Z}} \mathbf{Q}$.

Lemma 1.1 With the above notations, (\overline{V}, P) has a log terminal singularity if and only if (\overline{V}, P) has a quotient singularity.

Let \overline{V} be a normal projective surface and $\overline{\Delta}$ a reduced effective (Weil) divisor on \overline{V} . We can generalize the above definition of log terminal singularity for a pair $(\overline{V}, \overline{\Delta})$. We say that the pair $(\overline{V}, \overline{\Delta})$ has log terminal singularities if the following conditions are satisfied:

- (1) $K_{\overline{V}} + \overline{\Delta}$ is a **Q**-Cartier divisor.
- (2) If $f: V \to \overline{V}$ is the minimal resolution of singularities, then the proper transform Δ of $\overline{\Delta}$ is a diviosr with simple normal crossings and

$$K_V + \Delta = f^*(K_{\overline{V}} + \overline{\Delta}) + \sum_{j=1}^n a_j E_j$$

with $a_j \in \mathbf{Q}$ and $0 \ge a_j > -1$, where $\{E_j\}_{1 \le j \le n}$ is the set of irreducible exceptional curves of f.

Lemma 1.2 With the above notations, let $\Delta = \sum_{i=1}^{r} C_i$ be the irreducible decomposition of Δ and let $D = \sum_{i=1}^{r} C_i + \sum_{j=1}^{n} E_j$. Then $(\overline{V}, \overline{\Delta})$ has log terminal singularities if and only if the following conditions are satisfied:

- (1) D is a divisor with simple normal crossings.
- (2) \overline{V} has only quotient singularities.
- (3) If V has a singular point on Δ, say P, then the dual graph of exceptional curves of a minimal resolution of (V, P) is a linear chain such that Δ meets only one of the end components of the linear chain, the intersection being at a single point and transverse.

With the above notations, we call the pair $(\overline{V}, \overline{\Delta})$ a log projective surface and $f: (V, \Delta) \to (\overline{V}, \overline{\Delta})$ the minimal resolution of $(\overline{V}, \overline{\Delta})$.

An irreducible curve \overline{C} on a log projective surface $(\overline{V}, \overline{\Delta})$ is called a *log* exceptional curve of the first kind if $(K_{\overline{V}} + \overline{\Delta} \cdot \overline{C}) < 0$ and $(\overline{C}^2) < 0$. This is an analogy of an exceptional curve of the first kind, i.e., (-1) curve, on a nonsingular projective surface. A log projective surface $(\overline{V}, \overline{\Delta})$ is called relatively minimal if there are no log exceptional curves of the first kind on \overline{V} . Then $(\overline{V}, \overline{\Delta})$ is relatively minimal if and only if (V, D) is almost minimal.

Lemma 1.3 Let $(\overline{V}, \overline{\Delta})$ be a log projective surface. Then there exists a birational morphism $\overline{\mu} : \overline{V} \to \overline{W}$ onto a normal projective surface \overline{W} such that

- (1) $(\overline{W},\overline{\Gamma})$ is a log projective surface, where $\overline{\Gamma} = \overline{\mu}_*(\overline{\Delta})$;
- (2) $(\overline{W}, \overline{\Gamma})$ is relatively minimal.

The construction of relatively minimal models is done by the theory of peeling which will be explained in the next section.

2 Theory of peelings and almost minimal models

Let (V, D) be a pair of a smooth projective surface and a reduced effective divisor D with simple normal crossings. Let X := V - D. The Kodaira dimension $\overline{\kappa}(X)$ is defined as

$$\overline{\kappa}(X) = \begin{cases} -\infty & \text{if } N(D+K_V) = \emptyset\\ \sup_{m \in N(D+K_V)} \dim \Phi_{m(D+K_V)}(V) & \text{if } N(D+K_V) \neq \emptyset \end{cases}$$

where

$$N(D+K_V) = \{m \in \mathbf{N} \mid |m(D+K_V)| \neq \emptyset\}.$$

In fact, $\overline{\kappa}(X)$ is independent of the choice of a pair (V, D) such that X = V - D. If $\overline{\kappa}(X) \ge 0$, the divisor $D + K_V$ has the Zariski-Fujita decomposition,

$$D + K_V = (D + K_V)^+ + (D + K_V)^-,$$

where $(D+K_V)^+$ is the nef component and $(D+K_V)^-$ is the negative component. Then we can find by Kawamata-Fujita-Tsunoda that there exist a nonsingular projective surface \tilde{V} , a birational morphism $f: V \to \tilde{V}$ and an effective **Q**-divisor $\widetilde{D}^{\#}$ on \tilde{V} such that $\text{Supp } \widetilde{D}^{\#} \subseteq \text{Supp } f_*(D)$ and $(D+K_V)^+ \equiv f^*(\widetilde{D}^{\#}+K_{\widetilde{V}})$. A pair $(\tilde{V},\widetilde{D})$ is thought of a *relatively minimal model* of the pair (V,D). The theory of peeling provides a concrete way of constructing the relatively minimal model $(\tilde{V},\widetilde{D})$.

Let $T = \{D_1, \ldots, D_r\}$ be a subset of irreducible components of D. We call L an *admissible maximal rational twig* if

- (1) Each D_i is a smooth rational curve.
- (2) $(D_i \cdot D_j) = 1$ if j = i + 1 $(1 \le i \le r 1)$ and $(D_i \cdot D_j) = 0$ otherwise.
- (3) T does not meet any component of D T except for D_r meeting D T transversally in one point.
- (4) The intersection matrix of T is negative definite.

A connected component R (resp. F) is called an *admissible rational rod* (resp. *fork*) if

(1) Every irreducible component of R (resp. T) is a smooth rational curve.

- (2) R is a linear chain (resp. F has the same dual graph as the exceptional graph of a quotient singularity).
- (3) The intersection matrix of R (resp. F) is negative definite.

Let $\{T_{\lambda}\}_{\lambda \in \Lambda}$ (resp. $\{R_{\mu}\}_{\mu \in M}$, $\{F_{\nu}\}_{\nu \in N}$) be the set of all admissible maximal rational twigs (resp. rods, forks). Then there exists a unique effective **Q**-divisor Bk (D) such that

(1) Bk (D) is a disjoint sum of Bk (T_{λ}) , Bk (R_{μ}) and Bk (F_{ν}) , i.e.,

$$Bk(D) = \sum_{\lambda} Bk(T_{\lambda}) + \sum_{\mu} Bk(R_{\mu}) + \sum_{\nu} Bk(F_{\nu}).$$

(2)

Supp Bk
$$(D) = \bigcup_{\lambda} T_{\lambda} \cup \bigcup_{\mu} R_{\mu} \cup \bigcup_{\nu} F_{\nu}.$$

- (3) $(D^{\#} + K_V \cdot D_i) = 0$ for every irreducible component D_i of SuppBk(D), where $D^{\#} = D - Bk(D)$.
- (4) Let $D^{\#} = \sum_{i=1}^{n} a_i D_i$ be the irreducible decomposition of $D^{\#}$. Then $0 \le a_i \le 1$, where $a_i = 1$ if and only if D_i is not a component of Bk (D).
- (5) Supp (D) and Supp (D Bk D) differs only by the exceptional loci of rational double points.

We call Bk (D) the *bark* of D and say that $D^{\#}$ is obtained by *peeling* the bark of D.

The following results are the crucial results in the theory of peeling.

Lemma 2.1 Let V, D and $D^{\#}$ be as above. Suppose that there exists an irreducible component D_0 of D such that

$$(D^* + K_V \cdot D_0) < 0 \text{ and } (D_0^2) \le -1$$
.

Then the following assertions hold.

- (1) D_0 is a (-1) curve.
- (2) D_0 is one of the following components of D:
 - (i) With an admissible rational twig T which might be empty, D_0 forms a rational twig; we denote it by $T + D_0$;

- (ii) With admissible rational twigs T, T' which might be empty, D₀ forms a rational rod, T + D₀ + T';
- (iii) D_0 is a component of the connected component F whose weighted dual graph looks like the one for an admissible rational fork except for that the component D_0 which has the branching number 3 has self-intersection -1.

The component D_0 is called the *irrelevant component* of the non-admissible rational twig $T - D_0$, the non-admissible rational rod $T - D_0 - T'$ or the non-admissible rational fork F.

Lemma 2.2 $(D^{\#} + K_V \cdot Y) \ge 0$ for every irreducible component Y of D except for the irrelevant components D_0 of the non-admissible rational twigs, the non-admissible rational rods and the non-admissible rational forks.

Lemma 2.3 Suppose there exists an irreducible curve E on V such that $(D^{\#} + K_V \cdot E) < 0, E$ is not an irreducible component of D and E + Bk(D) is negative definite. Then we have $(E \cdot K_V) < 0$ and $(E^2) < 0$, i.e., E is a (-1) curve. Let $\sigma : V \to V'$ be the contraction of E and let $D' = \sigma_*(D)$. Then D' is a reduced effective divisor on V' with simple normal crossings.

Lemma 2.4 Let E now be an exceptional component, i.e., E is an irreducible component of D which is a (-1) curve. Suppose that the braching number of E in D is less than or equal to 2, $(D^{\#} + K_V \cdot E) < 0$ and E + Bk (D) is negative definite. We call E a superfluous exceptional component of D. In view of Lemma 2.1, such a component E appears only in one of the following situations:

- (i) E is an isolated component.
- (ii) E is the irrelevant component of a non-admissible rational twig or a non-admissible rational rod.
- (iii) Let $f: V \to \overline{V}$ be the contraction of E and consecutively contractible components of Bk(D). Let $\overline{D} = f_*(D)$. Then \overline{D} is a reduced effective divisor with simple normal crossings.

Theorem 2.5 Let V be a smooth projective surface defined over k and let D be a reduced effective divisor with simple normal crossings. Then there

exists a birational morphism $\mu: V \to \widetilde{V}$ onto a smooth projective surface \widetilde{V} such that, with $\widetilde{D} = \mu_*(D)$, the following conditions are satisfied:

- (1) $h^0(V, n(D + K_V)) = h^0(\widetilde{V}, n(\widetilde{D} + K_{\widetilde{V}}))$ for every integer $n \ge 0$.
- (2) $\mu_* \operatorname{Bk}(D) \leq \operatorname{Bk}(\widetilde{D}) \text{ and } \mu_*(D^{\#} + K_V) \geq \widetilde{D}^{\#} + K_{\widetilde{V}}.$
- (3) For every irreducible curve C on \widetilde{V} , we have either $(\widetilde{D}^{\#} + K_{\widetilde{V}} \cdot C) \ge 0$ or $(\widetilde{D} + K_{\widetilde{V}} \cdot C) < 0$ and $C + Bk(\widetilde{D})$ is not negative definite.

The birational morphism $\mu:V\to \widetilde{V}$ is obtained as a composite of the following operations:

- (1) Contract all possible superfluous exceptional components of D.
- (2) If there are no superfluous exceptional components in D, then peel the barks of all admissible rational maximal twigs, all admissible rational rods and all admissible rational forks of D.
- (3) Find a (-1) curve E such that $E \not\subset \text{Supp}(D)$, $(D^{\#} + K_V \cdot E) < 0$ and E + Bk(D) is negative definite. If there is none then we are done. If there is one, consider the contraction $\sigma : V \to \overline{V}$ of E and $\overline{D} = \sigma_*(D)$.
- (4) Now repeat the operations (1), (2) and (3) all over again.

A pair (V, D) is called *almost minimal* if, for every irreducible curve Con V, either $(D^{\#} + K_V \cdot C) \ge 0$ or $(D^{\#} + K_V \cdot C) < 0$ and C + Bk(D)is not negative definite. The pair (\tilde{V}, \tilde{D}) given in the above theorem is called an *almost minimal model* of (V, D).

Let $(\overline{V}, \overline{\Delta})$ be a log projective surface and let $f : (V, D) \to (\overline{V}, \overline{\Delta})$ be the minimal resolution. A relatively minimal model of $(\overline{V}, \overline{\Delta})$ is obtained from $(\widetilde{V}, \widetilde{D})$ by contracting $\operatorname{Bk}\widetilde{D}$ to the quotient singular points. We note that (V, D) is almost minimal if and only if $(\overline{V}, \overline{\Delta})$ is relatively minimal and that $D^{\#} + K_V = f^*(\overline{\Delta} + K_{\overline{V}})$ if (V, D) is almost minimal.

In the affine case, the construction of a relatively minimal model is just the subtraction of a disjoint union of topologically contractible curves. This is seen by the following result:

Lemma 2.6 Let $(\overline{V}, \overline{\Delta})$ be a log projective surface such that $\overline{V} - \overline{\Delta}$ is affine and let \overline{C} be a log exceptional curve of the first kind such that $\overline{C} \not\subset \operatorname{Supp} \overline{\Delta}$. Set $\overline{C}_0 = \overline{C} - \overline{C} \cap \overline{\Delta}$. Then we have:

- (1) The Euler number $e(\overline{C}_0) = 0$ or 1 and \overline{C}_0 passes through at most one singular point of $\overline{V} \overline{\Delta}$.
- (2) Suppose either the irregularity q of (a minimal resolution of) \overline{V} is zero or $\kappa(\overline{V}, \overline{\Delta}) = -\infty$. Then $e(\overline{C}_0) = 1$.
- (3) In addition to the hypothesis of (2) above assume that $\overline{V} \overline{\Delta}$ is nonsingular. Then \overline{C}_0 is isomorphic to the affine line \mathbf{A}^1 .

Corollary 2.7 Let X be a normal affine surface with at worst quotient singularities. Suppose either q (= the irregularity of a nonsingular projective model of X) is zero or $\overline{\kappa}(S - \operatorname{Sing} X) = -\infty$. Then we have

- (1) There exists an affine open set U of X such that
 - (i) either U = X or X U is a disjoint union of contractible curves.
 - (ii) U is relatively minimal.
 - (iii) If X is nonsingular then X U is a disjoint union of the curves isomorphic to \mathbf{A}^1 .
- (2) X is relatively minimal provided X contains no contractible curves.

3 Log algebraic surfaces, II

Let $(\overline{V}, \overline{\Delta})$ be a relatively minimal log projective surface and $f : (V, D) \rightarrow (\overline{V}, \overline{\Delta})$ be the minimal resolution. An irreducible curve \overline{E} on \overline{V} is called a *log exceptional curve of the second kind* if $(\overline{\Delta} + K_{\overline{V}} \cdot \overline{E}) = 0$ and $(\overline{E}^2) < 0$, or equivalently, if $(K_V + D^{\#} \cdot E) = 0$ and E + Bk(D) is negative definite, where E is the proper transform of \overline{E} on V.

Lemma 3.1 Let \overline{E} be an exceptional curve of the second kind such that $\overline{E} \not\subset \text{Supp }\overline{\Delta}$. Then the following assertions hold.

- (1) E is a (-2) curve if $(E \cdot D^{\#}) = 0$ and a (-1) curve if $(E \cdot D^{\#}) > 0$. If E is a (-1) curve then $(E \cdot D^{\#}) = 1$.
- (3) Suppose E meets $\operatorname{Supp} f^*(\overline{\Delta})$. Let $\overline{E}_0 = \overline{E} \overline{E} \cap \overline{\Delta}$. Then $e(\overline{E}_0) = 1$.

- (4) Let σ : V → W be a composite of the contraction of E and the contractions of all subsequently contractible components of Bk (D). Let B = σ_{*}(D). Then B is a reduced effective divisor with simple normal crossings, and each connected component of σ(SuppBk(D)) is an admissible rational twig, an admissible rational rod or an admissible rational fork of B.
- (5) Let $g: W \to \overline{W}$ be the contraction of all the connected components of Supp Bk (B) to the quotient singular points and let $\overline{\Gamma} = g_*(B)$. Then $(\overline{W}, \overline{\Gamma})$ is a log projective surface, and there exists a birational morphism $\overline{\sigma}: \overline{V} \to \overline{W}$ such that $\overline{\sigma} \cdot f = g \cdot \sigma$ and $\overline{\Gamma} = \overline{\sigma}_*(\overline{\Delta})$.
- (6) Suppose $\overline{\kappa}(V-D) \ge 0$. Then $D^{\#}+K_V = \sigma^*(B^{\#}+K_W)$ and $\overline{\Delta}+K_{\overline{V}} = \overline{\sigma^*}(\overline{\Gamma}+K_{\overline{W}})$.
- (7) Suppose $\overline{\kappa}(V-D) \ge 0$. Then $\overline{\kappa}(V-D) = \overline{\kappa}(W-B)$.

Let $(\overline{V}, \overline{\Delta})$ be a relatively minimal log projective surface and let f: $(V, D) \to (\overline{V}, \overline{\Delta})$ be the minimal resolution. We assume, hereafter, that $\overline{\kappa}(V - D) \ge 0$ and that there are no log exceptional curves of the second kind whose proper transforms on V are (-1) curves lying outside Supp Δ . So, if there exists a log exceptional curve of the second kind it is either contained in Supp $\overline{\Delta}$ or disjoint from Supp $\overline{\Delta}$.

Lemma 3.2 Let $G = G_1 + \cdots + G_n$ be a connected reduced effective divisor on V with the irreducible components G_i such that $\operatorname{Supp} G \cap \operatorname{Supp} D = \emptyset$, $(D^{\#} + K_V \cdot G) = 0$ and G is negative definite. Then G is the exceptional locus of the minimal resolution of a rational double point.

Lemma 3.3 Let $G = G_1 + \cdots + G_n$ be a connected reduced effective divisor on V with the irreducible components G_i such that $\operatorname{Supp} G \subset$ $\operatorname{Supp} D, \operatorname{Supp} G \not\subset \operatorname{Supp} \operatorname{Bk} (D), (D^{\#} + K_V \cdot G) = 0$ and $G + \operatorname{Bk} (D)$ is negative definite. Suppose that G is maximal among the divisors satisfying the above properties and that G is not a connected component of D. Then the weighted dual graph of G is one of the following:

(1) A linear chain of nonsingular rational curves, where only the end components G_1 and G_n meet D - G, actually each meeting Δ in a single point.

(2) A graph of Dynkin type D consisting of nonsingular rational curves (cf. Lemma 3.4), where the component G_1 meets Δ and other components have no intersection with D - G, where G_{n-1} and G_n have coefficients 1/2 in $D^{\#}$ and self-intersection numbers -2.

Lemma 3.4 Let $G = G_1 + \cdots + G_n$ be a connected reduced effective divisor on V with the irreducible components G_i such that $\text{Supp } G \subset$ $\text{Supp } D, \text{Supp } G \not\subset \text{Supp Bk } (D), (D^{\#} + K_V \cdot G) = 0$ and G + Bk (D) is negative definite. Suppose that G is a connected component of D. Then one of the following cases takes place:

- (1) G consists of a nonsingular elliptic curve, i.e., G is the exceptional curve of the minimal resolution of an elliptic singular point.
- (2) $G = G_1 + \ldots + G_n$ is a cycle of nonsingular rational curves with $n \ge 2$, i.e., $(G_i \cdot G_j) = 0$ unless $(G_i \cdot G_{i+1}) = 1$ for $1 \le i \le n-1$ and $(G_n \cdot G_1) = 1$. Hence G is the exceptional curve of the minimal resolution of a cuspidal singular point.
- (3) G consists of nonsingular rational curves, and the dual graph of G is the graph of the exceptional graph of minimal resolution of a quasielliptic or quasi-cuspidal singular point, where a quasi-elliptic (resp. quasi-cuspidal) singular point is the quotient of an elliptic (resp. cuspidal) singular point by a finite group action.

Let $(\overline{V}, \overline{\Delta})$ be a relatively minimal log projective surface. We say that $(\overline{V}, \overline{\Delta})$ is *strongly minimal* if there are no log exceptional curves of the second kind on \overline{V} .

Let \overline{V} be a normal projective surface and let $\overline{\Delta}$ be a reduced effective Weil divisor on \overline{V} . We say that the pair $(\overline{V}, \overline{\Delta})$ has log canonical singularities if the following conditions are satisfied:

- (1) $K_{\overline{V}} + \overline{\Delta}$ is a **Q**-Cartier divisor;
- (2) If $f: V \to \overline{V}$ is the minimal resolution of singularities then the proper transform Δ of $\overline{\Delta}$ plus the set of irreducible exceptional curves $\{E_i\}_{1 \le j \le n}$ of f is a divisor with simple normal crossings and

$$K_V + \Delta = f^*(K_{\overline{\Delta}} + \overline{\Delta}) + \sum_{j=1}^n a_j E_j \tag{\dagger}$$

with $a_j \in \mathbf{Q}$ and $-1 \leq a_j \leq 0$.

Let $D = \Delta + \sum_{j=1}^{n} E_j$. Then the equality (†) is written as

$$K_V + D^{\#} = f^*(K_{\overline{V}} + \overline{\Delta})$$

Let $\Xi = \sum_{j=1}^{n} E_j$, $\Xi_1 = \sum_{a_j=-1} E_j$ and $\Xi_2 = \sum_{a_j\neq-1} E_j$. Let $\sigma : V \to \tilde{V}$ be the contraction of Ξ_2 , $\tilde{\Delta} = \sigma_* \Delta$ and $\tilde{\Xi} = \sigma_*(\Xi) = \sigma_*(\Xi_1)$. Then $(\tilde{V}, \tilde{\Delta} + \tilde{\Xi})$ has log terminal singularities and $(V, D) \to (\tilde{V}, \tilde{\Delta} + \tilde{\Xi})$ is the minimal resolution of singularities. Furthermore, $\tilde{\Xi}$ is a set of exceptional curves of the second kind on \tilde{V} . Here we can define an irreducible exceptional curve \tilde{C} of the second kind on $(\tilde{V}, \tilde{\Delta} + \tilde{\Xi})$ by the condition $(K_{\tilde{V}} + \tilde{\Delta} + \tilde{\Xi} \cdot \tilde{C}) = 0$, though $(\tilde{V}, \tilde{\Delta} + \tilde{\Xi})$ is not necessarily relatively minimal. Hence log canonical singularities are elliptic singularities, cusp singularities, quasi-elliptic singularities, quasi-cuspidal singularities and quotient singularities.

Theorem 3.5 Let $(\overline{V}, \overline{\Delta})$ be a relatively minimal log projective surface. Suppose that $\overline{\kappa}(V - D) = 2$. Let $f : (V, D) \to (\overline{V}, \overline{\Delta})$ be the minimal resolution and let G be a connected component of D as in Lemma 3.4. Then there exists a birational morphism $\overline{\rho} : \overline{V} \to \overline{W}$ onto a normal projective surface \overline{W} satisfying the following conditions:

- (1) $P := \overline{\rho} \cdot f(G)$ is a point on \overline{W} , and $\overline{V} f(G)$ is isomorphic to $\overline{W} \{P\}$.
- (2) $K_{\overline{W}} + \overline{\Gamma}$ is a **Q**-Cartier divisor, where $\overline{\Gamma} = \overline{\rho}_*(\overline{\Delta})$, and $K_{\overline{V}} + \overline{\Delta} = \overline{\rho}^*(K_{\overline{W}} + \overline{\Gamma})$.

Hence $(\overline{W},\overline{\Gamma})$ has log canonical singularities.

We have the following result of Kawamata.

Theorem 3.6 Let $(\overline{V}, \overline{\Delta})$ be a relatively minimal log projective surface and let $f : (V, D) \to (\overline{V}, \overline{\Delta})$ be the minimal resolution. Assume that $\overline{\kappa}(V - D) = 2$. Let n_0 be the smallest positive integer such that $n_0(D^{\#} + K_V)$ is an integral divisor. Then the following assertions hold:

- (1) The linear system $|nn_0(D^{\#} + K_V)|$ has no base points if n is sufficiently large.
- (2) The graded ring $R^* := \bigoplus_{n \ge 0} H^0(V, nn_0(D^\# + K_V))$ is finitely generated over k, and the graded ring $\bigoplus_{n \ge 0} H^0(V, [n(D^\# + K_V)])$ is a finite R^* -module.
- (3) The graded ring $R := \bigoplus_{n \ge 0} H^0(V, n(D + K_V))$ is finitely generated over k.
- (4) Let $\overline{V}_c := \operatorname{Proj}(R)$. Then \overline{V}_c is isomorphic to the image of V by $\Phi_{|nn_0(D^{\#}+K_V)|}$ for $n \gg 0$. Hence $(\overline{V}_c, \overline{\Gamma}_c)$ has only log canonical singularities, where $\overline{\Gamma}_c$ is the direct image of D by $\Phi_{|nn_0(D^{\#}+K_V)|}$.

In the affine case, the construction of the strongly minimal model is also the subtraction of a disjoint union of topologically contractible curves.

Lemma 3.7 Let X be a normal affine surface with at worst quotient singularities, let $(\overline{V}, \overline{\Delta})$ be a normal projective completion of X and let $f: (V, D) \to (\overline{V}, \overline{\Delta})$ be a minimal resolution. Let \overline{C} be a log exceptional curve of the second kind such that $\overline{C} \not\subset \text{Supp }\overline{\Delta}$. Then C is a (-1) curve meeting Supp $f^*(\overline{\Delta})$ transversally in a single smooth point. Furthermore, \overline{C} passes through at most one singular point on X and $e(\overline{C}_0) = 1$, where $\overline{C}_0 = \overline{C} - \overline{C} \cap \overline{\Delta}$. If X is smooth then $\overline{C}_0 \cong \mathbf{A}^1$.

Lemma 3.8 Let X be a normal affine surface with at worst quotient singularities. Suppose that the following conditions are satisfied:

- (1) Either the irregularity of a smooth projective model of X is zero or $\overline{\kappa}(X \operatorname{Sing} X) = -\infty.$
- (2) Let $(\overline{V}, \overline{\Delta})$ be a normal projective completion of X and let $f : (V, D) \rightarrow (\overline{V}, \overline{\Delta})$ be a minimal resolution. Then the dual graph of D is a tree.

Then there exists an affine open set U_0 of X such that U_0 is a strongly minimal model of X and that either $X = U_0$ or $X - U_0$ is a disjoint union

of contractible curves, which are isomorphic to \mathbf{A}^1 provided X is smooth. Furthermore, $\overline{\kappa}(U_0 - \operatorname{Sing} U_0) = \overline{\kappa}(X - \operatorname{Sing} X)$.

4 Structure theorems

We have the following result.

Lemma 4.1 Let $(\overline{V}, \overline{\Delta})$ be a log projective surface and let $f : (V, D) \rightarrow (\overline{V}, \overline{\Delta})$ be the minimal resolution. Suppose that the pair $(\overline{V}, \overline{\Delta})$ is relatively minimal. Then $\overline{\kappa}(V - D) \ge 0$ if and only if $D^{\#} + K_V$ is nef. Suppose $D^{\#} + K_V$ is not nef. Then we have either (i) or (ii) below:

(i) V - D is affine-ruled, (ii) $\rho(\overline{V}) = 1$ and $-(\overline{D} + K_{\overline{V}})$ is ample, where $\overline{D} = \overline{\Delta}$.

We say that $(\overline{V}, \overline{D})$ is a log del Pezzo surface if $-(\overline{D} + K_{\overline{V}})$ is ample. If $\rho(\overline{V}) = 1$ we say that $(\overline{V}, \overline{D})$ has rank one. Furthermore, a log del Pezzo surface is said to be open (resp. complete) if $\overline{D} \neq 0$ (resp. if $\overline{D} = 0$). A complete log del Pezzo surface is simply called a log del Pezzo surface.

Let X be a non-complete nonsingular algebraic surface. We say that X has an \mathbf{A}^1_* -fiber space structure if there exists a surjective morphism $\varphi : X \to C$ from X onto a nonsingular curve C such that general fibers of φ are isomorphic to \mathbf{A}^1_* , the affine line \mathbf{A}^1_k minus one point. We say that the morphism φ is an \mathbf{A}^1_* -fibration. A fiber $\varphi^*(P)$ is singular if either $\varphi^{-1}(P)$ is reducible or $\varphi^*(P) = n_P C_P$, where $n_P \geq 2$ and C_P is irreducible. If $\varphi^*(P) = \sum_{i=1}^r n_i C_i$ is the irreducible decomposition and if $n_P := \gcd(n_1, \ldots, n_r) > 1$, we say that the fiber $\varphi^*(P)$ is a multiple fiber with multiplicity n_P . Given an \mathbf{A}^1_* -fiber space $\varphi : X \to C$ with a complete curve C, there exist a smooth completion (W, B, X) of X and a surjective \mathbf{P}^1 -fibration $\pi : W \to C$ such that φ is the resteriction of π onto X. An \mathbf{A}^1_* -fiber space $\varphi : X \to C$ is called a Platonic \mathbf{A}^1_* -fiber space if the following conditions are satisfied:

- (1) $C \cong \mathbf{P}^1$.
- (2) φ has no singular fibers but three multiple fibers $\Gamma_i = \mu_i \Delta_i, 1 \leq i \leq 3$, such that Δ_i is isomorphic to \mathbf{A}^1_* and that $\{\mu_1, \mu_2, \mu_3\}$ is, up to

a permutation, one of the triplets $\{2, 2, n\}(n \ge 2), \{2, 3, 3\}, \{2, 3, 4\}$ and $\{2, 3, 5\}$.

- (3) There exist a smooth completion (W, B, X) of X and a surjective morphism $\pi: W \to C$ as above such that:
 - (i) *B* contains two irreducible components S_0 and S_1 which are crosssections of π with $S_0 \cap S_1 = \emptyset$, and other irreducible components of *B* are contained in the fibers of π ;
 - (ii) every fiber of π has a linear chain as its weighted dual graph.

Theorem 4.2 Let $(\overline{V}, \overline{D})$ be an open log del Pezo surface of rank one and let $f : (V, D) \to (\overline{V}, \overline{D})$ be the minimal resolution. Let X = V - D. Then X is affine-ruled or X is a Platonic \mathbf{A}^1_* -fiber space.

This result implies the following result.

Theorem 4.3 Let X be a smooth open algebraic surface with $\overline{\kappa}(X) = -\infty$. Suppose that X is not affine-ruled. Suppose furthermore that there exists an open immersion of X into a smooth projective surface V such that

- (1) V X is a reduced effective divisor with simple normal crossings.
- (2) If we write $V X = \bigcup_{i=1}^{r} C_i$ with irreducible components C_i , the intersection matrix $((C_i \cdot C_j))_{1 \le i,j \le r}$ is not negative definite.

Then there exist a Zariski open set U of X and a proper birational morphism $\varphi: U \to T'$ onto a smooth algebraic surface T' defined over k such that

- (i) Either U = X or X U has pure dimension one.
- (ii) T' is an open set of a Platonic \mathbf{A}^1_* -fiber space T with $\dim(T-T') \leq 0$.

Consider next the case of Kodaira dimension 0 or 1.

Lemma 4.4 Let $(\overline{V}, \overline{D})$ be a relatively minimal log projective surface. If $\overline{\kappa}(V - D) = 0$ or 1 then $((D^{\#} + K_V)^2) = 0$.

Lemma 4.5 Let $(\overline{V}, \overline{D})$ be a relatively minimal log projective surface. If $D^{\#} + K_V$ is nef then $\overline{\kappa}(V - D) \ge 0$. This implies, in particular, that $n(D^{\#} + K_V) \sim 0$ for some positive integer n provided $D^{\#} + K_V \equiv 0$.

The following result is a sort of the converse to the previous tw results.

Theorem 4.6 Let $(\overline{V}, \overline{D})$ be a relatively minimal log projective surface such that $\overline{\kappa}(V - D) \ge 0$, $D^{\#} + K_V \not\equiv 0$ and $(D^{\#} + K_V^2) = 0$. Then $\overline{\kappa}(V - D) = 1$.

In the case of Kodaira dimension 1, we have the following theorems due mainly to Kawamata.

Theorem 4.7 Let $(\overline{V}, \overline{D})$ be a relatively minimal log projective surface with $\overline{\kappa}(V - D) = 1$. Then, for a positive integer n with $n(D^{\#} + K_V)$ a Cartier divisor, the linear system $|n(D^{\#} + K_V)|$ is composed of an irreducible pencil Λ without base points. Let $\varphi : V \to B$ be a fibration defined by Λ . Then one of the following assertions holds:

- (1) Λ is a pencil of rational curves. Let ℓ be a general fiber of φ . Then $(D^{\#} \cdot \ell) = ([D^{\#}] \cdot \ell) = 2$ and every irreducible component of Bk (D)is a fiber component of φ , i.e., contained in a fiber of φ .
- (2) Λ is a pencil of elliptic curves. Every irreducible component of D is a fiber component of φ .

Applying Theorem 4.7 to affine surfaces, we obtain the following result.

Theorem 4.8 Let X be a normal affine surface with at worst quotient singularities. Suppose that $\overline{\kappa}(X - \operatorname{Sing} X) = 1$ and that one of the following conditions are satisfied:

- (i) X is relatively minimal, i.e., there exists a relatively minimal log projective surface $(\overline{V}, \overline{\Delta})$ such that $X = \overline{V} \overline{\Delta}$.
- (ii) X is smooth.
- Then there exists an \mathbf{A}^1_* -fibration $\rho: X \to B$.

As in the complete case, we have the following canonical divisor formula.

Theorem 4.9 Let $(\overline{V}, \overline{D})$ be a relatively minimal log projective surface with $\overline{\kappa}(V - D) = 1$. Let $h : V \to W$ be the birational morphism $h : (V, D) \to (W, C)$ with a **Q**-divisor $C = h_*(D^{\#})$ such that $D^{\#} + C$ $K_V = h^*(C + K_W)$ and that there are no (-1)-curves E on W such that $(C + K_W \cdot E) = 0$. Suppose that |n(C + K)| defines an elliptic fibration $\pi : W \to B$ for a sufficiently large integer n with n(C + K) a Cartier divisor and dim |n(C + K)| > 0. Then the following assertions hold.

- (1) The fibration $\pi: W \to B$ is relatively minimal.
- (2) $C = \sum_i d_i F_i$, where $0 < d_i \le 1$ and $m_i F_i$ is a (distinct) fiber of π for some integer (multiplicity) $m_i \ge 1$.
- (3) We have the following formula:

$$C + K_W = \pi^* (K_B - \delta) + \sum_s (m_s - 1)E_s + \sum_i d_i F_i ,$$

where $m_s E_s$ ranges over all multiple fibers of π with multiplicity m_s and the reduced form E_s and where δ is a divisor on B with $t := -\deg \delta = \chi(\mathcal{O}_V)$.

(4) For a sufficiently large integer n as above, we have

$$h^{0}(V, n(D^{\#} + K_{V})) = n(2g - 2 + t) + \sum_{s} \left[n\left(1 - \frac{1}{m_{s}}\right) \right] + \sum_{i} \left[\frac{nd_{i}}{m_{i}} \right] + (1 - g),$$

where g is the genus of B.

(5) Suppose $\kappa(V) = -\infty$. Then the reduced inverse image $\pi^*(F_i)_{\text{red}}$ is contained in Supp D for some *i*.

Theorem 4.10 Let $(\overline{V}, \overline{D})$ be a relatively minimal log projective surface with $\overline{\kappa}(V - D) = 1$. Let $h: V \to W$ be the birational morphism as above such that $D^{\#} + K_V = h^*(C + K_W)$ with $C = h_*(D^{\#})$ and that there are no (-1)-curves E on W such that $(C + K_W \cdot E) = 0$. Suppose that |n(C + K)| defines a \mathbf{P}^1 - fibration $\pi: W \to B$ for a sufficiently large integer n with n(C + K) a Cartier divisor and dim |n(C + K)| > 0. Then the following assertions hold.

- (1) The \mathbf{P}^1 -fibration $\pi: W \to B$ is relatively minimal.
- (2) The divisor C is written as

$$C = H + \sum_{i} d_i F_i \; ,$$

where H is a sum of horizontal components and the F_i are the fibers of π . Each component of H has coefficient 1, and H is either a 2-section or consists of two cross-sections. The divisor H has only normal crossings.

(3) We have the following formula:

$$C + K_W = \pi^*(K_W + \delta) + \sum_i d_i F_i ,$$

where $t := \deg \delta$ is equal to a sum of the number of double points of H and one half of the number of branch points of $\pi \mid_H if H$ is a 2-section and t is equal to $(H_1 \cdot H_2)$ if $H = H_1 + H_2$ with the cross-sections H_1 and H_2 .

(4) For a sufficiently large integer n as above and with the nd_i integers, we have

$$h^{0}(W, n(C + K_{W})) = n(2g - 2 + t) + \sum_{i} nd_{i} + 1 - g$$
.

Consider the case of Kodaira dimension 0.

Theorem 4.11 Let $(\overline{V}, \overline{D})$ be a relatively minimal log projective surface with $\kappa(V - D) = 0$. Suppose that there are no superfluous exceptional components in D and no log exceptional curves of the second kind whose proper transforms on V are (-1) curves lying outside Supp $[D^{\#}]$. Then the following assertions hold true:

- (1) Suppose $\kappa(V) = 0$. Then $D^{\#} = 0$ and V is relatively minimal. In particular, D consists of (-2) rods and (-2) forks. If $D \neq 0$ then V is either a K3-surface or an Enriques surface.
- (2) Suppose V is an irrational ruled surface. Then V is a ruled surface over an elliptic curve, say B, V is relatively minimal and D consists of a 2-section C which is an étale covering of B or a sum C₁ + C₂, where C₁ and C₂ are mutually disjoint cross-sections. Furthermore, 2(C + K_V) ~ 0 or C₁ + C₂ + K_V ~ 0.
- (3) Suppose that V is a rational surface and that D contains either an irrational component C or a cycle of rational curves, i.e., a collection of nonsingular rational curves $C_1+C_2+\cdots+C_r$ such that $(C_i \cdot C_{i+1}) =$ $(C_r \cdot C_1) = 1$ for $1 \le i < r$. Then either $[D^{\#}] = C$ is an elliptic curve with $C + K_V \sim 0$ or $[D^{\#}] = C_1 + C_2 + \cdots + C_r$, which is a cycle of rational curves, and $C_1 + C_2 + \cdots + C_r + K_V \sim 0$. Furthermore,

Supp (Bk (D)) is disjoint from $[D^{\#}]$ and consists of (-2) rods or (-2) forks.

(4) Suppose that V is a rational surface and that D is a tree of rational curves. Then $n(D^{\#} + K_V) \sim 0$ with n > 1.

In the case (4) of the above theorem, we have the following result.

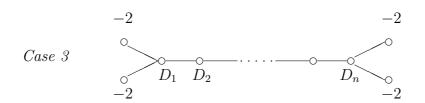
Theorem 4.12 Let $(\overline{V}, \overline{D})$ and (V, D) be the same as in Theorem 4.11. Suppose that V is a rational surface and the dual graph of D is a connected tree of rational curves. Then the following assertions hold true.

(1) Suppose $[D^{\#}] = 0$. Then $D^{\#} = (1/2)D$ and $2(D^{\#} + K_V) \sim 0$. The divisor D has one of the next dual graphs:

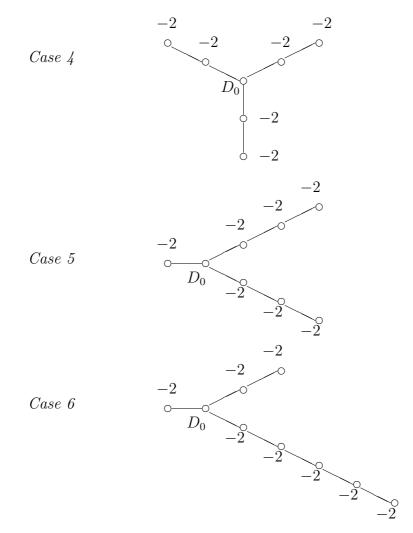
Case 1

 $^{\circ}_{-4}$

(2) Suppose $[D^{\#}] \neq 0$. Then $[D^{\#}]$ is either a linear chain $D_1 + \cdots + D_n$ or a single component D_0 . If $[D^{\#}]$ is a linear chain, then $2(D^{\#} + K_V) \sim 0$ and the dual graph of D is given as below:



(3) Suppose that [D[#]] is a single component D₀. Then the divisor D has one of the next dual graphs, and 3(D[#] + K_V) ~ 0 in Case 4, 4(D[#] + K_V) ~ 0 in Case 5 and 6(D[#] + K_V) ~ 0 in Case 6.



(4) Let X := V - D. Suppose rank Pic (X) = 0. Then X is affine and Cases 1 and 2 do not occur. Furthermore, the irreducible components of D are numerically independent in Cases 4,5 and 6. We have $\sum_{i=1}^{n} (D_i^2) \ge 6 - 3n$ in Case 3, $(D_0^2) = 1$ in Case 4, $(D_0^2) = 0$ in Case 5, and $(D_0^2) = -1$ in Case 6.

Finally, we note, in the case of Kodaira dimension 2, the following beautiful result of Miyaoka-Yau type, which was proved by R. Kobayashi but has not yet proved in the algebro-geometric method.

Theorem 4.13 Let V be a nonsingular minimal algebraic surface defined over the complex field **C**. Suppose that $\kappa(V) = 2$. Then we have $(K_V^2) \leq 3e(V)$, where e(V) is the topological Euler number.