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1 Log algebraic surfaces

The ground field is an algebraically closed field of characteristic zero.

Let V be the spectrum of the local ring of a normal algebraic surface at

a point P . We say that the pair (V , P ) is a germ of a normal algebraic

surface. Let f : V → V be the minimal resolution of singularity. Let

{Ej}1≤j≤n be the set of irreducible exceptional curves of f . We say that

the germ (V , P ) has log terminal singularity if

(i) the canonical divisor KV is a Q-Cartier divisor, i.e., an integral mul-

tiple of KV is a Cartier divisor, and

(ii) KV = f ∗(KV ) +
n∑

j=1

ajEj, where aj ∈ Q and −1 < aj ≤ 0, where the

equality holds in Pic (V ) ⊗Z Q.

Lemma 1.1 With the above notations, (V , P ) has a log terminal singu-

larity if and only if (V , P ) has a quotient singularity.

Let V be a normal projective surface and ∆ a reduced effective (Weil)

divisor on V . We can generalize the above definition of log terminal

singularity for a pair (V , ∆). We say that the pair (V , ∆) has log terminal

singularities if the following conditions are satisfied:
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(1) KV + ∆ is a Q-Cartier divisor.

(2) If f : V → V is the minimal resolution of singularities, then the

proper transform ∆ of ∆ is a diviosr with simple normal crossings

and

KV + ∆ = f ∗(KV + ∆) +
n∑

j=1

ajEj

with aj ∈ Q and 0 ≥ aj > −1, where {Ej}1≤j≤n is the set of irre-

ducible exceptional curves of f .

Lemma 1.2 With the above notations, let ∆ =
∑r

i=1 Ci be the irreducible

decomposition of ∆ and let D =
∑r

i=1 Ci +
∑n

j=1 Ej. Then (V , ∆) has log

terminal singularities if and only if the following conditions are satisfied:

(1) D is a divisor with simple normal crossings.

(2) V has only quotient singularities.

(3) If V has a singular point on ∆, say P , then the dual graph of excep-

tional curves of a minimal resolution of (V , P ) is a linear chain such

that ∆ meets only one of the end components of the linear chain, the

intersection being at a single point and transverse.

With the above notations, we call the pair (V , ∆) a log projective sur-

face and f : (V, ∆) → (V , ∆) the minimal resolution of (V , ∆).

An irreducible curve C on a log projective surface (V , ∆) is called a log

exceptional curve of the first kind if (KV + ∆ ·C) < 0 and (C
2
) < 0. This

is an analogy of an exceptional curve of the first kind, i.e., (−1) curve, on

a nonsingular projective surface. A log projective surface (V , ∆) is called

relatively minimal if there are no log exceptional curves of the first kind

on V . Then (V , ∆) is relatively minimal if and only if (V,D) is almost

minimal.

Lemma 1.3 Let (V , ∆) be a log projective surface. Then there exists a

birational morphism µ : V → W onto a normal projective surface W such

that

(1) (W, Γ) is a log projective surface, where Γ = µ∗(∆);

(2) (W, Γ) is relatively minimal.

The construction of relatively minimal models is done by the theory of

peeling which will be explained in the next section.
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2 Theory of peelings and almost minimal

models

Let (V,D) be a pair of a smooth projective surface and a reduced

effective divisor D with simple normal crossings. Let X := V − D. The

Kodaira dimension κ(X) is defined as

κ(X) =


−∞ if N(D + KV ) = ∅

sup
m∈N(D+KV )

dim Φm(D+KV )(V ) if N(D + KV ) 6= ∅

where

N(D + KV ) = {m ∈ N | |m(D + KV )| 6= ∅}.

In fact, κ(X) is independent of the choice of a pair (V,D) such that

X = V − D. If κ(X) ≥ 0, the divisor D + KV has the Zariski-Fujita

decomposition,

D + KV = (D + KV )+ + (D + KV )−,

where (D+KV )+ is the nef component and (D+KV )− is the negative com-

ponent. Then we can find by Kawamata-Fujita-Tsunoda that there exist

a nonsingular projective surface Ṽ , a birational morphism f : V → Ṽ

and an effective Q-divisor D̃# on Ṽ such that Supp D̃# ⊆ Supp f∗(D)

and (D + KV )+ ≡ f∗(D̃# + K
Ṽ
). A pair (Ṽ , D̃) is thought of a rela-

tively minimal model of the pair (V,D). The theory of peeling provides

a concrete way of constructing the relatively minimal model (Ṽ , D̃).

Let T = {D1, . . . , Dr} be a subset of irreducible components of D. We

call L an admissible maximal rational twig if

(1) Each Di is a smooth rational curve.

(2) (Di ·Dj) = 1 if j = i+1 (1 ≤ i ≤ r− 1) and (Di ·Dj) = 0 otherwise.

(3) T does not meet any component of D − T except for Dr meeting

D − T transversally in one point.

(4) The intersection matrix of T is negative definite.

A connected component R (resp. F ) is called an admissible rational rod

(resp. fork) if

(1) Every irreducible component of R (resp. T ) is a smooth rational

curve.
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(2) R is a linear chain (resp. F has the same dual graph as the excep-

tional graph of a quotient singularity).

(3) The intersection matrix of R (resp. F ) is negative definite.

Let {Tλ}λ∈Λ (resp. {Rµ}µ∈M , {Fν}ν∈N) be the set of all admissible

maximal rational twigs (resp. rods, forks). Then there exists a unique

effective Q-divisor Bk (D) such that

(1) Bk (D) is a disjoint sum of Bk (Tλ), Bk (Rµ) and Bk (Fν), i.e.,

Bk (D) =
∑
λ

Bk (Tλ) +
∑
µ

Bk (Rµ) +
∑
ν

Bk (Fν).

(2)

Supp Bk (D) =
⋃
λ

Tλ ∪
⋃
µ

Rµ ∪
⋃
ν

Fν .

(3) (D# + KV ·Di) = 0 for every irreducible component Di of SuppBk(D),

where D# = D − Bk (D).

(4) Let D# =
∑n

i=1 aiDi be the irreducible decomposition of D#. Then

0 ≤ ai ≤ 1, where ai = 1 if and only if Di is not a component of

Bk (D).

(5) Supp (D) and Supp (D − Bk D) differs only by the exceptional loci

of rational double points.

We call Bk (D) the bark of D and say that D# is obtained by peeling the

bark of D.

The following results are the crucial results in the theory of peeling.

Lemma 2.1 Let V,D and D# be as above. Suppose that there exists an

irreducible component D0 of D such that

(D∗ + KV · D0) < 0 and (D2
0) ≤ −1 .

Then the following assertions hold.

(1) D0 is a (−1) curve.

(2) D0 is one of the following components of D:

(i) With an admissible rational twig T which might be empty, D0 forms

a rational twig; we denote it by T + D0;
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(ii) With admissible rational twigs T, T ′ which might be empty, D0

forms a rational rod, T + D0 + T ′;

(iii) D0 is a component of the connected component F whose weighted

dual graph looks like the one for an admissible rational fork except

for that the component D0 which has the branching number 3 has

self-intersection −1.

The component D0 is called the irrelevant component of the non-admissible

rational twig T −D0, the non-admissible rational rod T −D0 − T ′ or the

non-admissible rational fork F .

Lemma 2.2 (D# + KV · Y ) ≥ 0 for every irreducible component Y of

D except for the irrelevant components D0 of the non-admissible rational

twigs, the non-admissible rational rods and the non-admissible rational

forks.

Lemma 2.3 Suppose there exists an irreducible curve E on V such that

(D# + KV ·E) < 0, E is not an irreducible component of D and E+Bk(D)

is negative definite. Then we have (E ·KV ) < 0 and (E2) < 0, i.e., E is a

(−1) curve. Let σ : V → V ′ be the contraction of E and let D′ = σ∗(D).

Then D′ is a reduced effective divisor on V ′ with simple normal crossings.

Lemma 2.4 Let E now be an exceptional component, i.e., E is an irre-

ducible component of D which is a (−1) curve. Suppose that the braching

number of E in D is less than or equal to 2, (D# + KV · E) < 0 and

E + Bk (D) is negative definite. We call E a superfluous exceptional

component of D. In view of Lemma 2.1, such a component E appears

only in one of the following situations:

(i) E is an isolated component.

(ii) E is the irrelevant component of a non-admissible rational twig or a

non-admissible rational rod.

(iii) Let f : V → V be the contraction of E and consecutively contractible

components of Bk(D). Let D = f∗(D). Then D is a reduced effective

divisor with simple normal crossings.

Theorem 2.5 Let V be a smooth projective surface defined over k and let

D be a reduced effective divisor with simple normal crossings. Then there
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exists a birational morphism µ : V → Ṽ onto a smooth projective surface

Ṽ such that, with D̃ = µ∗(D), the following conditions are satisfied:

(1) h0(V, n(D + KV )) = h0(Ṽ , n(D̃ + K
Ṽ
)) for every integer n ≥ 0.

(2) µ∗Bk (D) ≤ Bk (D̃) and µ∗(D
# + KV ) ≥ D̃# + K

Ṽ
.

(3) For every irreducible curve C on Ṽ , we have either (D̃# + K
Ṽ
·C) ≥ 0

or (D̃ + K
Ṽ
· C) < 0 and C + Bk (D̃) is not negative definite.

The birational morphism µ : V → Ṽ is obtained as a composite of the

following operations:

(1) Contract all possible superfluous exceptional components of D.

(2) If there are no superfluous exceptional components in D, then peel

the barks of all admissible rational maximal twigs, all admisssible

rational rods and all admissible rational forks of D.

(3) Find a (−1) curve E such that E 6⊂ Supp (D), (D# + KV · E) < 0

and E + Bk (D) is negative definite. If there is none then we are

done. If there is one, consider the contraction σ : V → V of E and

D = σ∗(D).

(4) Now repeat the operations (1), (2) and (3) all over again.

A pair (V,D) is called almost minimal if, for every irreducible curve C

on V , either (D# + KV · C) ≥ 0 or (D# + KV · C) < 0 and C + Bk (D)

is not negative definite. The pair (Ṽ , D̃) given in the above theorem is

called an almost minimal model of (V,D).

Let (V , ∆) be a log projective surface and let f : (V,D) → (V , ∆) be

the minimal resolution. A relatively minimal model of (V , ∆) is obtained

from (Ṽ , D̃) by contracting BkD̃ to the quotient singular points. We note

that (V,D) is almost minimal if and only if (V , ∆) is relatively minimal

and that D# + KV = f ∗(∆ + KV ) if (V,D) is almost minimal.

In the affine case, the construction of a relatively minimal model is just

the subtraction of a disjoint union of topologically contractible curves.

This is seen by the following result:

Lemma 2.6 Let (V , ∆) be a log projective surface such that V − ∆ is

affine and let C be a log exceptional curve of the first kind such that

C 6⊂ Supp ∆. Set C0 = C − C ∩ ∆. Then we have:
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(1) The Euler number e(C0) = 0 or 1 and C0 passes through at most one

singular point of V − ∆.

(2) Suppose either the irregularity q of (a minimal resolution of) V is

zero or κ(V , ∆) = −∞. Then e(C0) = 1.

(3) In addition to the hypothesis of (2) above assume that V − ∆ is

nonsingular. Then C0 is isomorphic to the affine line A1.

Corollary 2.7 Let X be a normal affine surface with at worst quotient

singularities. Suppose either q (= the irregularity of a nonsingular pro-

jective model of X) is zero or κ(S − Sing X) = −∞. Then we have

(1) There exists an affine open set U of X such that

(i) either U = X or X − U is a disjoint union of contractible curves.

(ii) U is relatively minimal.

(iii) If X is nonsingular then X − U is a disjoint union of the curves

isomorphic to A1.

(2) X is relatively minimal provided X contains no contractible curves.

3 Log algebraic surfaces, II

Let (V , ∆) be a relatively minimal log projective surface and f : (V,D) →
(V , ∆) be the minimal resolution. An irreducible curve E on V is called a

log exceptional curve of the second kind if (∆ + KV ·E) = 0 and (E
2
) < 0,

or equivalently, if (KV + D# ·E) = 0 and E +Bk(D) is negative definite,

where E is the proper transform of E on V .

Lemma 3.1 Let E be an exceptional curve of the second kind such that

E 6⊂ Supp ∆. Then the following assertions hold.

(1) E is a (−2) curve if (E ·D#) = 0 and a (−1) curve if (E ·D#) > 0.

If E is a (−1) curve then (E · D#) = 1.

(2) Suppose E is a (−1) curve. Then E meets at most two connected

components of Supp Bk (D). If E meets a connected component of

Supp Bk (D) then E meets it in a single point transversally. Hence

E passes through at most two singular points of V .

(3) Suppose E meets Suppf ∗(∆). Let E0 = E−E∩∆. Then e(E0) = 1.
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(4) Let σ : V → W be a composite of the contraction of E and the con-

tractions of all subsequently contractible components of Bk (D). Let

B = σ∗(D). Then B is a reduced effective divisor with simple nor-

mal crossings, and each connected component of σ(SuppBk(D)) is an

admissible rational twig, an admissible rational rod or an admissible

rational fork of B.

(5) Let g : W → W be the contraction of all the connected components

of Supp Bk (B) to the quotient singular points and let Γ = g∗(B).

Then (W, Γ) is a log projective surface, and there exists a birational

morphism σ : V → W such that σ · f = g · σ and Γ = σ∗(∆).

(6) Suppose κ(V −D) ≥ 0. Then D#+KV = σ∗(B#+KW ) and ∆+KV =

σ∗(Γ + KW ).

(7) Suppose κ(V − D) ≥ 0. Then κ(V − D) = κ(W − B).

Let (V , ∆) be a relatively minimal log projective surface and let f :

(V,D) → (V , ∆) be the minimal resolution. We assume, hereafter, that

κ(V − D) ≥ 0 and that there are no log exceptional curves of the second

kind whose proper transforms on V are (−1) curves lying outside Supp∆.

So, if there exists a log exceptional curve of the second kind it is either

contained in Supp ∆ or disjoint from Supp ∆.

Lemma 3.2 Let G = G1+· · ·+Gn be a connected reduced effective divisor

on V with the irreducible components Gi such that SuppG
⋂

SuppD = ∅,
(D# + KV ·G) = 0 and G is negative definite. Then G is the exceptional

locus of the minimal resolution of a rational double point.

Lemma 3.3 Let G = G1 + · · · + Gn be a connected reduced effective

divisor on V with the irreducible components Gi such that Supp G ⊂
Supp D, Supp G 6⊂ Supp Bk (D), (D# + KV · G) = 0 and G + Bk (D) is

negative definite. Suppose that G is maximal among the divisors satisfying

the above properties and that G is not a connected component of D. Then

the weighted dual graph of G is one of the following:

(1) A linear chain of nonsingular rational curves, where only the end

components G1 and Gn meet D − G, actually each meeting ∆ in a

single point.
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(2) A graph of Dynkin type D consisting of nonsingular rational curves

(cf. Lemma 3.4), where the component G1 meets ∆ and other com-
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Lemma 3.4 Let G = G1 + · · · + Gn be a connected reduced effective

divisor on V with the irreducible components Gi such that Supp G ⊂
Supp D, Supp G 6⊂ Supp Bk (D), (D# + KV · G) = 0 and G + Bk (D) is

negative definite. Suppose that G is a connected component of D. Then

one of the following cases takes place:

(1) G consists of a nonsingular elliptic curve, i.e., G is the exceptional

curve of the minimal resolution of an elliptic singular point.

(2) G = G1 + . . . + Gn is a cycle of nonsingular rational curves with

n ≥ 2, i.e., (Gi · Gj) = 0 unless (Gi · Gi+1) = 1 for 1 ≤ i ≤ n − 1

and (Gn · G1) = 1. Hence G is the exceptional curve of the minimal

resolution of a cuspidal singular point.

(3) G consists of nonsingular rational curves, and the dual graph of G is

the graph of the exceptional graph of minimal resolution of a quasi-

elliptic or quasi-cuspidal singular point, where a quasi-elliptic (resp.

quasi-cuspidal) singular point is the quotient of an elliptic (resp. cus-

pidal) singular point by a finite group action.

Let (V , ∆) be a relatively minimal log projective surface. We say that

(V , ∆) is strongly minimal if there are no log exceptional curves of the

second kind on V .

Let V be a normal projective surface and let ∆ be a reduced effec-

tive Weil divisor on V . We say that the pair (V , ∆) has log canonical
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singularities if the following conditions are satisfied:

(1) KV + ∆ is a Q-Cartier divisor;

(2) If f : V → V is the minimal resolution of singularities then the

proper transform ∆ of ∆ plus the set of irreducible exceptional curves

{Ej}1≤j≤n of f is a divisor with simple normal crossings and

KV + ∆ = f ∗(K∆ + ∆) +
n∑

j=1

ajEj (†)

with aj ∈ Q and −1 ≤ aj ≤ 0.

Let D = ∆ +
∑n

j=1 Ej. Then the equality (†) is written as

KV + D# = f ∗(KV + ∆) .

Let Ξ =
∑n

j=1 Ej, Ξ1 =
∑

aj=−1 Ej and Ξ2 =
∑

aj 6=−1 Ej. Let σ : V → Ṽ

be the contraction of Ξ2, ∆̃ = σ∗∆ and Ξ̃ = σ∗(Ξ) = σ∗(Ξ1). Then

(Ṽ , ∆̃ + Ξ̃) has log terminal singularities and (V,D) → (Ṽ , ∆̃ + Ξ̃) is

the minimal resolution of singularities. Furthermore, Ξ̃ is a set of excep-

tional curves of the second kind on Ṽ . Here we can define an irreducible

exceptional curve C̃ of the second kind on (Ṽ , ∆̃ + Ξ̃) by the condition

(K
Ṽ

+ ∆̃ + Ξ̃ · C̃) = 0, though (Ṽ , ∆̃ + Ξ̃) is not necessarily relatively

minimal. Hence log canonical singularities are elliptic singularities, cusp

singularities, quasi-elliptic singularities, quasi-cuspidal singularities and

quotient singularities.

Theorem 3.5 Let (V , ∆) be a relatively minimal log projective surface.

Suppose that κ(V − D) = 2. Let f : (V,D) → (V , ∆) be the minimal

resolution and let G be a connected component of D as in Lemma 3.4.

Then there exists a birational morphism ρ : V → W onto a normal

projective surface W satisfying the following conditions:

(1) P := ρ · f(G) is a point on W , and V − f(G) is isomorphic to

W − {P}.
(2) KW + Γ is a Q-Cartier divisor, where Γ = ρ∗(∆), and KV + ∆ =

ρ∗(KW + Γ).

Hence (W, Γ) has log canonical singularities.
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We have the following result of Kawamata.

Theorem 3.6 Let (V , ∆) be a relatively minimal log projective surface

and let f : (V,D) → (V , ∆) be the minimal resolution. Assume that

κ(V −D) = 2. Let n0 be the smallest positive integer such that n0(D
# +

KV ) is an integral divisor. Then the following assertions hold:

(1) The linear system |nn0(D
# + KV )| has no base points if n is suffi-

ciently large.

(2) The graded ring R∗ :=
⊕

n≥0 H0(V, nn0(D
# + KV )) is finitely gen-

erated over k, and the graded ring
⊕

n≥0 H0(V, [n(D# + KV )]) is a

finite R∗-module.

(3) The graded ring R :=
⊕

n≥0 H0(V, n(D + KV )) is finitely generated

over k.

(4) Let V c := Proj (R). Then V c is isomorphic to the image of V by

Φ|nn0(D#+KV )| for n À 0. Hence (V c, Γc) has only log canonical sin-

gularities, where Γc is the direct image of D by Φ|nn0(D#+KV )|.

In the affine case, the construction of the strongly minimal model is also

the subtraction of a disjoint union of topologically contractible curves.

Lemma 3.7 Let X be a normal affine surface with at worst quotient

singularities, let (V , ∆) be a normal projective completion of X and let

f : (V,D) → (V , ∆) be a minimal resolution. Let C be a log exceptional

curve of the second kind such that C 6⊂ Supp ∆. Then C is a (−1) curve

meeting Supp f ∗(∆) transversally in a single smooth point. Furthermore,

C passes through at most one singular point on X and e(C0) = 1, where

C0 = C − C ∩ ∆. If X is smooth then C0
∼= A1.

Lemma 3.8 Let X be a normal affine surface with at worst quotient

singularities. Suppose that the following conditions are satisfied:

(1) Either the irregularity of a smooth projective model of X is zero or

κ(X − Sing X) = −∞.

(2) Let (V , ∆) be a normal projective completion of X and let f : (V,D) →
(V , ∆) be a minimal resolution. Then the dual graph of D is a tree.

Then there exists an affine open set U0 of X such that U0 is a strongly

minimal model of X and that either X = U0 or X−U0 is a disjoint union
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of contractible curves, which are isomorphic to A1 provided X is smooth.

Furthermore, κ(U0 − Sing U0) = κ(X − Sing X).

4 Structure theorems

We have the following result.

Lemma 4.1 Let (V , ∆) be a log projective surface and let f : (V,D) →
(V , ∆) be the minimal resolution. Suppose that the pair (V , ∆) is rel-

atively minimal. Then κ(V − D) ≥ 0 if and only if D# + KV is nef.

Suppose D# + KV is not nef. Then we have either (i) or (ii) below:

(i) V − D is affine-ruled,

(ii) ρ(V ) = 1 and −(D + KV ) is ample, where D = ∆.

We say that (V , D) is a log del Pezzo surface if −(D +KV ) is ample. If

ρ(V ) = 1 we say that (V ,D) has rank one. Furthermore, a log del Pezzo

surface is said to be open (resp. complete) if D 6= 0 (resp. if D = 0). A

complete log del Pezzo surface is simply called a log del Pezzo surface.

Let X be a non-complete nonsingular algebraic surface. We say that

X has an A1
∗-fiber space structure if there exists a surjective morphism

ϕ : X → C from X onto a nonsingular curve C such that general fibers

of ϕ are isomorphic to A1
∗, the affine line A1

k minus one point. We say

that the morphism ϕ is an A1
∗-fibration. A fiber ϕ∗(P ) is singular if

either ϕ−1(P ) is reducible or ϕ∗(P ) = nP CP , where nP ≥ 2 and CP is

irreducible. If ϕ∗(P ) =
∑r

i=1 niCi is the irreducible decomposition and

if nP := gcd(n1, . . . , nr) > 1, we say that the fiber ϕ∗(P ) is a multiple

fiber with multiplicity nP . Given an A1
∗-fiber space ϕ : X → C with a

complete curve C, there exist a smooth completion (W,B,X) of X and

a surjective P1-fibration π : W → C such that ϕ is the resteriction of π

onto X. An A1
∗-fiber space ϕ : X → C is called a Platonic A1

∗-fiber space

if the following conditions are satisfied:

(1) C ∼= P1.

(2) ϕ has no singular fibers but three multiple fibers Γi = µi∆i, 1 ≤ i ≤
3, such that ∆i is isomorphic to A1

∗ and that {µ1, µ2, µ3} is, up to
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a permutation, one of the triplets {2, 2, n}(n ≥ 2), {2, 3, 3}, {2, 3, 4}
and {2, 3, 5}.

(3) There exist a smooth completion (W,B,X) of X and a surjective

morphism π : W → C as above such that:

(i) B contains two irreducible components S0 and S1 which are cross-

sections of π with S0 ∩ S1 = ∅, and other irreducible components

of B are contained in the fibers of π;

(ii) every fiber of π has a linear chain as its weighted dual graph.

Theorem 4.2 Let (V , D) be an open log del Pezo surface of rank one

and let f : (V,D) → (V , D) be the minimal resolution. Let X = V − D.

Then X is affine-ruled or X is a Platonic A1
∗-fiber space.

This result implies the following result.

Theorem 4.3 Let X be a smooth open algebraic surface with κ(X) =

−∞. Suppose that X is not affine-ruled. Suppose furthermore that there

exists an open immersion of X into a smooth projective surface V such

that

(1) V − X is a reduced effective divisor with simple normal crossings.

(2) If we write V − X =
⋃r

i=1 Ci with irreducible components Ci, the

intersection matrix ((Ci · Cj))1≤i,j≤r is not negative definite.

Then there exist a Zariski open set U of X and a proper birational mor-

phism ϕ : U → T ′ onto a smooth algebraic surface T ′ defined over k such

that

(i) Either U = X or X − U has pure dimension one.

(ii) T ′ is an open set of a Platonic A1
∗-fiber space T with dim(T−T ′) ≤ 0.

Consider next the case of Kodaira dimension 0 or 1.

Lemma 4.4 Let (V , D) be a relatively minimal log projective surface. If

κ(V − D) = 0 or 1 then ((D# + KV )
2
) = 0.

Lemma 4.5 Let (V , D) be a relatively minimal log projective surface. If

D# + KV is nef then κ(V − D) ≥ 0. This implies, in particular, that

n(D# + KV ) ∼ 0 for some positive integer n provided D# + KV ≡ 0.

13



The following result is a sort of the converse to the previous tw results.

Theorem 4.6 Let (V , D) be a relatively minimal log projective surface

such that κ(V − D) ≥ 0, D# + KV 6≡ 0 and (D# + KV
2
) = 0. Then

κ(V − D) = 1.

In the case of Kodaira dimension 1, we have the following theorems

due mainly to Kawamata.

Theorem 4.7 Let (V , D) be a relatively minimal log projective surface

with κ(V − D) = 1. Then, for a positive integer n with n(D# + KV )

a Cartier divisor, the linear system |n(D# + KV )| is composed of an

irreducible pencil Λ without base points. Let ϕ : V → B be a fibration

defined by Λ. Then one of the following assertions holds:

(1) Λ is a pencil of rational curves. Let ` be a general fiber of ϕ. Then

(D# · `) = ([D#] · `) = 2 and every irreducible component of Bk (D)

is a fiber component of ϕ, i.e., contained in a fiber of ϕ.

(2) Λ is a pencil of elliptic curves. Every irreducible component of D is

a fiber component of ϕ.

Applying Theorem 4.7 to affine surfaces, we obtain the following result.

Theorem 4.8 Let X be a normal affine surface with at worst quotient

singularities. Suppose that κ(X − Sing X) = 1 and that one of the fol-

lowing conditions are satisfied:

(i) X is relatively minimal, i.e., there exists a relatively minimal log

projective surface (V , ∆) such that X = V − ∆.

(ii) X is smooth.

Then there exists an A1
∗-fibration ρ : X → B.

As in the complete case, we have the following canonical divisor for-

mula.

Theorem 4.9 Let (V , D) be a relatively minimal log projective surface

with κ(V − D) = 1. Let h : V → W be the birational morphism

h : (V,D) → (W,C) with a Q-divisor C = h∗(D
#) such that D# +

14



KV = h∗(C + KW ) and that there are no (−1)-curves E on W such that

(C + KW · E) = 0. Suppose that |n(C + K)| defines an elliptic fibration

π : W → B for a sufficiently large integer n with n(C + K) a Cartier

divisor and dim |n(C + K)| > 0. Then the following assertions hold.

(1) The fibration π : W → B is relatively minimal.

(2) C =
∑

i diFi, where 0 < di ≤ 1 and miFi is a (distinct) fiber of π for

some integer (multiplicity) mi ≥ 1.

(3) We have the following formula:

C + KW = π∗(KB − δ) +
∑
s

(ms − 1)Es +
∑

i

diFi ,

where msEs ranges over all multiple fibers of π with multiplicity ms

and the reduced form Es and where δ is a divisor on B with t :=

− deg δ = χ(OV ).

(4) For a sufficiently large integer n as above, we have

h0(V, n(D# + KV )) =

n(2g − 2 + t) +
∑
s

[
n

(
1 − 1

ms

)]
+

∑
i

[
ndi

mi

]
+ (1 − g),

where g is the genus of B.

(5) Suppose κ(V ) = −∞. Then the reduced inverse image π∗(Fi)red is

contained in Supp D for some i.

Theorem 4.10 Let (V , D) be a relatively minimal log projective surface

with κ(V − D) = 1. Let h : V → W be the birational morphism as above

such that D# + KV = h∗(C + KW ) with C = h∗(D
#) and that there

are no (−1)-curves E on W such that (C + KW · E) = 0. Suppose that

|n(C + K)| defines a P1- fibration π : W → B for a sufficiently large

integer n with n(C +K) a Cartier divisor and dim |n(C +K)| > 0. Then

the following assertions hold.

(1) The P1-fibration π : W → B is relatively minimal.

(2) The divisor C is written as

C = H +
∑

i

diFi ,

where H is a sum of horizontal components and the Fi are the fibers

of π. Each component of H has coefficient 1, and H is either a

15



2-section or consists of two cross-sections. The divisor H has only

normal crossings.

(3) We have the following formula:

C + KW = π∗(KW + δ) +
∑

i

diFi ,

where t := deg δ is equal to a sum of the number of double points

of H and one half of the number of branch points of π |H if H is

a 2-section and t is equal to (H1 · H2) if H = H1 + H2 with the

cross-sections H1 and H2.

(4) For a sufficiently large integer n as above and with the ndi integers,

we have

h0(W,n(C + KW )) = n(2g − 2 + t) +
∑

i

ndi + 1 − g .

Consider the case of Kodaira dimension 0.

Theorem 4.11 Let (V , D) be a relatively minimal log projective surface

with κ(V − D) = 0. Suppose that there are no superfluous exceptional

components in D and no log exceptional curves of the second kind whose

proper transforms on V are (−1) curves lying outside Supp [D#]. Then

the following assertions hold true:

(1) Suppose κ(V ) = 0. Then D# = 0 and V is relatively minimal. In

particular, D consists of (−2) rods and (−2) forks. If D 6= 0 then V

is either a K3-surface or an Enriques surface.

(2) Suppose V is an irrational ruled surface. Then V is a ruled surface

over an elliptic curve, say B, V is relatively minimal and D consists

of a 2-section C which is an étale covering of B or a sum C1 + C2,

where C1 and C2 are mutually disjoint cross-sections. Furthermore,

2(C + KV ) ∼ 0 or C1 + C2 + KV ∼ 0.

(3) Suppose that V is a rational surface and that D contains either an

irrational component C or a cycle of rational curves, i.e., a collection

of nonsingular rational curves C1+C2+· · ·+Cr such that (Ci·Ci+1) =

(Cr · C1) = 1 for 1 ≤ i < r. Then either [D#] = C is an elliptic

curve with C +KV ∼ 0 or [D#] = C1 +C2 + · · ·+Cr, which is a cycle

of rational curves, and C1 + C2 + · · · + Cr + KV ∼ 0. Furthermore,
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Supp (Bk (D)) is disjoint from [D#] and consists of (−2) rods or

(−2) forks.

(4) Suppose that V is a rational surface and that D is a tree of rational

curves. Then n(D# + KV ) ∼ 0 with n > 1.

In the case (4) of the above theorem, we have the following result.

Theorem 4.12 Let (V , D) and (V,D) be the same as in Theorem 4.11.

Suppose that V is a rational surface and the dual graph of D is a con-

nected tree of rational curves. Then the following assertions hold true.

(1) Suppose [D#] = 0. Then D# = (1/2)D and 2(D# + KV ) ∼ 0. The

divisor D has one of the next dual graphs:

Case 1

Case 2

d
−4

d d d p p p p p d d d
−3 −2 −2 −2 −2 −3

(2) Suppose [D#] 6= 0. Then [D#] is either a linear chain D1+· · ·+Dn or

a single component D0. If [D#] is a linear chain, then 2(D#+KV ) ∼
0 and the dual graph of D is given as below:

Case 3
d
d
HHH
©©©

d d p p p p p d d©©©
d

HHH d
−2

−2
D1 D2 Dn

−2

−2

(3) Suppose that [D#] is a single component D0. Then the divisor D

has one of the next dual graphs, and 3(D# + KV ) ∼ 0 in Case 4,

4(D# + KV ) ∼ 0 in Case 5 and 6(D# + KV ) ∼ 0 in Case 6.
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Case 4
d
HHH d

HHH d©©©
d©©©

d

d
d

−2
−2

D0

−2
−2

−2

−2

Case 5 d d©©©
d©©©

d©©©
d

HHH d
HHH d

HHH d

−2

D0

−2
−2

−2

−2
−2

−2

Case 6 d d©©©
d©©©

d
HHH d

HHH d
HHH d

HHH d
HHH d

−2

D0

−2
−2

−2
−2

−2
−2

−2

(4) Let X := V − D. Suppose rank Pic (X) = 0. Then X is affine and

Cases 1 and 2 do not occur. Furthermore, the irreducible components

of D are numerically independent in Cases 4, 5 and 6. We have∑n
i=1(Di

2) ≥ 6 − 3n in Case 3, (D0
2) = 1 in Case 4, (D0

2) = 0 in

Case 5, and (D0
2) = −1 in Case 6.

Finally, we note, in the case of Kodaira dimension 2, the following

beautiful result of Miyaoka-Yau type, which was proved by R. Kobayashi

but has not yet proved in the algebro-geometric method.

Theorem 4.13 Let V be a nonsingular minimal algebraic surface defined

over the complex field C. Suppose that κ(V ) = 2. Then we have (KV
2) ≤

3e(V ), where e(V ) is the topological Euler number.
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