

University of the Philippines Los Baños Institute of Mathematical Sciences and Physics

Multiscale Expansion Method for Periodic Homogenization

Editha C. Jose

26 August- 6 September 2019 2019 Multi-scale Analysis and Theory of Homogenization (MATH) International Center for Theoretical Sciences, Bangalore

- 2 The multiscale expansion method for periodic homogenization (one-dimensional case)
- 3 The multiscale expansion method for periodic homogenization (*n*-dimensional case)
- 4 The cell and the homogenized problems

Introduction

- 2 The multiscale expansion method for periodic homogenization (one-dimensional case)
- 3 The multiscale expansion method for periodic homogenization (*n*-dimensional case)
- 4 The cell and the homogenized problems

Reference: Meirmanov, Mathematical Methods Based on Homogenization Theory

- Show the multiscale expansion method in the one-dimensional and n- dimensional cases for a model diffusion problem.
- ² Derive the corresponding cell and homogenized problems.
- Examine the properties of the cell and homogenized problems.

- 2 The multiscale expansion method for periodic homogenization (one-dimensional case)
- 3 The multiscale expansion method for periodic homogenization (*n*-dimensional case)
- 4 The cell and the homogenized problems

A stationary temperature field in a **non-homogeneous** rod with periodic structure:

$$\begin{cases} \frac{d}{dx} \left(a_{\varepsilon}(x) \frac{du}{dx} \right) = f(x), & x \in (0, 1) \\ u(0) = g_0, u(1) = g_1. \end{cases}$$

The multiscale expansion method for periodic

A stationary temperature field in a **non-homogeneous** rod with periodic structure:

$$\begin{cases} \frac{d}{dx} \left(a_{\varepsilon}(x) \frac{du}{dx} \right) = f(x), & x \in (0, 1) \\ u(0) = g_0, u(1) = g_1. \end{cases}$$

MATH 2019

The multiscale expansion method for periodic

$$\begin{cases} \frac{d}{dx} \left(a_{\varepsilon}(x) \frac{du}{dx} \right) = f(x), \quad x \in (0, 1) \\ u(0) = g_0, u(1) = g_1. \end{cases}$$

Assumptions:

- The rod is of periodic structure.
- The thermal conductivity a_{ε} is periodic with period $\varepsilon = \frac{1}{n}$ where *n* is a large natural number.

• $a_{\varepsilon}(x) = a\left(\frac{x}{\varepsilon}\right)$ and a(y) is a 1-periodic function which is positive and differentiable.

$$\begin{cases} \frac{d}{dx} \left(a_{\varepsilon}(x) \frac{du}{dx} \right) = f, & x \in (0, 1) \\ u(0) = g_0, u(1) = g_1. \end{cases}$$

The multiscale expansion method for periodic homogenization (one-dimensional case)

$$\begin{cases} \frac{d}{dx} \left(a_{\varepsilon}(x) \frac{du}{dx} \right) = f, & x \in (0, 1) \\ u(0) = g_0, u(1) = g_1. \end{cases}$$

Our goal: Solve for u when $\varepsilon \to 0$.

The multiscale expansion method for periodic

g

Construct the solution u in the form (also called an ansatz):

$$u = u_0(x, y) + \varepsilon u_1(x, y) + \varepsilon^2 u_2(x, y) + \dots$$

Construct the solution u in the form (also called an ansatz):

$$u = u_0(x, y) + \varepsilon u_1(x, y) + \varepsilon^2 u_2(x, y) + \dots$$

Notes:

- slow (or macroscopic) variable x
- **2** fast (or microscopic) variable $y = \frac{x}{s}$

Differentiation formula:

$$\frac{dF}{dx}(x,y) = \frac{\partial F}{\partial x}(x,y) + \frac{\partial F}{\partial y} \cdot \frac{dy}{dx} = \frac{\partial F}{\partial x} + \frac{1}{\varepsilon} \frac{\partial F}{\partial y}.$$

The multiscale expansion method for periodic homogenization (one-dimensional case)

Differentiation formula:

$$\frac{dF}{dx}(x,y) = \frac{\partial F}{\partial x}(x,y) + \frac{\partial F}{\partial y} \cdot \frac{dy}{dx} = \frac{\partial F}{\partial x} + \frac{1}{\varepsilon} \frac{\partial F}{\partial y}.$$

A series expansion in ε :

$$\begin{split} \varepsilon^{-2} \bigg[\frac{\partial}{\partial y} \bigg(a(y) \frac{\partial u_0}{\partial y} \bigg) \bigg] + \varepsilon^{-1} \bigg[\frac{\partial}{\partial x} \bigg(a(y) \frac{\partial u_0}{\partial y} \bigg) + \frac{\partial}{\partial y} \bigg(a(y) \bigg(\frac{\partial u_0}{\partial x} + \frac{\partial u_1}{\partial y} \bigg) \bigg) \bigg] \\ + \varepsilon^0 \bigg[\frac{\partial}{\partial x} \bigg(a(y) \bigg(\frac{\partial u_0}{\partial x} + \frac{\partial u_1}{\partial y} \bigg) \bigg) + \frac{\partial}{\partial y} \bigg(a(y) \bigg(\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} \bigg) \bigg) \bigg] \\ + \varepsilon^1 \big[\dots \big] + \varepsilon^2 \big[\dots \big] + \dots = f. \end{split}$$

The multiscale expansion method for periodic homogenization (one-dimensional case)

For homogenization purposes, only the $\varepsilon^{-2}, \varepsilon^{-1}, \varepsilon^0$ terms are needed:

$$\frac{\partial}{\partial y} \left(a(y) \frac{\partial u_0}{\partial y} \right) = 0$$
$$\frac{\partial}{\partial x} \left(a(y) \frac{\partial u_0}{\partial y} \right) + \frac{\partial}{\partial y} \left(a(y) \left(\frac{\partial u_0}{\partial x} + \frac{\partial u_1}{\partial y} \right) \right) = 0$$
$$\frac{\partial}{\partial x} \left(a(y) \left(\frac{\partial u_0}{\partial x} + \frac{\partial u_1}{\partial y} \right) \right) + \frac{\partial}{\partial y} \left(a(y) \left(\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} \right) \right) = f$$

(A system of linear differential equations for u_0, u_1, u_2 with respect to y, considering x as a parameter)

The mean value (period-average) operator \mathcal{M} :

$$\mathcal{M}(F(x,y)) = \int_0^1 F(x,y) \, dy$$

with x and y considered as independent.

The mean value (period-average) operator \mathcal{M} :

$$\mathcal{M}(F(x,y)) = \int_0^1 F(x,y) \, dy$$

with x and y considered as independent.

Step 1:

$$\frac{\partial}{\partial y} \left(a(y) \frac{\partial u_0}{\partial y} \right) = 0 \Rightarrow u_0(x, y) = v_0(x).$$

The multiscale expansion method for periodic

Step 2:

$$\frac{\partial}{\partial x} \left(a(y) \frac{\partial u_0}{\partial y} \right) + \frac{\partial}{\partial y} \left(a(y) \left(\frac{\partial u_0}{\partial x} + \frac{\partial u_1}{\partial y} \right) \right) = 0$$
$$\Rightarrow \frac{\partial u_1}{\partial y} = \left(\frac{\hat{a}}{a(y)} - 1 \right) \frac{dv_0}{dx}$$
$$\Rightarrow u_1(x, y) = N_1(y) \frac{dv_0}{dx} + v_1(x),$$

where $v_1(x)$ is an arbitrary function and

$$N_1(y) = \int_0^y \left(\frac{\widehat{a}}{a(t)} - 1\right) dt,$$

with
$$\widehat{a} = rac{1}{\mathcal{M}(a(y))^{-1}}.$$

The multiscale expansion method for periodic

Step 3:

$$\begin{split} \frac{\partial}{\partial x} \bigg(a(y) \bigg(\frac{\partial u_0}{\partial x} + \frac{\partial u_1}{\partial y} \bigg) \bigg) &+ \frac{\partial}{\partial y} \bigg(a(y) \bigg(\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} \bigg) \bigg) = f \\ \Rightarrow \int_0^1 \bigg[\frac{\partial}{\partial x} \bigg(a(y) \frac{\partial u_1}{\partial y} \bigg) + \frac{\partial}{\partial x} \bigg(a(y) \frac{\partial u_0}{\partial x} \bigg) \bigg] \, dy = \int_0^1 f(x) \, dy \end{split}$$

Step 3:

$$\frac{\partial}{\partial x} \left(a(y) \left(\frac{\partial u_0}{\partial x} + \frac{\partial u_1}{\partial y} \right) \right) + \frac{\partial}{\partial y} \left(a(y) \left(\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} \right) \right) = f$$

$$\Rightarrow \int_0^1 \left[\frac{\partial}{\partial x} \left(a(y) \frac{\partial u_1}{\partial y} \right) + \frac{\partial}{\partial x} \left(a(y) \frac{\partial u_0}{\partial x} \right) \right] dy = \int_0^1 f(x) \, dy$$

Substituting the value of u_0 and $\frac{\partial u_1}{\partial y}$ into the preceding equation gives

$$\widehat{a}\frac{d^2v_0}{dx^2} = f(x)$$

with the boundary conditions $v_0(0) = g_0$ and $v_0(1) = g_1$.

1 Introduction

- 2 The multiscale expansion method for periodic homogenization (one-dimensional case)
- 3 The multiscale expansion method for periodic homogenization (*n*-dimensional case)
- 4 The cell and the homogenized problems

The multiscale expansion method for periodic

A model problem of conductivity reads:

$$\begin{cases} -\operatorname{div}\left(A_{\varepsilon}(x)\nabla u_{\varepsilon}\right)=f(x), & \text{in }\Omega, \\ u_{\varepsilon}=0, & \text{on }\partial\Omega, \end{cases}$$

where $A_{\varepsilon}(x)$ and $u_{\varepsilon}(x)$ are the conductivity and unknown function modeling electric potential or temperature, respectively.

The multiscale expansion method for periodic

$$\begin{cases} -\operatorname{div}\left(A_{\varepsilon}(x)\nabla u_{\varepsilon}\right)=f, & \text{in } \Omega, \\ u_{\varepsilon}=0, & \text{on } \partial\Omega. \end{cases}$$

Assumptions:

- $\label{eq:Gamma} \begin{tabular}{ll} \Omega \subseteq \mathbb{R}^N, \mbox{ is a bounded, periodic domain with period ε (very small positive number) } \end{tabular}$
- 2 $Y = (0,1)^N$ is the rescaled unit periodic cell.
- (a) The conductivity varies periodically with period ε and will be the matrix A(y) where $y = \frac{x}{\varepsilon} \in Y$. A is assumed to be bounded and positive definite, that is, for all $\xi \in \mathbb{R}^N$ and at any point $y \in Y$,

$$\alpha |\xi|^2 \le \sum_{i,j=1}^N a_{ij}(y)\xi_i\xi_j \le \beta |\xi|^2.$$

for some positive constants $\beta \leq \alpha > 0$.

E.Jose

The multiscale expansion method for periodic

$$\begin{cases} -\mathsf{div}\left(A_{\varepsilon}(x)\nabla u_{\varepsilon}\right)=f, & \text{in }\Omega, \\ u_{\varepsilon}=0, & \text{on }\partial\Omega, \end{cases}$$

Figure: A periodic domain Ω

$$\begin{cases} -{\rm div}\,(A_\varepsilon(x)\nabla u_\varepsilon)=f, & {\rm in}\;\Omega,\\ u_\varepsilon=0, & {\rm on}\;\partial\Omega. \end{cases}$$

The multiscale expansion method for periodic homogenization (*n*-dimensional case)

$$\begin{cases} -\mathsf{div}\left(A_{\varepsilon}(x)\nabla u_{\varepsilon}\right)=f, & \text{in }\Omega, \\ u_{\varepsilon}=0, & \text{on }\partial\Omega. \end{cases}$$

The PDE can be written in the form:

$$-\sum_{i,j=1}^{N} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial u}{\partial x_j} \right) = f(x).$$

The multiscale expansion method for periodic homogenization (*n*-dimensional case)

$$\begin{cases} -\operatorname{div}\left(A_{\varepsilon}(x)\nabla u_{\varepsilon}\right)=f, & \text{in }\Omega, \\ u_{\varepsilon}=0, & \text{on }\partial\Omega. \end{cases}$$

The PDE can be written in the form:

$$-\sum_{i,j=1}^{N} \frac{\partial}{\partial x_i} \left(a_{ij} \left(\frac{x}{\varepsilon} \right) \frac{\partial u}{\partial x_j} \right) = f(x).$$

Our goal: Solve the above problem as the period $\varepsilon \to 0$ and derive some global or average behavior of the domain Ω .

The solution u_{ε} as a power series in ε (ansatz):

$$u_{\varepsilon}(x) = \sum_{i=0}^{\infty} \varepsilon^{i} u_{i}\left(x, \frac{x}{\varepsilon}\right)$$

where $u_i(x, y)$ is a Y- periodic function with respect to y.

The multiscale expansion method for periodic

The solution u_{ε} as a power series in ε (ansatz):

$$u_{\varepsilon}(x) = \sum_{i=0}^{\infty} \varepsilon^{i} u_{i}\left(x, \frac{x}{\varepsilon}\right)$$

where $u_i(x,y)$ is a Y- periodic function with respect to y.

Differentiation formula:

$$\nabla\left(u_i\left(x,\frac{x}{\varepsilon}\right)\right) = \left(\frac{1}{\varepsilon}\nabla_y u_i + \nabla_x u_i\right)\left(x,\frac{x}{\varepsilon}\right)$$

where ∇_y and ∇_x denote the partial derivative with respect to the first and second variable of $u_i(x, y)$.

A series expansion in ε :

$$\begin{split} &-\varepsilon^{-2} \left(\mathsf{div}_y A \nabla_y u_0 \right) \left(x, \frac{x}{\varepsilon} \right) \\ &-\varepsilon^{-1} \left[\mathsf{div}_y A (\nabla_x u_0 + \nabla_y u_1) + \mathsf{div}_x (A \nabla_y u_0) \right] \left(x, \frac{x}{\varepsilon} \right) \\ &-\varepsilon^0 \left[\mathsf{div}_x A (\nabla_x u_0 + \nabla_y u_1) + \mathsf{div}_y A (\nabla_x u_1 + \nabla_y u_2) \right] \left(x, \frac{x}{\varepsilon} \right) \\ &-\sum_{i=1}^{\infty} \varepsilon^i \left[\mathsf{div}_x A (\nabla_x u_i + \nabla_y u_{i+1}) + \mathsf{div}_y A (\nabla_x u_{i+1} + \nabla_y u_{i+2}) \right] \left(x, \frac{x}{\varepsilon} \right) \\ &= f(x). \end{split}$$

Order ε^{-2} equation:

$$-\mathsf{div}_y A(y)\nabla_y u_0(x,y) = 0$$

Order ε^{-1} equation:

 $-{\rm div}_y(A(y)(\nabla_x u_0+\nabla_y u_1))(x,y)-{\rm div}_x(A(y)\nabla_y u_0)(x,y)=0$

Order ε^0 equation:

$$\begin{split} &-\operatorname{div}_x(A(y)(\nabla_x u_0+\nabla_y u_1))(x,y)\\ &-\operatorname{div}_y(A(y)(\nabla_x u_1+\nabla_y u_2))(x,y)=f(x) \end{split}$$

Step 1:

$$-{\rm div}_y A(y)\nabla_y u_0(x,y)=0 \Rightarrow u_0(x,y)=u_0(x)$$

where u_0 does not depend on y.

Step 2:

$$-{\rm div}_y(A(y)(\nabla_x u_0+\nabla_y u_1))(x,y)-{\rm div}_x(A(y)\nabla_y u_0)(x,y)=0$$

The multiscale expansion method for periodic homogenization (*n*-dimensional case)

Step 2:

$$-\mathrm{div}_y(A(y)(\nabla_x u_0+\nabla_y u_1))(x,y)-\mathrm{div}_x(A(y)\nabla_y u_0)(x,y)=0$$

Finding u_1 in terms of u_0 :

$$u_1(x,y) = \sum_{i=1}^{N} \frac{\partial u_0}{\partial x_i}(x)\omega_i(y).$$

where $\omega_i(y) \in H^1_{per}(Y)$ (unique up to an additive constant) the solution to

$$-{\rm div}_y(A(y)\nabla_y\omega_i(y))={\rm div}_y(A(y)e_i)$$

with e_i the i^{th} basis vector of \mathbb{R}^N .

Step 3:

$$\begin{split} &-\operatorname{div}_x(A(y)(\nabla_x u_0+\nabla_y u_1))(x,y)\\ &-\operatorname{div}_y(A(y)(\nabla_x u_1+\nabla_y u_2))(x,y)=f(x) \end{split}$$

The multiscale expansion method for periodic homogenization (*n*-dimensional case)

Step 3:

$$\begin{split} &-\operatorname{div}_x(A(y)(\nabla_x u_0+\nabla_y u_1))(x,y)\\ &-\operatorname{div}_y(A(y)(\nabla_x u_1+\nabla_y u_2))(x,y)=f(x) \end{split}$$

Integration and using the periodic boundary condition of u_1 and u_2 give:

$$-\mathsf{div}_x(A^*\nabla_x u_0) = f(x),$$

MATH 2019

The multiscale expansion method for periodic

Step 3:

$$\begin{split} &-\operatorname{div}_x(A(y)(\nabla_x u_0+\nabla_y u_1))(x,y)\\ &-\operatorname{div}_y(A(y)(\nabla_x u_1+\nabla_y u_2))(x,y)=f(x) \end{split}$$

Integration and using the periodic boundary condition of u_1 and u_2 give:

$$-\mathsf{div}_x(A^*\nabla_x u_0) = f(x),$$

where A^{\ast} is known as the effective diffusion tensor and is given by

$$A_{j,k}^* = \int_Y \left(A_{j,k}(y) + \sum_{l=1}^N A_{j,l} \frac{\partial \omega_k}{\partial y_l}(y) \right) \, dy.$$

The multiscale expansion method for periodic

Using the Dirichlet boundary condition, the limit u_0 satisfies the boundary value problem:

$$\begin{cases} -\operatorname{div}_x \left(A^* \nabla_x u_0\right) = f(x), & \text{in } \Omega, \\ u_0 = 0, & \text{on } \partial \Omega. \end{cases}$$

Introduction

- 2 The multiscale expansion method for periodic homogenization (one-dimensional case)
- 3 The multiscale expansion method for periodic homogenization (*n*-dimensional case)
- The cell and the homogenized problems

The cell and homogenized problems

The cell problem:

$$-{\rm div}_y(A(y)\nabla_y\omega_i(y))={\rm div}_y(A(y)e_i)$$

$$-{\rm div}_y(A(y)\nabla_y\omega_i(y))={\rm div}_y(A(y)e_i)$$

The homogenized problem:

$$\begin{cases} -\operatorname{div}_x \left(A^* \nabla_x u_0\right) = f(x), & \text{in } \Omega, \\ u_0 = 0, & \text{on } \partial\Omega. \end{cases}$$

$$-{\rm div}_y(A(y)\nabla_y\omega_i(y))={\rm div}_y(A(y)e_i)$$

The homogenized problem:

$$\begin{cases} -\operatorname{div}_x \left(A^* \nabla_x u_0\right) = f(x), & \text{in } \Omega, \\ u_0 = 0, & \text{on } \partial\Omega. \end{cases}$$

Remarks:

- **①** The **cell problem** allows us to solve u_1 in terms of u_0 .
- **2** The **homogenized problem** gives the equation solved by u_0 .
- **③** The diffusion tensor A^* does not depend on x.
- **4** The functions ω_i in the cell problem are known as the **correctors**.

- Is the homogenized problem well-posed? What can be said of A*?
- Is the cell problem well-posed?
- What do the correctors mean?

The correctors

$$u_{\varepsilon}(x) \approx u_0(x) + \varepsilon u_1\left(x, \frac{x}{\varepsilon}\right)$$
$$\approx u_0(x) + \varepsilon \sum_{i=1}^N \frac{\partial u_0}{\partial x_i}(x) \omega_i\left(\frac{x}{\varepsilon}\right).$$

$$u_{\varepsilon}(x) \approx u_0(x) + \varepsilon u_1\left(x, \frac{x}{\varepsilon}\right)$$
$$\approx u_0(x) + \varepsilon \sum_{i=1}^N \frac{\partial u_0}{\partial x_i}(x) \omega_i\left(\frac{x}{\varepsilon}\right)$$

Remarks:

- The correctors ω_i measures the difference of the heterogeneous solution and the homogenized solution.
- The solution u_{ε} oscillates with an amplitude ε and with a profile ω_i scaled by $\frac{\partial u_0}{\partial x_i}(x)$.

$$-\mathrm{div}_y(A(y)\nabla_y\omega_i(y))=\mathrm{div}_y(A(y)e_i)$$

$$-{\rm div}_y(A(y)\nabla_y\omega_i(y))={\rm div}_y(A(y)e_i)$$

The variational formulation of the cell problem:

$$\int_Y (A(y) \nabla_y \omega_i(y), \nabla_y \varphi(y)) \ dy = - \int_Y (A(y) e_i, \nabla_y \varphi(y)) \ dy,$$
 where $\varphi \in H^1_{per}(Y)$.

$$-{\rm div}_y(A(y)\nabla_y\omega_i(y))={\rm div}_y(A(y)e_i)$$

The variational formulation of the cell problem:

$$\int_{Y} (A(y)\nabla_{y}\omega_{i}(y), \nabla_{y}\varphi(y)) \, dy = -\int_{Y} (A(y)e_{i}, \nabla_{y}\varphi(y)) \, dy,$$

where $\varphi \in H^1_{per}(Y)$.

Using the assumption on A and the Lax-Milgram Theorem, the preceding equation has a **unique solution** in the Hilbert space

$$V = \{ \psi \in H^1_{per}(Y) \text{ such that } \int_Y \psi(y) \ dy = 0 \}.$$

$$\int_{Y} (A(y)\nabla_{y}\omega_{i}(y), \nabla_{y}\varphi(y)) \, dy = -\int_{Y} (A(y)e_{i}, \nabla_{y}\varphi(y)) \, dy,$$

$$\int_{Y} (A(y) \nabla_{y} \omega_{i}(y), \nabla_{y} \varphi(y)) \, dy = - \int_{Y} (A(y) e_{i}, \nabla_{y} \varphi(y)) \, dy,$$

Let $\varphi=\omega_k$ in the variational formulation, that is, ω_k is a test function. Then

$$\int_{Y} (A(y)(e_i + \nabla_y \omega_i(y)), \nabla_y \omega_k(y)) \, dy = 0.$$

$$\int_{Y} (A(y) \nabla_{y} \omega_{i}(y), \nabla_{y} \varphi(y)) \, dy = - \int_{Y} (A(y) e_{i}, \nabla_{y} \varphi(y)) \, dy,$$

Let $\varphi=\omega_k$ in the variational formulation, that is, ω_k is a test function. Then

$$\int_Y (A(y)(e_i + \nabla_y \omega_i(y)), \nabla_y \omega_k(y)) \, dy = 0.$$

It can be shown that:

$$A_{j,k}^* = \int_Y \left(A_{j,k}(y) + \sum_{l=1}^N A_{j,l} \frac{\partial \omega_k}{\partial y_l}(y) \right) dy$$
$$= \int_Y (A(y)(e_k + \nabla_y \omega_k(y)), e_j + \nabla_y \omega_j) dy$$

The diffusion tensor A^{\ast}

If
$$\xi \in \mathbb{R}^N$$
 then

$$(A^*\xi,\xi) = \sum_{j,k=1}^N A^*\xi_j\xi_k$$

$$= \int_Y \left(A(y) \left(\xi + \sum_{k=1}^N \xi_k \nabla_y \omega_k(y)\right), \xi + \sum_{j=1}^N \xi_j \nabla_y \omega_j(y) \right) dy$$

$$\geq \left\| \xi + \sum_{k=1}^N \xi_k \nabla_y \omega_k(y) \right\|_{L^2(Y)}^2,$$

The diffusion tensor A^*

If
$$\xi \in \mathbb{R}^N$$
 then

$$(A^*\xi,\xi) = \sum_{j,k=1}^N A^*\xi_j\xi_k$$

$$= \int_Y \left(A(y) \left(\xi + \sum_{k=1}^N \xi_k \nabla_y \omega_k(y)\right), \xi + \sum_{j=1}^N \xi_j \nabla_y \omega_j(y) \right) dy$$

$$\geq \left\| \xi + \sum_{k=1}^N \xi_k \nabla_y \omega_k(y) \right\|_{L^2(Y)}^2,$$

showing that A^* is a positive definite matrix.

Using the property of A^* and the Lax-Milgram Theorem, the homogenized problem:

$$\begin{cases} -\operatorname{div}_x \left(A^* \nabla_x u_0\right) = f(x), & \text{in } \Omega, \\ u_0 = 0, & \text{on } \partial \Omega. \end{cases}$$

has a unique solution in the Hilbert space $H_0^1(\Omega)$.

This method is a heuristic one which allows us to find the homogenized problem but not a rigorous one. It may not be optimal and perfect. The next methods will justify our result.

- G. Allaire, A brief introduction to homogenization and miscellaneous applications, ESAIM Proceedings, Vol. 37 (2012), 1-49.
- F. Alouges, *Introduction to periodic homogenization*, Interdisciplinary Information Sciences, Vol. 22, No. 2 (2016), 147-186.
- I. Argatov and G. Mishuris, *Asymptotic methods in mechanics*, Lecture notes, Aberystwyth University (2011), 122 pages.
- D. Cioranescu and P. Donato, *An introduction to homogenization*, Oxford Lecture Series in Mathematics and its Applications, 1999.

Dhanyahvaad!

