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© Introduction

© The multiscale expansion method for periodic homogenization
(one-dimensional case)

© The multiscale expansion method for periodic homogenization
(n-dimensional case)

@ The cell and the homogenized problems
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Homogenization

Reference: Meirmanov, Mathematical Methods Based on Homogenization Theory
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Objectives of the Lecture

@ Show the multiscale expansion method in the
one-dimensional and n— dimensional cases for a model
diffusion problem.

@ Derive the corresponding cell and homogenized problems.

© Examine the properties of the cell and homogenized
problems.
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© The multiscale expansion method for periodic homogenization
(one-dimensional case)

The multiscale expansion method for periodic
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Setting of the Problem

A stationary temperature field in a
non-homogeneous rod with periodic structure:

%(%@)%) = f(z), z€(0,1)

u(0) = go, u(1) = g1.
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Setting of the Problem

A stationary temperature field in a
non-homogeneous rod with periodic structure:

%(%@)%) = f(z), z€(0,1)

u(0) = go, u(1) = g1.

Type 1

IType 2
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Setting of the Problem

(@) = ceo
u(0) = go, u(l) = g1.
Assumptions:
@ The rod is of periodic structure.

1
@ The thermal conductivity a. is periodic with period ¢ = —
n

where n is a large natural number.

O a.(x) = a(%) and a(y) is a 1-periodic function which is

positive and differentiable.
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Setting of the Problem

Ea@f) =5 ceo
l0) = o, u(1) = g
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Setting of the Problem

d du
%<GE(IIZ)%> = f, x € (0, 1)
u(0) = go, u(1) = g1.

Our goal: Solve for u when € — 0.
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Multiscale asymptotic expansion method

Construct the solution u in the form (also called an ansatz):

u = Uo(%y) + Sul(fl),y) + €2U2(£E,y) +...
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Multiscale asymptotic expansion method

Construct the solution u in the form (also called an ansatz):

u = Uo(%y) + Sul(fl),y) + 52'&2(1',:1/) +...

Notes:
@ slow (or macroscopic) variable

T
@ fast (or microscopic) variable y = —
£

© u;(x,y) are periodic with respect to the variable y with
period 1
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Multiscale asymptotic expansion method

Differentiation formula:

d_F(x )—8_F(x )+6_F@—8_F+18_F
de Y T g Y oy dr Oz €0y’

2o
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Multiscale asymptotic expansion method

Differentiation formula:

d_F(x )—8_F(x )+6_F @—a_F_Fla_F
de Y T g Y oy dr Oz €0y’
A series expansion in ¢:

g2 [8%/ (a(y)%—z;o)] +et [(% (a(y)%_i;o> + aﬁy (a(y) (% * %)ﬂ

2 (o (2 Y ) 2 (ot (2 2]

+et[ ]+ ]+ = 1
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Multiscale asymptotic expansion method

For homogenization purposes, only the e72, 71, &% terms are needed:
w(05) 5 (0 (5 5)) -0
259 e 5) -

(A system of linear differential equations for ug, u, us with respect to y,
considering x as a parameter)

o)
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Multiscale asymptotic expansion method

The mean value (period-average) operator M:

MF(e,) = [ Fla) dy

with x and y considered as independent.
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Multiscale asymptotic expansion method

The mean value (period-average) operator M:

1
M(F(w,y) = [ Fe,y) dy
with x and y considered as independent.

Step 1:

a% <a(y)%—7“;°> — 0 = uo(x,y) = vo(w).

o)
®
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Multiscale asymptotic expansion method

Step 2:
0 8u0 0 8“0 8ul o
(%) a0 (G + 5 ) =0
(9u1 a d'UO
it S S T puits
= oy (a y) ) dx
dUO

= u(z,y) = Nl(y)% + 01 (),

where vy (z) is an arbitrary function and

Ny = [ (%—1) dt,

1
ith a =
T M(a(y)) ze

he multiscale exp.
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Multiscale asymptotic expansion method

Step 3:

Eeo(3 ) S35
j/ lm( am>+3%<a(y)%ﬂ “

The multiscale expansion method
E.Jose
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Multiscale asymptotic expansion method

Step 3:

e %) o 3)
i/ [m( 0u1> i(a(y)%)} dy:/olf(w) dy

0
Substituting the value of ug and % into the preceding
Y

equation gives

d2U0
a—s = f(@)
with the boundary conditions vg(0) = go and vo(1) = g;.
2o
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© The multiscale expansion method for periodic homogenization
(n-dimensional case)
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Setting of the problem

A model problem of conductivity reads:

—div (A (2)Vue) = f(z), infQ,
u. =0, on 011,

where A.(x) and u.(x) are the conductivity and unknown
function modeling electric potential or temperature,
respectively.

o)
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Setting of the problem

—div (A:(z)Vue) = f, in{,
Ue = 07 on 99.

Assumptions:

0@ Q CRY, is a bounded, periodic domain with period ¢ (very small
positive number)

@ Y = (0,1)" is the rescaled unit periodic cell.
© The conductivity varies periodically with period £ and will be the
matrix A(y) where y = g €Y. Ais assumed to be bounded and

positive definite, that is, for all £ € RY and at any point y € Y,

N
o€ < Y ay(y)ég; < BIES.

3,7=1
for some positive constants 8 < a > 0.

0 Afx)=4(%)

ne multiscale expansion method for periodic
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Setting of the problem

—div (A:(2)Vu.) = f, inQ,
us = 0, on 99,

Figure: A periodic domain 2

ce
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Setting of the problem

—div (A.(z)Vu:) = f, in{,
u:. = 0, on 0f).
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Setting of the problem

—div (A.(z)Vu:) = f, in{,
u:. = 0, on 0f).

The PDE can be written in the form:

IPO (0 () g ) = st
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Setting of the problem

—div (A.(z)Vu:) = f, in{,
ue = 0, on 0f).

The PDE can be written in the form:

_ fz; a% (aij (%) g_;) — f(a).

Our goal: Solve the above problem as the period ¢ — 0 and
derive some global or average behavior of the domain 2.
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Multiscale asymptotic expansion method

The solution u. as a power series in ¢ (ansatz):

us(z) = g})aiui <:1;, g)

where u;(z,y) is a Y — periodic function with respect to y.
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Multiscale asymptotic expansion method

The solution u. as a power series in ¢ (ansatz):

o T
us(z) = Zszui (:c, —)
i=0 €
where u;(z,y) is a Y — periodic function with respect to y.

Differentiation formula:

(0 2) = (5 5) ()

where V, and V, denote the partial derivative with respect to
the first and second variable of u;(z,y).
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Multiscale asymptotic expansion method

A series expansion in ¢:

— &% (div, AV, uy) <:17, g)
e [divy A(Vauo + Vyur) + diva (AV, )] (cc g)

— e [div, A(V,ug + Vyuy) + div, A(V,uy + Vyuy)] <m, g)

3 e [dive AVt + V) + divg A(Vatisr + Vi) (x g)
=1
= f(z).
=20
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Multiscale asymptotic expansion method

Order 2 equation:

—div, A(y)Vyuo(x,y) =0

Order ! equation:

—divy (A(y) (Vo + V) (2, ) — diva(A(y) Vo) (2, ) = 0

Order £° equation:

— divy (A(y)(Veur + Vyur))(z,y) = f(x)

o)
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Multiscale asymptotic expansion method

Step 1:
—div, A(y)Vyuo(z,y) = 0 = uo(x,y) = up(z)

where 1 does not depend on y.
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Multiscale asymptotic expansion method

Step 2:
—div, (A(y)(Vauo + Vyur)) (2, y) — divy (A(y) Vyuo)(z,y) =0

he multiscale ex
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Multiscale asymptotic expansion method

Step 2:
—div, (A(y)(Vauo + Vyur)) (2, y) — divy (A(y) Vyuo)(z,y) =0

Finding u; in terms of ug:

wleg) = 3 G ly),

where w;(y) € H,,,
the solution to

—div, (A(y)Vywi(y)) = div, (A(y)e;)

with e; the i?" basis vector of RY.

(Y") (unique up to an additive constant)

o)
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Multiscale asymptotic expansion method

Step 3:

— div, (A(y) (Vo + Vyur))(z,9)
— divy (A(y)(Veur + Vyus))(z,y) = f(x)

he multiscale ex
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Multiscale asymptotic expansion method

Step 3:
— div, (A(y) (Vo + Vyur))(z,9)

— divy (A(y)(Veur + Vyus))(z,y) = f(x)

Integration and using the periodic boundary condition of u;
and uy give:

—div,(A*V,uo) = f(x),

o)
®
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Multiscale asymptotic expansion method

Step 3:

— div, (A(y) (Vo + Vyur))(z,9)
— divy (A(y)(Veur + Vyus))(z,y) = f(x)

Integration and using the periodic boundary condition of u;
and uy give:

—div,(A*V,uo) = f(x),

where A* is known as the effective diffusion tensor and is
given by

N &uk

= [ (40 + T 45k w) @

The multiscale expansion method for periodic

E.Jose MATH 2019

o)
®



Multiscale asymptotic expansion method

Using the Dirichlet boundary condition, the limit u, satisfies
the boundary value problem:

dlvx (A Viug) = f(x), in £,
on 0S).
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@ The cell and the homogenized problems
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The cell and homogenized problems

The cell problem:

—divy (A(y) Vywi(y)) = divy (A(y)e;)
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The cell and homogenized problems

The cell problem:
—divy (A(y) Vywi(y)) = divy (A(y)e;)
The homogenized problem:

—div, (A*V,ug) = f(z), in€Q,
ug = 0, on 0f).

[ A
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The cell and homogenized problems

The cell problem:
—divy (A(y) Vywi(y)) = divy (A(y)e;)

The homogenized problem:

Remarks:
@ The cell problem allows us to solve u; in terms of ug.
@ The homogenized problem gives the equation solved by uyg.
© The diffusion tensor A* does not depend on z.

@ The functions w; in the cell problem are known as the correctors.

L
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Questions about the cell and homogenized problems
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Questions about the cell and homogenized problems

@ Is the homogenized problem well-posed? What can be said
of A*7?

@ s the cell problem well-posed?

©® What do the correctors mean?

L&)
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The correctors

us(x) &~ ug(z) + euy (:1;, g)

~ug(z)+e 3 8”‘? (x)w; <§> .
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The correctors

us(x) &~ ug(z) + euy (x, g)

N dug x
~ug(x) + ¢ oz, (x)w; (E) .

Remarks:

@ The correctors w; measures the difference of the
heterogeneous solution and the homogenized solution.

@ The solution u. oscillates with an amplitude € and with a

8U0
(2.

0

profile w; scaled by
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The solvability of the cell problem

The cell problem:

—div, (A(y)Vywi(y)) = divy(A(y)e;)
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The solvability of the cell problem

The cell problem:
—divy, (A(y)Vywi(y)) = div,(A(y)e;)
The variational formulation of the cell problem:
| A@V,i(), Vo)) dy = = [ (Aly)es, V() dy,

where p € H!, (V).

per
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The solvability of the cell problem

The cell problem:
—divy, (A(y)Vywi(y)) = div,(A(y)e;)
The variational formulation of the cell problem:
| ADVi(). Ve ) dy = = [ (Aly)es, V() dy,

where p € H!, (V).

per

Using the assumption on A and the Lax-Milgram Theorem, the
preceding equation has a unique solution in the Hilbert space

V = {y € H.,(Y) such that /Y W(y) dy = 0}.
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The diffusion tensor A*

| AOV i), Vo)) dy = = [ (Aly)es, V() dy,
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The diffusion tensor A*

| AOV i), Vo)) dy = = [ (Aly)es, V() dy,

Let ¢ = wy, in the variational formulation, that is, wy is a test
function. Then

| A@) e + 0), Vinly) dy = 0.

E{,‘
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The diffusion tensor A*

| AOV i), Vo)) dy = = [ (Aly)es, V() dy,

Let ¢ = wy, in the variational formulation, that is, wy is a test
function. Then

| A@) e + 0), Vinly) dy = 0.

It can be shown that:

« Ow
Aj,k:/y( +2Aﬂ “ )dy

= /Y (y)(ex + Vywk(y)), e; + Vyw;) dy

E{,‘
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The diffusion tensor A*

If £ € RY then

N
(A*f>f) = Z A*fjfk

Jk=1

= /Y (A(y) (6 + é&%m(@) €+ i:;gjvywj (y)) dy

2

2y

N
= ‘ S RAPEA)
k=1
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The diffusion tensor A*

If £ € RY then

N
(A*f>f) = Z A*gjék

Jk=1

- / ( (5 + g: kaywk(y)> &+ éﬁjvywj(y)> dy

2

Hé—i_ ng ywk )

2y

showing that A* is a positive definite matrix.

E{,‘
®

E.Jose MATH 2019



The solvability of the homogenized problem

Using the property of A* and the Lax-Milgram Theorem, the
homogenized problem:

—div, (A*V,uo) = f(x), in{,
ug = 0, on 9.

has a unique solution in the Hilbert space H}(12).
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The multiscale expansion method

This method is a heuristic one which allows us to find the
homogenized problem but not a rigorous one. It may not be
optimal and perfect. The next methods will justify our result.
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