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Homogenization

Reference: Meirmanov, Mathematical Methods Based on Homogenization Theory
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Objectives of the Lecture

1 Show the multiscale expansion method in the
one-dimensional and n− dimensional cases for a model
diffusion problem.

2 Derive the corresponding cell and homogenized problems.

3 Examine the properties of the cell and homogenized
problems.
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Setting of the Problem

A stationary temperature field in a
non-homogeneous rod with periodic structure:

d

dx

aε(x)du
dx

 = f(x), x ∈ (0, 1)

u(0) = g0, u(1) = g1.
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Setting of the Problem


d

dx

(
aε(x)du

dx

)
= f(x), x ∈ (0, 1)

u(0) = g0, u(1) = g1.

Assumptions:
1 The rod is of periodic structure.
2 The thermal conductivity aε is periodic with period ε = 1

n
where n is a large natural number.

3 aε(x) = a

(
x

ε

)
and a(y) is a 1-periodic function which is

positive and differentiable.
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Setting of the Problem


d

dx

(
aε(x)du

dx

)
= f, x ∈ (0, 1)

u(0) = g0, u(1) = g1.

Our goal: Solve for u when ε→ 0.
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Multiscale asymptotic expansion method

Construct the solution u in the form (also called an ansatz):

u = u0(x, y) + εu1(x, y) + ε2u2(x, y) + . . .

Notes:
1 slow (or macroscopic) variable x
2 fast (or microscopic) variable y = x

ε
3 ui(x, y) are periodic with respect to the variable y with

period 1
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Multiscale asymptotic expansion method

Differentiation formula:

dF

dx
(x, y) = ∂F

∂x
(x, y) + ∂F

∂y
· dy
dx

= ∂F

∂x
+ 1
ε

∂F

∂y
.

A series expansion in ε:

ε−2
[
∂

∂y

(
a(y)∂u0

∂y

)]
+ ε−1

[
∂

∂x

(
a(y)∂u0

∂y

)
+ ∂

∂y

(
a(y)

(
∂u0

∂x
+ ∂u1

∂y

))]
+ ε0

[
∂

∂x

(
a(y)

(
∂u0

∂x
+ ∂u1

∂y

))
+ ∂

∂y

(
a(y)

(
∂u1

∂x
+ ∂u2

∂y

))]
+ ε1[ . . . ]+ ε2[ . . . ]+ · · · = f.
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Multiscale asymptotic expansion method

For homogenization purposes, only the ε−2, ε−1, ε0 terms are needed:

∂

∂y

(
a(y)∂u0

∂y

)
= 0

∂

∂x

(
a(y)∂u0

∂y

)
+ ∂

∂y

(
a(y)

(
∂u0

∂x
+ ∂u1

∂y

))
= 0

∂

∂x

(
a(y)

(
∂u0

∂x
+ ∂u1

∂y

))
+ ∂

∂y

(
a(y)

(
∂u1

∂x
+ ∂u2

∂y

))
= f

(A system of linear differential equations for u0, u1, u2 with respect to y,
considering x as a parameter)
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Multiscale asymptotic expansion method

The mean value (period-average) operator M:

M(F (x, y)) =
∫ 1

0
F (x, y) dy

with x and y considered as independent.

Step 1:

∂

∂y

(
a(y)∂u0

∂y

)
= 0⇒ u0(x, y) = v0(x).
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Multiscale asymptotic expansion method

Step 2:

∂

∂x

(
a(y)∂u0

∂y

)
+ ∂

∂y

(
a(y)

(
∂u0

∂x
+ ∂u1

∂y

))
= 0

⇒ ∂u1

∂y
=
(

â

a(y) − 1
)
dv0

dx

⇒ u1(x, y) = N1(y)dv0

dx
+ v1(x),

where v1(x) is an arbitrary function and

N1(y) =
∫ y

0

(
â

a(t) − 1
)
dt,

with â = 1
M(a(y))−1 .
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Multiscale asymptotic expansion method

Step 3:

∂

∂x

(
a(y)

(
∂u0

∂x
+ ∂u1

∂y

))
+ ∂

∂y

(
a(y)

(
∂u1

∂x
+ ∂u2

∂y

))
= f

⇒
∫ 1

0

[
∂

∂x

(
a(y)∂u1

∂y

)
+ ∂

∂x

(
a(y)∂u0

∂x

)]
dy =

∫ 1

0
f(x) dy

Substituting the value of u0 and ∂u1

∂y
into the preceding

equation gives

â
d2v0

dx2 = f(x)

with the boundary conditions v0(0) = g0 and v0(1) = g1.
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Setting of the problem

A model problem of conductivity reads:−div (Aε(x)∇uε) = f(x), in Ω,
uε = 0, on ∂Ω,

where Aε(x) and uε(x) are the conductivity and unknown
function modeling electric potential or temperature,
respectively.

E.Jose
The multiscale expansion method for periodic

homogenization (n-dimensional case) MATH 2019 17



Setting of the problem

{
−div (Aε(x)∇uε) = f, in Ω,
uε = 0, on ∂Ω.

Assumptions:
1 Ω ⊆ RN , is a bounded, periodic domain with period ε (very small

positive number)
2 Y = (0, 1)N is the rescaled unit periodic cell.
3 The conductivity varies periodically with period ε and will be the

matrix A(y) where y = x

ε
∈ Y . A is assumed to be bounded and

positive definite, that is, for all ξ ∈ RN and at any point y ∈ Y ,

α|ξ|2 ≤
N∑

i,j=1
aij(y)ξiξj ≤ β|ξ|2.

for some positive constants β ≤ α > 0.
4 Aε(x) = A

(x
ε

)
E.Jose
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Setting of the problem

−div (Aε(x)∇uε) = f, in Ω,
uε = 0, on ∂Ω,

Figure: A periodic domain Ω
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Setting of the problem

−div (Aε(x)∇uε) = f, in Ω,
uε = 0, on ∂Ω.

The PDE can be written in the form:

−
N∑

i,j=1

∂

∂xi

(
aij

(
x

ε

)
∂u

∂xj

)
= f(x).

Our goal: Solve the above problem as the period ε→ 0 and
derive some global or average behavior of the domain Ω.
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Multiscale asymptotic expansion method

The solution uε as a power series in ε (ansatz):

uε(x) =
∞∑

i=0
εiui

(
x,
x

ε

)

where ui(x, y) is a Y− periodic function with respect to y.

Differentiation formula:

∇
(
ui

(
x,
x

ε

))
=
(1
ε
∇yui +∇xui

)(
x,
x

ε

)
where ∇y and ∇x denote the partial derivative with respect to
the first and second variable of ui(x, y).
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Multiscale asymptotic expansion method

A series expansion in ε:

− ε−2 (divyA∇yu0)
(
x,
x

ε

)
− ε−1 [divyA(∇xu0 +∇yu1) + divx(A∇yu0)]

(
x,
x

ε

)
− ε0 [divxA(∇xu0 +∇yu1) + divyA(∇xu1 +∇yu2)]

(
x,
x

ε

)
−
∞∑

i=1
εi [divxA(∇xui +∇yui+1) + divyA(∇xui+1 +∇yui+2)]

(
x,
x

ε

)
= f(x).
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Multiscale asymptotic expansion method

Order ε−2 equation:

−divyA(y)∇yu0(x, y) = 0

Order ε−1 equation:

−divy(A(y)(∇xu0 +∇yu1))(x, y)− divx(A(y)∇yu0)(x, y) = 0

Order ε0 equation:

− divx(A(y)(∇xu0 +∇yu1))(x, y)
− divy(A(y)(∇xu1 +∇yu2))(x, y) = f(x)
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Multiscale asymptotic expansion method

Step 1:

−divyA(y)∇yu0(x, y) = 0⇒ u0(x, y) = u0(x)

where u0 does not depend on y.
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Multiscale asymptotic expansion method

Step 2:

−divy(A(y)(∇xu0 +∇yu1))(x, y)− divx(A(y)∇yu0)(x, y) = 0

Finding u1 in terms of u0:

u1(x, y) =
N∑

i=1

∂u0

∂xi

(x)ωi(y).

where ωi(y) ∈ H1
per(Y ) (unique up to an additive constant)

the solution to

−divy(A(y)∇yωi(y)) = divy(A(y)ei)

with ei the ith basis vector of RN .
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Multiscale asymptotic expansion method

Step 3:

− divx(A(y)(∇xu0 +∇yu1))(x, y)
− divy(A(y)(∇xu1 +∇yu2))(x, y) = f(x)

Integration and using the periodic boundary condition of u1
and u2 give:

−divx(A∗∇xu0) = f(x),

where A∗ is known as the effective diffusion tensor and is
given by

A∗j,k =
∫

Y

(
Aj,k(y) +

N∑
l=1

Aj,l
∂ωk

∂yl

(y)
)
dy.
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Multiscale asymptotic expansion method

Using the Dirichlet boundary condition, the limit u0 satisfies
the boundary value problem:−divx (A∗∇xu0) = f(x), in Ω,

u0 = 0, on ∂Ω.
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The cell and homogenized problems

The cell problem:

−divy(A(y)∇yωi(y)) = divy(A(y)ei)

The homogenized problem:{
−divx (A∗∇xu0) = f(x), in Ω,
u0 = 0, on ∂Ω.

Remarks:
1 The cell problem allows us to solve u1 in terms of u0.
2 The homogenized problem gives the equation solved by u0.
3 The diffusion tensor A∗ does not depend on x.
4 The functions ωi in the cell problem are known as the correctors.
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Questions about the cell and homogenized problems

1 Is the homogenized problem well-posed? What can be said
of A∗?

2 Is the cell problem well-posed?

3 What do the correctors mean?
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The correctors

uε(x) ≈ u0(x) + εu1

(
x,
x

ε

)

≈ u0(x) + ε
N∑

i=1

∂u0

∂xi

(x)ωi

(
x

ε

)
.

Remarks:
1 The correctors ωi measures the difference of the

heterogeneous solution and the homogenized solution.
2 The solution uε oscillates with an amplitude ε and with a

profile ωi scaled by ∂u0

∂xi

(x).
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The solvability of the cell problem

The cell problem:

−divy(A(y)∇yωi(y)) = divy(A(y)ei)

The variational formulation of the cell problem:∫
Y

(A(y)∇yωi(y),∇yϕ(y)) dy = −
∫

Y
(A(y)ei,∇yϕ(y)) dy,

where ϕ ∈ H1
per(Y ).

Using the assumption on A and the Lax-Milgram Theorem, the
preceding equation has a unique solution in the Hilbert space

V = {ψ ∈ H1
per(Y ) such that

∫
Y
ψ(y) dy = 0}.
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The diffusion tensor A∗

∫
Y

(A(y)∇yωi(y),∇yϕ(y)) dy = −
∫

Y
(A(y)ei,∇yϕ(y)) dy,

Let ϕ = ωk in the variational formulation, that is, ωk is a test
function. Then∫

Y
(A(y)(ei +∇yωi(y)),∇yωk(y)) dy = 0.

It can be shown that:

A∗j,k =
∫

Y

(
Aj,k(y) +

N∑
l=1

Aj,l
∂ωk

∂yl

(y)
)
dy

=
∫

Y
(A(y)(ek +∇yωk(y)), ej +∇yωj) dy
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The diffusion tensor A∗

If ξ ∈ RN then

(A∗ξ, ξ) =
N∑

j,k=1
A∗ξjξk

=
∫

Y

A(y)
(
ξ +

N∑
k=1

ξk∇yωk(y)
)
, ξ +

N∑
j=1

ξj∇yωj(y)
 dy

≥
∥∥∥∥∥ξ +

N∑
k=1

ξk∇yωk(y)
∥∥∥∥∥

2

L2(Y )
,

showing that A∗ is a positive definite matrix.
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The solvability of the homogenized problem

Using the property of A∗ and the Lax-Milgram Theorem, the
homogenized problem:−divx (A∗∇xu0) = f(x), in Ω,

u0 = 0, on ∂Ω.

has a unique solution in the Hilbert space H1
0 (Ω).
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The multiscale expansion method

This method is a heuristic one which allows us to find the
homogenized problem but not a rigorous one. It may not be
optimal and perfect. The next methods will justify our result.
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