Recent results on neutrino oscillations and CP violation measurement in Neutrinos

M.Nakahata Kamioka observatory, ICRR, IPMU, Univ. of Tokyo

CP Violation in Elementary Particles and Composite Systems, Feb.19, 2013, Mahabaleshwar (India)

Contents

- What are neutrino oscillations
- Results and topics from recent measurements
 - $\geq \theta_{12}$ and Δm_{21}^2 measurements
 - > θ_{23} and Δm_{32}^2 measurements
 - $\succ \theta_{13}$ measurements
- Unknown properties of neutrinos
- Neutrino CP measurement
 - ➤ How to measure CP phase
 - Detector for the CP phase measurement
 - > Sensitivity

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \text{Neutrino oscillations} \\ \begin{array}{l} \text{Weak} \\ \text{eigenstates} \end{array} \begin{pmatrix} \begin{array}{l} v_{\text{e}} \\ v_{\mu} \\ v_{\tau} \end{array} \end{pmatrix} = \begin{pmatrix} \begin{array}{l} U_{\text{e1}} & U_{\text{e2}} & U_{\text{e3}} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{array} \end{pmatrix} \begin{pmatrix} \begin{array}{l} v_{1} \\ v_{2} \\ v_{3} \end{array} \end{pmatrix} \\ \begin{array}{l} \begin{array}{l} \text{Mass eigenstates} \\ \end{array} \end{pmatrix} \\ P(\nu_{\alpha} \rightarrow \nu_{\beta}; L) & = & \delta_{\alpha\beta} - 4 \sum_{j < k} \operatorname{Re} \left(U_{\alpha j} U_{\beta j}^{*} U_{\alpha k}^{*} U_{\beta k} \right) \sin^{2} \left(\frac{\Delta E_{jk} L}{2} \right) \\ & + 2 \sum_{j < k} \operatorname{Im} \left(U_{\alpha j} U_{\beta j}^{*} U_{\alpha k}^{*} U_{\beta k} \right) \sin \left(\Delta E_{jk} L \right), \\ & \text{where } \Delta E_{jk} \equiv \sqrt{m_{j}^{2} + p^{2}} - \sqrt{m_{k}^{2} + p^{2}} = \Delta m_{jk}^{2}/2E \end{array} \end{array}$$

2 flavor case

$$\begin{pmatrix} v_{\alpha} \\ v_{\beta} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$$

Oscillation probability

 $P(v_{\alpha} \rightarrow v_{\beta}) = sin^2 2\theta sin^2 (1.27 \Delta m^2 L/E)$

 $\Delta m^2 = m_2^2 - m_1^2 (eV^2)$: mass square difference

- L (km): Neutrino travel length
- E (GeV): neutrino energy

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & +C_{23} & +S_{23} \\ 0 & -S_{23} & +C_{23} \end{pmatrix} \begin{pmatrix} +C_{13} & 0 & +S_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -S_{13}e^{-i\delta} & 0 & +C_{13} \end{pmatrix} \begin{pmatrix} +C_{12} & +S_{12} & 0 \\ -S_{12} & +C_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\begin{array}{cccc} C_{12}C_{13} & S_{12}C_{13} & S_{13}e^{-i\delta} \\ -S_{12}C_{23}-C_{12}S_{13}S_{23}e^{-i\delta} & C_{12}C_{23}-S_{12}S_{13}S_{23}e^{-i\delta} & C_{13}S_{23} \\ S_{12}S_{23}-C_{12}S_{13}C_{23}e^{-i\delta} & -C_{12}S_{23}-S_{12}S_{13}C_{23}e^{-i\delta} & C_{13}C_{23} \end{array}$

 $s_{ij} = sin\theta_{ij}$, $c_{ij} = cos\theta_{ij}$

 δ : Dirac P phase

 $\Delta m_{ij}^2 = m_i^2 - m_j^2$; Δm_{12}^2 , Δm_{23}^2 , Δm_{31}^2

Experiments for the oscillation parameters

S13**θ**^{-iδ} C12C13 S12C13 -S12C23-C12S13S23θ^{-iδ} C12C23-S12S13S23θ^{-iδ} **C**13**S**23 S12S23-C12S13C23θ^{-iδ} -C12S23-S12S13C23θ^{-iδ} **C**13**C**23 $s_{ij} = sin\theta_{ij}$, $c_{ij} = cos\theta_{ij}$ Primarily sensitive to $\Delta m_{12}^2 \quad \Delta m_{23}^2 \quad \theta_{12} \quad \theta_{23}$ θ_{13} Solar v, long BL reactor v Ο Ο \bigcirc \cap Atm. ν , long BL accelerator ν Short BL reactor v Future long BL accelerator v $(=, > \text{ or } < 45^{\circ})$ (sign)

BL=baseline

Measured solar neutrino fluxes

Measurement of Matter effect (Super-K)

During night, v_e probability increases due to the earth matter effect.

Day/night asymmetry (%)

KamLAND reactor neutrino data

3-v best-fit oscillation

2-v best-fit oscillation

50

60

 $L_0/E_{\overline{v}}$ (km/MeV)

70

40

-- Data - BG - Geo V.

80

90

100

110

0.2

0

20

30

Long baseline ~ 180 km Data from Mar. 2002 to Nov. 2009

Energy spectrum shows clear deficit of reactor neutrinos.

The plot as a function of L/E_v shows clear oscillatory pattern.

Phys.Rev. D83 (2011) 052002

Atmospheric and long BL accelerator v

Future: T2K will reach accuracy of $\delta(\sin^2 2\theta_{23})=0.01$ and $\delta(\Delta m^2_{32})=0.0001 \text{ eV}^2$.

Recent observation at Super-K atmospheric

Zenith angle distribution after seleting CC ν_τ –like events

$\nu_{\tau} \text{ events at OPERA }_{\text{Emulsion chamber}}$

Baseline: 732km, $\langle E_{V} \rangle = 17 \text{ GeV}$

Detect decay of τ by emulsion chamber

eutrino Detector (ECC)

Target area

Muon

spectrometer

Muon

spectrometer

Target area

<u>Methods of θ_{13} measurements</u>

• Short baseline reactor: \overline{v}_e disappearance

$$P(\overline{v}_e \to \overline{v}_e) \approx 1 - \sin^2(2\theta_{13}) \sin^2(\frac{1.27\Delta m^2_{31}L(m)}{E_v(MeV)}) \quad \theta_{13} \text{ only}$$

Long baseline accelerator: v_e appearance

$$P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}\theta_{23} \sin^{2}(\frac{1.27\Delta m^{2}_{31}L(km)}{E_{\nu}(GeV)}) \text{ Leading term}$$
Sub-leading

$$\delta \rightarrow \delta_{a} \rightarrow \delta_{a} \rightarrow -a$$
for P($\overline{v_{\mu}} \rightarrow \overline{v_{e}}$)
$$= 8C_{13}^{2}S_{12}^{2}S_{13}^{2}S_{23}(C_{12}C_{23}\cos\phi - S_{12}S_{13}S_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \qquad \text{CPC}$$

$$= 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\phi\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \qquad \text{CPV}$$

$$= 4S_{12}^{2}C_{12}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\phi)\sin^{2}\Delta_{21} \qquad \text{"solar"}$$

$$= 8C_{13}^{2}S_{13}^{2}S_{23}^{2}\frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2})\cos\Delta_{32}\sin\Delta_{31} \qquad S_{ij} \equiv \sin\theta_{ij}, C_{ij} \equiv \cos\theta_{23}S_{13}S_{23}S_{13}S_{23}S_{13}S_{23}S_{13}S_{23}S_{13}S_{23}S_{13}S_{13}S_{23}S_{13}S_{13}S_{23}S_{13}S_{13}S_{13}S_{23}S_{1$$

 ν_{e} appearance: depends on δ and mass hierarchy

T2K(Tokai-to-Kamioka) experiment

Off-axis beam

2.5deg. off-axis in order to make narrow band beam with higher intensity

T2K result (Run 1+2+3) Data from 2010 - 2012 June) Ve appearance

Data of 3.01x10²⁰ POT (protons on target) [it is only 5% of designed POT of T2K.]

Expected number of background 3.2 ± 0.43 (syst.) for sin²(2 θ_{13})=0

Allow region on $\sin^2 2\theta_{13}$ and δ_{CP}

Best fit : $sin^2 2\theta_{13} = 0.11$

(for $\Delta m^2_{23}=2.4 \times 10^{-3} \text{ eV}^2$, $\delta_{CP}=0$)

Reactor 013 experiments

Results of reactor θ13 experiments

Double Chooz (Jun. 2012) Daya Bay (Jun. 2012) Reno (April 2012)

sin²2θ₁₃ = 0.109±0.030±0.025 (2.9σ level)

PRD 86, 052008 (2012)

sin²2θ₁₃ = 0.089±0.010±0.005 (8σ level)

arXiv:1210.6327 [hep-ex]

sin²2θ₁₃ = 0.113±0.013±0.019 (4.9σ level)

PRL108 (2012) 191802

<u>Summary of θ13 measurements</u>

All results are consistent and $\sin^2 2\theta_{13} = -0.1$.

Unknown properties of Neutrinos

• What is the value of CP phase δ ?

•
$$(\theta_{23} - 45^{\circ}) = 0?$$
, >0?, or <0?

- Which mass hierarchy ?
- Absolute value of mass ?
- Majorana or Dirac particle ?
- LSND/MiniBooNE, Ga and reactor anomalies ?

Unknown properties of Neutrinos

• What is the value of CP phase δ ?

•
$$(\theta_{23} - 45^{\circ}) = 0?$$
, >0?, or <0?

- Which mass hierarchy ?
- Absolute value of mass ?
- Majorana or Dirac mass ?
- LSND/MiniBooNE, Ga and reactor anomalies ?

How to measure CP phase δ

Long baseline accelerator: v_e appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}\theta_{23} \sin^{2}(\frac{1.27\Delta m_{31}^{2}L(km)}{E_{\nu}(GeV)}) \quad \text{Leading term}$$
Sub-leading
$$+8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \quad \text{CPC}$$

$$-8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}(\sin\delta)\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{21} \quad \text{CPV}$$

$$+4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^{2}\Delta_{21} \quad \text{"solar"}$$

$$-8C_{13}^{2}S_{13}^{2}S_{23}^{2}\frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2})\cos\Delta_{32}\sin\Delta_{31}$$

$$+8C_{13}^{2}S_{13}^{2}S_{23}^{2}\frac{aL}{\Delta m_{31}^{2}}(1 - 2S_{13}^{2})\sin^{2}\Delta_{31}$$

$$\int_{ij} = \sin\theta_{ij}, C_{ij} = \cos\theta_{ij}$$
for $P(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}})$ $\delta \rightarrow -\delta$ and $a \rightarrow -a$

$$\int_{ij} d\mu_{j} = \Delta m_{j}^{2}L/E_{\nu}$$

$$a = 2\sqrt{2}G_{F_{\nu}}n_{e}E_{\nu}$$

Compare $P(v_{\mu} \rightarrow v_{e})$ and $P(\overline{v_{\mu}} \rightarrow \overline{v_{e}})$ for CP phase measurement

Effect of CP violating term in $P(v_u \rightarrow v_e)$ $P(v_{\mu} \rightarrow v_{e}) = \left| \frac{\sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E} \right)}{\frac{CP}{Q}} \right|^{\text{Leading}}$ $CPC + 8C_{13}^2 S_{12} \overline{S_{13}} S_{23} (C_{12} C_{23} \cos \delta - S_{12} S_{13} S_{23}) \cos \Delta_{32} \sin \Delta_{31} \sin \Delta_{21}$ **CPV** $-8C_{13}^2C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\sin\Delta_{32}\sin\Delta_{31}\sin\Delta_{31}\sin\Delta_{31}$ **Solar** $+4S_{12}^2C_{13}^2(C_{12}^2C_{23}^2+S_{12}^2S_{23}^2S_{13}^2-2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\sin^2\Delta_{21}$ $S_{ii} \equiv \sin \theta_{ii}, C_{ii} \equiv \cos \theta_{ii}$ $-8C_{13}^2S_{13}^2S_{23}^2\frac{aL}{4E}(1-2S_{13}^2)\cos\Delta_{32}\sin\Delta_{31}$ $\Delta_{ii} \equiv \Delta m_{ii}^2 L / E_{v}$ **Matter** $a = 2\sqrt{2}G_{F}.n_{e}E_{V}$ $+8C_{13}^2S_{13}^2S_{23}^2\frac{a}{\Lambda m_{13}^2}(1-2S_{13}^2)\sin^2\Delta_{31}$ **CPV** term 0.06 Leading(013) 295km 0.04 Total $\frac{\sin 2\theta_{12} \sin 2\theta_{23}}{2 \sin^2 2\theta_{13} \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{AE} \sin \frac{\Delta m_{21}^2 L}{AE} \sin \delta$ 0.02 $2\sin\theta_{13}$ Matter $\sim \frac{\pi}{4} \frac{\Delta m_{21}^2}{\Delta m_{32}^2} \frac{\sin 2\theta_{12} \sin 2\theta_{23}}{\sin^2 \theta_{23} \sin \theta_{13}} \frac{\tilde{E}_{1st \max}^{11.8} [b.4 \text{ from } h]}{E} [leading] \sin \delta$ 0 $CPV \\ CPC(\cos\delta) \\ (SIn^22\theta_{13}=0.1, \delta=\pi/4)$ -0.02 ~ $0.27 \times [leading] \times \frac{E_{1st \max}}{F} \times \sin \delta$ -0.04 -0.06 E_v (GeV)

$\underline{\nu_{\mu} \rightarrow \nu_{e}}$ probability (L=295km)

Comparison between P(v_µ→v_e) and P(v_µ→v_e)
 As large as ~25% from nominal
 It is sensitive also to exotic (non-PMNS) CP violation cases.

We need a larger volume detector for the CP phase measurement.

Hyper-Kamiokande Detectors

Neutrino beam from J-PARC

The v beam

Expected neutrino flux at Hyper-K (unoscillated)

2.5° off-axis beam from J-APRC Peaked at oscillation maximum Suppress BG from high energy component.

Signals and backgrounds

Signals

Single electron event by CC interaction of v_e oscillated from v_{μ}

- Mainly CCQE : $v_e + n \rightarrow e^- + p$
- Protons mostly have momenta below Cherenkov threshold

Backgrounds

(1) intrinsic v_e in the beam (from μ , K decays)

- (2) NC single π^0 events
 - overlap of 2 γ rings
 - asymmetric decay

(one of the γ has very low energy)

Expected v_e candidate events

 $sin^22\theta_{13}=0.1,\delta=0$, normal MH

2000-4000 signal events expected for each of v and \overline{v}

Expected ve CC candidates

Numbers and shape for CP measurement

Expected Contours

7.5MW • years

- Good sensitivity for CP δ measurement

CPV Discovery Sensitivity (w/ Mass Hierarchy known)

High Sensitivity to CPV w/ $<\sim$ 5% sys. error

<u>ve appearance in atmospheric v</u>

NuclPhysB669,255(2003) NuclPhysB680,479(2004) r : µ/e flux ratio (~2 at low energy)

$$\begin{split} \mathsf{P}_2 &= |\mathsf{A}_{e\mu}|^2 : 2\mathbf{v} \text{ transition probability } \mathbf{v}_e \twoheadrightarrow \mathbf{v}_{\mu\tau} \text{ in matter} \\ \mathsf{R}_2 &= \mathsf{Re}(\mathsf{A}^*_{ee}\mathsf{A}_{e\mu}) \\ \mathsf{I}_2 &= \mathsf{Im}(\mathsf{A}^*_{ee}\mathsf{A}_{e\mu}) \\ \mathsf{A}_{ee} : \mathsf{survival} \text{ amplitude of the } 2\mathbf{v} \text{ system} \\ \mathsf{A}_{eu} : \mathsf{transition amplitude of the } 2\mathbf{v} \text{ system} \end{split}$$

 $\frac{\Phi(\nu_{e})}{\Phi_{0}(\nu_{e})} - 1 \approx P_{2}(r \cdot \cos^{2}\theta_{23} - 1) \text{ Solar term } A_{ee}: \text{survival amplitude of the 2v system} A_{ee}: \text{survival amplitude of the 2v sys$

 v_e appearance (and v_μ distortion) is expected due to MSW effect in the Earth's matter

- happens in v in the case of normal mass hierarchy

- in anti- v in inverted mass hierarchy

Large θ_{13} value gives us a good chance to discuss mass hierarchy and CP phase.

• Through matter effect (MSW), we study

- Mass hierarchy ⇒ Asymmetry between neutrinos and antineutrinos.
- Octant of $\theta_{23} \Rightarrow$ Appearance (and $v_{\mu} \rightarrow v_{\mu}$ disappearance) interplay
- δ_{CP} \Rightarrow Magnitude of the interference

Sensitivity for CP δ and sin²2 θ_{13}

 $1\sigma CL$

 $2\sigma CL$

Atmospheric neutrinos of Hyper-K 10 years

 $sin^{2}2\theta_{13}=0.1$

Give supplemental information to the CP study conducted by the **J-PARC** beam

Combination of Beam and Atmospheric Neutrinos

- Hierarchy is unknown, but NH is true
- **True** $\delta_{cp} = 0.0$
- \Box True sin²2 θ_{13} = 0.10
- **D** Maximal mixing , $\sin^2 2\theta_{23} = 1.0$
- $\hfill\square$ Degenerate solution exists at 3σ in the beam only case just add the χ^2 maps
- □ By adding atmospheric data, single solution is obtained.

Multi-purpose detector, Hyper-K

- <u>Explore full picture of neutrino oscillation</u> parameters.
 - Discovery of leptonic CP violation (Dirac δ)
 - v mass hierarchy determination($\Delta m_{32}^2 > 0$ or <0)
 - $-\theta_{23}$ octant determination ($\theta_{23} < \pi/4$ or $>\pi/4$)
- Extend nucleon decay search sensitivity
 - $-\tau_{proton}$ =10³⁴~10³⁵ years
- <u>Neutrinos from astrophysical objects</u>
 - $-\,200~\nu's$ / day from Sun
 - possible time variation, day/night matter effect.
 - 250,000 (50) $\nu 's$ from Supernova @Galactic-center (Andromeda)
 - $-\,{\sim}800~{\rm v}'s$ / 10 years (>10MeV) SN relic ${\rm v}$
 - WIMP $\nu,$ solar flare $\nu,$ etc

Schedule

assuming budget being approved from JPY2016

Construction start

LBNE project in the US

Long-Baseline Neutrino Experiment

Baseline 1300 km 10kt Liquid Ar detector on surface (phase 1)

Sensitivity of LBNE

Comparison of Phase 1 Sensitivities to Mass Hierarchy and CP Violation

R. Svoboda (Neutrino 2012)

LBNO project in Europe

Baseline 2300 km 20kton liquid Ar detector at 1400m underground.

Sensitivity of LBNO

F. Lodovico (NNN2012, Oct.2012)

Summary

- → θ₁₂, θ₂₃, θ₁₃, Δm₂₁², and $|\Delta m_{32}^2|$ were measured. Remaining unknown parameters are CP phase δ and mass hierarchy.
- \blacktriangleright Recently, θ 13 was measured to be sin²(2 θ_{13})=~0.1.
- This large θ 13 enabled us to measure CP phase δ using long baseline accelerator neutrinos in future.
- The proposed Hyper-Kamiokande detector has a high sensitivity for the CP phase measurement.
- Hyper-K is a multiple purpose detector which investigate (discover) also nucleon decays and astrophysical neutrinos.