Laser Surgery: a powerful tool in BIOLOGY

Matteo RAUZI

Rauzi et al. 2007

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective NA and immersion	Objective transmission at 1030nm	Pulse energy after the objective	Number of pulses
Ablation	1030nm	200fs	50MHz	370mW	3ms	1,2NA water	65%	4nJ	150000
Photo-uncaging	1030nm	200fs	50MHz	40mW	continuous	1,2NA water	65%	0,8nJ	-

Light-matter interaction

Light source: LASER

Light Amplification by Stimulated Emission of Radiation

Spatial coherence Temporal coherence

Laser-matter interaction depend on **4** main laser parameters

1. Power

Photodisruption

Plasma and Cavitation Dynamics during Pulsed Laser Microsurgery in vivo

M. Shane Hutson* and Xiaoyan Ma

Department of Physics & Astronomy, Vanderbilt University, VU Station B #351807, Nashville, Tennessee 37235-1807, (Received 21 May 2007; published 10 October 2007)

E-cad GFP a b 0 s 6 s 12 s

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective	Objective transmission	Pulse energy after the objective	Number of pulses
Ablation a	355nm	4ns	?	?	?	1,3NA oil	?	1,22µJ?	1?
Ablation b	532nm	4ns	?	?	?	1,3NA oil	?	8.26µJ?	1?

E-cad GFP

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective	Objective transmission at 365nm	Pulse energy after the objective	Number of pulses
Ablation	365nm	3-5ns	Catalog 15 Hz	?	Deduced 0,6s	1,4NA oil	?	60µJ?	10

DevCell 2009

Additional collateral effects: local blackening of the vitelline membrane

UV vs IR

Laser Pulse repetition Rates and tissue interaction

The objective NA and the ablation threshold energy to perform laser ablation

LASER ABLATION & BIOLOGY

Single actin bundle dissection

Retraction or Disassembly?

Kumar et al. 2006

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective NA and immersion	Objective transmission at 790nm	Pulse energy after the objective	Number of pulses
Ablation	790nm	100fs	90MHz	1,5W	170µs	1,4NA oil	?	16nJ	15300

Probing single bundle properties with punctual ablation

Probing single bundle properties with punctual ablation

 $\tau = ratio between viscous and elastic coefficients (Young's modulus)$ $D_a = length of the fiber immediatly destroyed upon irradiation$

Probing single bundle properties with punctual ablation

Probing single bundle force contribution to cell shape

in collaboration with M. Théry

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective NA and immersion	Objective transmission at 1030nm	Pulse energy after the objective	Number of pulses
Ablation	1030nm	200fs	50MHz	370mW	5ms	1,2NA water	65%	4nJ	250000

F-actin

fibronectin

GERMBAND ELONGATION

by Thomas Lecuit

Cell intercalation is responsible for tissue elongation

Bertet et al. (2004)

Polarized junction remodeling drives intercalation

Bertet et al. (2004)

Myo-II, a key effector of intercalation, is planar polarized

Bertet et al. (2004)

F-actin ablation and depletion of E-cadherin

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective NA and immersion	Objective transmission at 1030nm	Pulse energy after the objective	Number of pulses
Ablation	1030nm	200fs	50MHz	370mW	3ms	1,2NA water	65%	4nJ	150000

Maximum speed of relaxation as a proxy for tension

Tension of 'vertical' junctions

Tension comparison between 'vertical' and 'transverse' junctions

a **CORTICAL** model

Local subcellular tensions at the CORTEX drive intercalation
Such forces are Myoll dependent

Rauzi et al. 2008

Probing membrane integrity after ablation

E-CAD::GFP

intact membrane

ablation

leakage

ablation

uncaging

ablation

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective NA and immersion	Objective transmission at 1030nm	Pulse energy after the objective	Number of pulses
Ablation a	1030nm	200fs	50MHz	370mW	3ms	1,2NA water	65%	4nJ	150000

b

С

Measuring the ablation spot size

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective NA and immersion	Objective transmission at 1030nm	Pulse energy after the objective	Number of pulses
Ablation a	1030nm	200fs	50MHz	370mW	3ms	1,2NA water	65%	4nJ	150000

Testing plasma formation during junction ablation

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective NA and immersion	Objective transmission at 1030nm	Pulse energy after the objective	Number of pulses
Ablation a	1030nm	200fs	50MHz	370mW	3ms	1,2NA water	65%	4nJ	150000

Laser severing: a tool to probe cell oscillation coupling

Solon et al. 2009

		£ 1
~ 23	at and	م مسمعين
·		S . 1
. Jul		Jun -
المتحصين المستعلم	~	
-E	and the second	
7×4-		5
	The second	a series and
∼ _^	and the man wat the	
hat		
2	a second second	<
		1 22
		and the second
	14	·, \1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		and the second sec
	and the second second	and the second of
		at a constant
and the second		and the second
	-	
~~~~	and the second second	1 4 C
and have	J.	¥
	A_ 2 .:	ALC: NOT STREET
فتعجيهن		March Star
and the second		

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective NA and immersion	Objective transmission at 355nm	Pulse energy after the objective	Number of pulses
Ablation	355nm	470ps	1KHz	?	?	1,2NA water	?	100-200nJ?	5

testing Cortical Tension Anisotropies producing Cortical Flows with laser dissection

Mayer et al. 2010

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective NA and immersion	Objective transmission at 337nm	Pulse energy after the objective	Number of pulses
Ablation	337nm	?	500Hz	?	5sec for 6μm	?	?	?	50

Laser surgery: a tool to rule out force contributions in epithelial spreading in Zebrafish gastrulation

Behrndt et al. 2012

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective NA and immersion	Objective transmission at 355nm	Pulse energy after the objective	Number of pulses
Ablation	355nm	350ps	1KHz	0,75mW?	1,2s for 20µm	1,2NA water	?	Deduced 750nJ?	25

Dissection of the acto-myosin meshwork during *Drosophila* embryo gastrulation

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective NA and immersion	Objective transmission at 1030nm	Pulse energy after the objective	Number of pulses
Ablation	1030nm	200fs	50MHz	180mW	9sec for 100µm	1,2NA water	65%	2nJ	500M

IR laser CARBONIZATION in the Drosophila embryo

Biological effect

process	wavelength	pulse duration	Pulse repetition rate	Average power at the back aperture	Exposure time	Objective NA and immersion	Objective transmission at 1030nm	Pulse energy after the objective	Number of pulses
Ablation	1030nm	200fs	50MHz	180mW	25sec for 280μm	1,2NA water	65%	2nJ	500M

IR laser CARBONIZATION in the Drosophila embryo

Laser dissection:

A tool highly **spatial and temporal specific** that can be applied at **different scales**

actin fiber

in toto Drosophila embryo

Interesting books

Thanks to:

Darius Vasco Köster

Jyoti Dubey

Manoj Mathew

