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Summary. A simple statistical model is constructed, 
describing the transition from disorder to order in a 
population of mutually catalytic molecules undergoing 
random mutations. The consequences of the model are 
calculated, and its possible relevance to the problem of 
the origin of life is discussed. The main conclusion of 
the analysis is that the model allows populations of 
several thousand molecular units to make the transition 
from disorder to order with reasonable probability. 
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I. Assumptions 

The elucidation of the origin of life depends primarily 
on the work of experimental chemists (Miller and Orgel 
1974; Lohrmann et al. 1980; Biebricher et al. 1981). 
Only a detailed study of reaction rates and dissociation 
rates can identify plausible pathways of prebiotic evolu- 
tion. The purpose of the present note is to describe a 
simple abstract model of the transition from disorder to 
order in prebiotic structures. The model is not intended 
to be a theory of the origin of life. It provides only an 
empty mathematical framework within which questions 
about the origin of life can be posed with some degree 
of precision. The model will have served its purpose if 
it helps us to ask questions which geologists and chem- 
ists may be able to answer. 

The model is in essence only an elementary exercise 
in population biology, following the ideas of Fisher 
(1930), Wright (1931) and Kimura (1970). The assump- 
tions of  the model are the following (1-9) .  

1. Molecular evolution occurs in small isolated popu- 
lations which we call "islands." An island might be a 
colloidal droplet or a solid particle with molecules 

adsorbed on its surface. Each island exchanges molecular 
components slowly with the surrounding medium, which 
serves as a source of chemical free energy for reactions 
within the island. 

2. Evolution occurs by random genetic drift only. 
Natural selection and Darwinian evolution belong to a 
later stage of development, when the island populations 
begin to grow and to compete with one another for 
nutrients. 

3. Each island contains a fixed number N of molec- 
ular units (monomers) of various species. Some mono- 
mers may be free, while others are combined into poly- 
mers in an initially random way. 

4. The population of polymers changes by discrete 
mutations, one monomer at a time being added, sub- 
tracted, or substituted in a polymer. 

5. The multidimensional random walk of polymer 
mutations is mapped onto a one-dimensional random 
walk by counting only the numbers of monomers which 
are "active" and "inactive." A monomer is active if it 
happens to be correctly placed as part of a structure 
catalyzing the synthesis of other catalytic structures. 
Otherwise it is inactive. 

6. Each of the N monomers in an island mutates with 
equal probability (I/N). 

7. When a mutation occurs in an island with k 
monomers active, the probability that the mutated 
unit be active is q~(k/N), where q~(x) is a function de- 
scribing the autocatalytic capability of the whole assem- 
blage of active monomers. 

8. The function ~(x) is monotonically increasing on 
the interval 0 < x < 1. 

9. The equation 

,p(x) = x (1)  

has three solutions, x = a,/3, 7, with 
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0 < a < / 3 < 3 ' <  1. (2) 

The crucial items in this list of assumptions are 7 
and 9. Assumption 7 states that the effectiveness of 
active monomers in catalyzing the placement of  other 
active monomers depends only on the total number of 
active monomers present and not on their detailed ar- 
rangement. This assumption is analogous to the "mean- 
field approximation" in the physical theory of  ferromag- 
netism. It drastically simplifies the description of  molec- 
ular populations by reducing all autocataiytic tendencies 
to a single parameter. 

Assumption 9 states that there are three values of 
x = (k/N), such that an island population with k active 
monomers is in statistical equilibrium. The condition (1) 
states that the number of active monomers is on the 
average unchanged by mutations. Conditions (1) and (2) 
together imply 

~b'(a) < 1, ~'(/3) > 1, q~'(3,) < 1, (3) 

which means that the equilibrium states x = a, 3' are 
stable while the state x =/3 is unstable. Each island, 
starting with a random population of monomers, will 
rapidly approach the "disordered state" x = a and 
remain for a long time executing small statistical fluc- 
tuations in the neighborhood of  the disordered state. 
There is only a very small probability that the popula- 
tion may occasionally suffer a large statistical fluc- 
tuation which takes it over the unstable saddle-point 
x = /3 to the "ordered state" x = 3'. It may then fluc- 
tuate around the ordered state for a long time before 
it jumps back over the saddle to the disordered state. 

The idea underlying our model is that the population 
of  an island in the ordered state is in some sense "alive." 
The jump over the saddle from ordered to disordered 
state is "death." The jump upward from disordered to 
ordered state is the crucial event in the "origin of life?' 
In the following Section II we work out the quantitative 
behavior of  the model and calculate the probabilities of  
transitions between ordered and disordered states. Then 
in Section III we discuss a list of  questions which the 
model suggests for further investigation; these questions 
are mostly concerned with the implications of  the model 
for the nature of  early biological evolution. 

II. Consequences 

The exact equations describing the evolution of popula- 
tions in the model are 

Pj (k + 1)- Pj (k) = ~j (k) -  Cj-1 (k), 

~j (k) = f((j  + 1)/N) Pj+I ( k ) - g 0 / N )  Pj(k), 

f (x)  = x(1 - q~ (x)), g(x) = (1 -x)  q~ (x), 
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where Pj. (k) is the probability for finding j active mo- 
nomers in the population after k mutations have oc- 
curred. Eq. (4) holds for j = 0,1 . . . . .  N, with the bound- 
ary conditions 

~N(k) -- ~ . l (k)  = 0. (7) 

The unique stationary solution of  Eq. (4) is obtained 
by setting 

Pj(k)=Pj 
independent of  k. Then Eq. (4), (7) imply 

(8) 

t~j(k) = 0, 

and Eq. (2) gives the solution 

(9) 

Pj = Po exp (-w (j)), (lO) 

W(j) = E~= 1 [ l o g ( ~ / ( N + l - ~ ) ) -  

log(~((~-l)/N) (1-~(~/n)))]. (11) 

When N is large we may use the continuum approxima- 
tion 

W(j) = NU(j/N) + 1/2 log(27rNu(j/N)), 

u(x)  = [(x-x 2) ~b(x) (1- q~(x))/(~b(0) (1-~b(0)))], 
(12) 

U(x) = ~ [log(y/(1-y)) - log(¢(y)/(1-q~(y)))] dy. 

0 3 )  

The potential U(x) has minima at x = a,3' and a maxi- 
mum at x =/3. The stationary distribution Pj will be con- 
centrated around the two minima. The distribution 
around the disordered minimum at j = Na will be ap- 
proximately Gaussian with variance 

V(a) = (N/U"(a)) = N ((a-a2)~(1-~b'(a))), (14) 

and similarly for the ordered minimum at j = N3'. The 
ratio of ordered to disordered populations in the sta- 
tionary solution will be 

[V(7) u(a) /V(a)  u(3")] 1/2 exp[N(U(a) -U(3'))] 
(15) 

But the crucial question for the origin of  life is not the 
abundance of  ordered populations in the stationary solu- 
tion but the rate of  transitions from disorder to order. 

(4) To calculate the transition-rate, we consider an artifi- 
cial steady-flow situation in which all populations arri- 

(5) ving at the ordered state j = N7 are immediately removed 
and replaced by disordered populations at j = 0. Eq. (4) 

(6) then becomes 
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ffj" ffj-1 = e, j = N3,, 

ffj" ffj-1 = -e, j = O, 

ffj" ~j-1 = O, otherwise, 

where e is the transition-rate, the probability per muta- 
tion that a population crosses the barrier from disorder 
to order. Eqs. (5), (16) are to be solved with the bound- 
ary condition 

P j = 0 ,  j >~N3, 

The steady-flow solution is 

N~''I (g(!~/N)) -1 exp[W(£)-W(j ) ] .  ( 1 8 ) .  P j = e  Q=J 

Since the total probability is normalized to unity, Eq. 
(18) implies 

e "1 = :GG £ > j  (g(~/N)) "1 exp [W(£) - W(j)]. (19) 

When N is large, Eq. (19) becomes 

e -1 = N 2 3, dx f 3, dy (g(y)) ' l  (u (y) /u (x) ) l /2  
f 0  x 

exp [N(U(y) - U(x))]. (20) 

The main contribution to the double integral (20) 
comes from x near a and y near/3. Using a Gaussian ap- 
proximation for the integrand near a and/3, we find 

e = (2nN) "I [(1-4;(a)) (4~'(fl)-l) ( (a -a  2)/(fl-f12))] 1 / 2  

exp [N(U(a)  - U(fl))] . 

catalytic activity of  its parent population. To make the 
(16) model concrete, a particular form of  ~b(x) must be 

chosen. After ~(x) is chosen, it will be easy to calculate 
numerically from Eq. (21) and (22) the rates of  transi- 
tions between order and disorder. Ideally, the choice 
of  ¢(x) should be based on a complete theory of  pre- 
biotic chemistry. Since no such theory exists, the choice 
must be made arbitrarily. 

First a short digression on the application of the 
model to present-day organisms. Kirkwood (1980) 

(17) has discussed a similar model in connection with a 
theory of aging of  cells. The curve y = ~b(x) appro- 
priate to modern cells has an unsymmetrical S-shape, 
crossing the line y = x at three unevenly spaced points, 
for example 

(21) 

The rate of  transition depends exponentially on the po- 
tential difference (U(fl) - U(a)) between the saddle- 
point fl and the disordered minimum a. A similar calcula- 
tion gives the rate of  transition in the reverse direction 
from order to disorder, 

n = (27rN) -I [(1-~'(7)) (O'(fl)-l) ((3'-3 ,2 )/(fl_fl2 ))11/2 

(22) exp [ N ( U ( 7 ) -  U(fl)] . 

The ratio of  the rates (T/e) is the inverse of  the popula- 
tion-ratio (15), in accordance with the principle of  
detailed balance. 

Up to this point, the model is general and abstract 
and says nothing about the detailed chemical mech- 
anisms by which population-changes occur. All the 
details are hidden in the function q~(x) which relates 
the catalytic activity of  a newly-placed monomer  to the 

Ot = 0.05, fl = 0.999, 7 = 0.9999 (23) 

The behavior of  the model is then qualitatively correct. 
The cell has two stable equilibrium states, the live state 
with an error-rate of  10 -4 , and the dead state with an 
error-rate of  0.95, and an unstable equilibrium state 
with an error-rate of  10 -3. If  a sudden injury produces 
an error-rate less than 10 -3 , the cell will almost certain- 
ly recover and return to the live state. If  an injury 
produces an error-rate greater than 10  -3 , the cell will 
almost certainly die. The model correctly predicts 
that the death of a live cell is statistically possible 
whereas the resurrection of  a dead cell is essentially 
impossible. The extreme asymmetry of  the curve y = 
q~(x), with the crossing-points fl and 3, squeezed together 
close to x = 1, is a reflection of  the extreme precision 
and fine-tuning of the modern metabolic apparatus. 
We may conjecture that the modern highly asymmetric 
~(x) evolved gradually out of  a primitive q~(x) which was 
less fine-tuned and less asymmetric. 

Since we know little about prebiotic conditions, our 
choice of  a primitive ~b(x) is designed to be simple rather 
than realistic. Realistic details may be added later as 
knowledge of  prebiotic chemistry increases. The primi- 
tive ~b(x) is chosen to depend on two parameters a and b, 
specifying respectively the diversity of  the population of  
monomers and the precision of the polymerizing cata- 
lysts. We assume that the reacting monomers are divided 
into (a + 1) equally abundant species, so that each site 
in a catalyst may be occupied either by  one active mono- 
mer or by one of  a inactive monomers.  Thus 

4~(0) = (1 + a) -1 (24) 

is the probability that any particular site will be cor- 
rectly occupied in the absence of  autocatalysis. We as- 

~sume that every catalyst which is itself correctly con- 
stituted can discriminate active from inactive monomers 
by a factor b. Thus 

~(1 )  = (1 + (a/b))  -1 (25)  
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is the chance that a newly placed monomer will be active 
in a population which has all its previously placed mono- 
mers active. The form of q~(x) for intermediate values of 
x is suggested by thermodynamics. Each perfect cata- 
lyst lowers the activation energy required for correct 
placement of a monomer by 

d = k T l o g b  , (26) 

where k is Boltzmann's constant and T is the absolute 
temperature. We assume that, in a population with the 
fraction x of the monomers active, each catalyst lowers 
the activation energy for correct placement by (xd). 
The form of 4~(x) is thereby determined to be 

qb(x) = [1 + ab-X] -' = [1 + exp (A-Bx)] -1 , (27) 

with 

ing Eq. (3) can be constructed with a = 3, which would 
describe a pure nucleic-acid system built out of 4 types 
of nucleotide. Systems built out of 10 or 20 species of 
amino-acid, or mixed systems built out of amino-acids 
and nucleotides, can be accommodated within our 
model without difficulty. 

The fact that the model fails with less than 9 species 
of monomer may seem paradoxical. The model can of 
course be defined for any value of a. What happens for 
a < 7 is that the model does not allow an order-disorder 
transition; there is either a disordered equilibrium state 
(if the catalysts are weak) or an ordered equilibrium 
state (if the catalysts are strong) but no possibility of 
order and disorder coexisting. When a < 7, the model 
says that cells will either be incapable of living or in- 
capable of dying. 

The precise range of values of the parameters (A,B) 
which allow an order-disorder transition is given by 

A = l o g a  , B = l o g b  (28) A ~<A<A+ , (32) 

The potential (13) corresponding to this choice takes the 
simple form 

1 2 U ( x ) = x l o g x + ( 1 - x ) l o g ( 1 - x ) + A x - - ~ - B x  . (29) 

The crucial assumption, that every imperfect catalyst 
produces an energy-lowering proportional to x, is an ap- 
proximation consistent with our Assumption 7 in Sec- 
tion I. The approximation would obviously be false for 
an elaborate catalytic apparatus such as a modern ribo- 
some. For a population containing a variety of primitive 
catalysts of relatively simple structure, the approxima- 
tion should be roughly correct in some average sense. 

Assumption 9 of Section I imposes restrictions on 
the allowed values of the parameters a, b. For the curve 
y = ~(x) to cross the line y = x three times, it is neces- 
sary (but not sufficient) that the slope at the point of 
inflection be greater than unity. So when ¢(x) has the 
form (27), a necessary condition for the existence of 
stable ordered and disordered equilibrium populations 
is 

where 

A = l + e x p ( - 0 ) + 0  , A + = l + e x p ( 0 ) - 0  , 
(33) 

and 0 is defined by 

B = A  + A + = 2 + 2 c o s h 0  (34) 

The conditions (32)-(34) define a wedge-shaped region 
in the (A,B)-plane extending upward and to the right 
from the cusp at A = 2, B = 4. We shall study three 
representative sequences of models, one sequence which 
we call "symmetric" having 

A = I B  , b = a  2 , (35) 

one sequence called "marginally alive" having 

A = A+ , (36) 

B > 4  , b > e 4 = 5 4 . 6  (30) 

This means that the catalysts must have discrimination- 
factors of the order of 100. They need not be as fine- 
tuned as modem enzymes which usually have discrimina- 
tion-factors between 103 and 104 . Another necessary 
condition for a triple-crossing is 

A > 2  , a > e 2 = 7 . 4  , (31) 

which follows from the requirement that the curve has 
slope exceeding unity at the unstable crossing-point /3. 
Eq. (31) means that there must not be too few species 
of monomer. It may be significant that no model satisfy- 

and the third sequence called "marginally immortal" 
having 

A = A_ (37) 

The symmetric models have the curve y = ¢(x) sym- 
metrical about its point of inflection at x = y = 1/2, so 
that the three solutions of Eq. (1) are 

a , /3=~ -- , 7 = l - a  , (38) 

and the potential U(x) has equal minima at a and 3'. 
While there is no physical or chemical reason to expect 
Eq. (35) to hold exactly, it is reasonable to expect the 
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efficiency of  catalysis (specified by b) to increase with 
the number of  monomer species (specified by a). For 
example, the symmetric model a = 10, b = 100 would 
describe proto-enzymes of  modest performance built 
out of  a restricted set of  11 types of  amino-acid, while 
the model a = 19, b = 361 would describe more capable 
enzymes built out of  a full modern complement of  20 
amino-acids. The marginally alive and immortal models 
are as unsymmetrical as possible consistent with Eq. 
(32). They have the weakest and the strongest catalysts 
allowing the existence of  an order-disorder transition 
with a given number of  monomer species. They have 
the curve y = ~b(x) touching the line y = x, so that the 
three solutions of  Eq. (1) are for the marginally alive 
models 

a, t3 = 7 = [1 + exp (-0)]  -1 , (39) 

and for the marginally immortal models 

=/3 = [1 + e x p  ( 0 ) 1 - 1  , ,)t . (40) 

These models are on the borderline between triple- 
crossing and single-crossing. In the marginally alive 
models, the potential U(x) has a point of  inflection 
rather than a minimum at 7, so that the ordered equi- 
librium state is marginally unstable. If the catalysts 
were infinitesimally stronger there would be a true 
disorder-order transition; if the catalysts were infin- 
itesimally weaker there would be no ordered state at all. 
Similarly, in the marginally immortal models, U(x) has 
a point of  inflection at a, and the disordered state is 
marginally unstable. If  the catalysts were infinitesimally 
weaker there would be a true disorder-order transition; 
if the catalysts were infinitesimally stronger there would 
be no disordered state. The symmetric, marginally alive 
and marginally immortal sequences cover the range of  
interesting models and have the advantage of being easy 
to calculate analytically. Intermediate cases could be 
computed numerically if required. 

In the symmetric models, it is convenient to express 
everything in terms of  a parameter q defined by 

o t = ( q +  1) -1 , 7 = q ( q +  1)  -1 , q >  1 (41) 

Eq. (1) with x = a gives 

A = ((q + 1)/(q - 1)) log q (42) 

and the coefficient of  ( -N) in the exponent of  Eq. (21) 
is 

= U ~ )  - U(a) = l og@(1  + q)) - A 

(43) - ( (3q + 1 ) / (4q  + 4))  log q. 

The mean time for a population to make the transition 
from disorder to order is 

t = Fr  exp (AN) , (44) 

where r is the average time between mutations at a given 
site, A is defined by Eq. (43), and F is an unimportant 
numerical factor depending on q. 

In the marginally alive models, it is convenient to 
express everything in terms of  a positive parameter 66, so 
that 

A = 662p-i + log(p/r) , (45) 

B =6o 2 (p-1 + r - l )  , (46) 

p = e x p ( 6 6 ) - l - c o  , r = e x p ( - 6 6 ) - l + c o  . (47) 

The solutions of Eq. (1) are then 

= r ( p + r )  -I , /3 = 7  =r66 -1 (co- r )  -1 (48) 

The lifetime formula (44) holds with 

= l ( s - l - l o g s )  , (49) A 

s = co: (p + 0 -1 (50) 

In the marginally immortal models, Eq. (46), (47) 
still hold, but now 

A = 66 2 r "1 + log(r/p) , (51) 

=/3 = p66-1(66 + p)-I , 7 = P(P + r) -1 , (52) 

and A is zero by definition since a =/3. The vanishing of  
A means that the transition from disorder to order be- 
comes infinitely rapid as the parameters of  the model 
tend to the limit A = A . 

We have no way to guess the number of  island popu- 
lations that may have existed in the remote past, or the 
duration of  their existence. If  we make the conservative 
assumption that in some suitably favorable environment 
1010 islands existed for 105 mutation-times, then a 
substantial number of  them could have made the transi- 
tion from disorder to order according to Eq. (44), 
provided that 

N <  N c = 30 A 1 (53) 

In any case, Eq. (53) gives a rough idea of  the maximum 
population which could be expected to make the order- 
disorder jump with reasonable probability. Table 1 gives 
values of  a ,b ,~, /3 ,7 ,A,N c for an assortment of  sym- 
metric, marginally alive and marginally immortal models. 

The main conclusion to be drawn from Table 1 is that 
the critical population-sizes can be large for what appear 
to be reasonable choices of  the input parameters a and b. 
As a representative and not extreme case, we may take 
the symmetric model with parameters a = 10 (11 species 
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Table 1. Parameters of representative models 

a b ~ fl 3" A N 
C 

8 62.9 0.32 0.59 0.59 0.002695 11131 

8 64 0.33 0.50 0.67 0.001129 a 26566 
8 65.7 0.39 0.39 0.70 0 

10 89.4 0.19 0.67 0.67 0.0298 1006 
10 100.0 0.20 0.50 0.80 0.0145 2070 
10 128.0 0.29 0.29 0.87 0 oo 

19 219.3 0.07 0.75 0.75 0.1906 157 
19 361 0.08 0.50 0.92 0.1051 285 
19 3195 0.14 0.14 0.99 0 

In each model, (1 +a) is the number of monomer species and b 
is the discrimination factor of the catalysts. For each value of a, 
the model with ~3 = 3' is marginally alive, the model with t3 = 1/2 
is symmetric, and the model with ~ = a is marginally immortal. 
The fraction of monomers active is ~ in the disordered state, 3" in 
the ordered state. N c is the maximum size of population for 
which a disorder-order transition occurs with reasonable proba- 
bility. 
a As noted by H.C. Longuet-Higgins, this value of A is equal to 

(log 3 -(19/12) log 2), which is known to musicians as the 
fractional difference in pitch between a true fifth and an equi- 
tempered fifth. Its smallness is the main reason for the pos- 
sibility of a harmonious equi-tempered scale 

of  monomer)  and b = 100 (catalysts of  moderate  specifi- 
city).  This model  will have 20% of  the monomers active 
in the disordered phase and 80% active in the ordered 
phase. It allows populations of  up to 2000 monomers to  
make the transition from disorder to order without  re- 
quiring the occurrence of  a miracle. 

Ill. Questions 

This section consists of  a list of  questions with a brief 
discussion of  possible answers. 

1. Were the first living creatures composed of  poly- 
peptides or nucleic acids or a mixture of  the two? 

For  a discussion of  chemical evidence bearing on this 
question see Miller and Orgel (1974), especially chapter 
12. For  recent studies of  models of  the origin of  life in- 
cluding nucleic acid replication from the beginning, see 
Niesert, Harnasch and Bresch (1980, 1981), or Kuhn and 
Waser (1981). For  a theory not  including nucleic acids 
at the beginning, see Weiss (1981). If  the model  of  this 
paper has anything to  do with the origin of  life, then the 
first living creatures contained a populat ion of  a few 
thousand monomers assembled into mutual ly  catalytic 
structures. It is difficult to imagine that  a few thousand 
loosely organized monomers with a fraction of  the order 
of  20% incorrectly placed could comprise anything re- 
sembling the modern genetic apparatus. It is easier to 
think of  the earliest creatures as composed of  amino- 
acids and other miscellaneous chemicals, polymerized 

into proto-enzymes with a mainly polypept ide struc- 
ture. In other words, the model  seems to imply that  en- 
zymes came first, genes second. 

2. At  what stage did random genetic drift give way to 

natural selection? 
The model  does not  allow natural selection to oper- 

ate, because it does not  allow the island populat ions to 

grow or to reproduce.  So long as there is no bir th and 
death of  islands, there can be no natural selection. How- 
ever, if  an island populat ion has once reached the order- 
ed state as defined in the model,  there is a good chance 
that  it will pass into a new phase of  evolution by  system- 
atically assimilating fresh monomers  from its environ- 
ment.  An island which increases its populat ion N by assi- 
milation will quickly become stabilized against reversion 
to the disordered state according to Eq. (22). It can then 
continue to  grow until some physical disturbance causes 
it to divide. I f  i t  divides into two,  there is a good chance 
that  both  daughter populations contain a sufficient as- 
sortment of  catalysts to remain in the ordered state. The 
processes of  growth and division can continue until  the 
islands begin to exhaust the supply of  nutrient  mono- 
mers. When the nutrients are in short supply,  some is- 
lands will lose their substance and die. From that  point  
on, evolution will be driven by natural selection. 

3. Does the model  contradict  the Central Dogma of  

molecular biology? 

The Central Dogma (Crick 1957) states that  genetic 
information can pass from nucleic acid to nucleic acid or 
to protein but  cannot pass from protein to nucleic acid 
or to protein.  The dogma is true for all contemporary  
organisms. The model  implies that it was probably  un- 
true for the earliest organisms. According to the model ,  
the first organisms probably passed genetic information 
to their offspring in the form of  enzymes, i.e. primitive 
proteins. There is no logical reason why a populat ion of  
enzymes mutually catalyzing each other 's synthesis 
should not  serve as a carrier of  genetic information.  

4. How did nucleic acids originate? 
If  it is true that  the first organisms contained no nu- 

cleic acids, then it is l ikely that  they learned first to uti- 
lize m~cleotide-related molecules such as ATP as energy.- 
carriers. Efficient enzymatic  machinery for synthesizing 
and using ATP would have evolved. Cells would then 
contain substantial populations of  nucleotide-related 
molecules. I f  in one of  these ceils there should arise by  
chance an enzyme similar to the Q/~ replicase in the ex- 
periment of  Biebricher, Eigen and Luce (1981), then the 
nucleotides in the ceil could organize themselves into 
RNA as they did in the experiment.  The proliferation of  
RNA in the cell would begin as a parasitic infection and 
develop later into a symbiosis. 

5. How did the modern genetic apparatus evolve? 
After RNA was established as a normal const i tuent  of  

ceils, a genetic apparatus might have evolved by  a se- 
quence of  steps such as the following. (a) Non-specific 
binding of  RNA to free amino-acids, activating them for 
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easier polymerization.  (b) Specific binding of  RNA to 
catalytic sites to give them structural precision. (c) RNA 

bound to amino-acids becomes transfer RNA. (d) RNA 
bound to catalytic sites becomes ribosomal RNA. (e) 
Catalytic sites evolve from special-purpose to general- 
purpose by  using transfer RNA instead of  amino-acids 
for recognition. (f)  Recognition unit splits off  from 
ribosomal RNA and becomes messenger RNA. (g) Ribo- 
somal structure becomes unique as the genetic code 
takes over the function of  recognition. This is only one 
of  many possible pathways which might have led to the 
evolution of  the genetic code. The essential point  is 
that  all such pathways appear to be long and tortuous.  

6. How late was the latest common ancestor of  all 
living species? 

The model  asserts that cells came before enzymes, 
enzymes before genes. The geological record tells us that  
cells existed very early, as long as 3.5 eons ago. But there 
is no evidence that the earliest cells which are preserved 
as microfossils contained a modern genetic apparatus. 
The evolution described in the discussion of  questions 4 
and 5 may have taken eons to complete. We know from 
the universality of  the genetic code that the latest com- 
mon ancestor came after the end of  that evolution. The 
pace of  evolution may have accelerated after the genetic 
code was established, allowing the development from 
ancestral prokaryote  to eukaryotic cells and multicellu- 
lar organisms to be completed in less time than it took 
to go from primitive cell to ancestral prokaryote.  It is 
therefore possible that the latest common ancestor came 
late in the history of  life, perhaps as late as two-thirds of  
the way from the beginning. 

7. Does there exist a concrete realization of  the 
model, for example a population of  a few thousand 
amino-acids forming an association of  polypeptides 
which can catalyze each other 's  synthesis with 80% 
efficiency? Can such an association maintain itself in 
homeostat ic  equilibrium? 

These are the crucial questions which only experi- 
ment can answer. 
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