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Abstract
The function of living cells is controlled by complex regulatory networks
that are built of a wide diversity of interacting molecular components.
The sheer size and intricacy of molecular networks of even the simplest
organisms are obstacles toward understanding network functionality.
This review discusses the achievements and promise of a bottom-up
approach that uses well-characterized subnetworks as model systems
for understanding larger networks. It highlights the interplay between
the structure, logic, and function of various types of small regulatory
circuits. The bottom-up approach advocates understanding regulatory
networks as a collection of entangled motifs. We therefore emphasize
the potential of negative and positive feedback, as well as their combi-
nations, to generate robust homeostasis, epigenetics, and oscillations.
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Regulatory network
(RN): a
representation of a
regulatory system that
consists of a collection
of nodes, pairs of
which are connected
by links

Feedback loop (FL):
a cyclic chain of links
in a regulatory
network

TF: transcription
factor
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INTRODUCTION

The interior of the cell is crowded. It con-
tains proteins, nucleic acids, and small metabo-
lites and is surrounded by ions and water. Al-
though they have widely disparate properties,
most molecules interact specifically with only
a few others. These specific interactions define
a network of molecular species connected by
links that represent interactions and flow of in-
formation. The specific interactions may dif-
fer in the direction of information flow and in
the timescales on which they occur. For exam-
ple, enzymatic conversion of small metabolites
is usually fast and reversible, whereas synthesis
of biopolymers is a slower and unidirectional
process (25).

Combining such interacting components
results in regulatory networks (RNs) that

exhibit a rich and varied range of dynamic
behavior, even for very small networks, espe-
cially when feedback is involved (2, 7, 8, 10,
16, 19–23, 29, 33, 55–57, 59). Figure 1 shows
three examples of RNs. They were chosen to
span a range of organisms (phages, prokaryotes,
and eukaryotes), molecular mechanisms (tran-
scription and translation regulation, protein-
protein interaction, enzymatic reactions), feed-
back logics (negative, positive, and combina-
tions), and physiological functions (develop-
mental decisions, regulation of metabolism,
stress response). We have much to learn be-
fore we understand the connection between the
structure (i.e., the topology of the network of
interactions) and the function (i.e., the dynam-
ical response of the system to external signals
and conditions) of such physiologically impor-
tant RNs.

In this review we present one approach to
understanding the structure-function relation-
ship, namely, using simplified models of small
subnetworks of RNs. The sign of a feedback
loop (FL), and how FLs of different signs are
combined, is the primary determinant of the
functionality of any RN. Below, we describe
what is known about the functional behavior of
single FLs and then explore models of two en-
tangled FLs, emphasizing aspects that are more
than just a sum of behaviors of single loops. In
both cases, we connect the discussion to the cel-
lular contexts in which these structures appear.
Before examining feedback behavior, however,
we first explore a few different mechanisms by
which concentration, stability, and activity of
regulatory factors can be controlled in RNs,
which also set up the framework for the quanti-
tative models we describe and make explicit the
kind of simplifying assumptions used therein.

ELEMENTARY DYNAMICS
OF PROTEIN REGULATION

Binding of TFs to Operator Sites

Regulation of transcription is a dynamic phe-
nomenon involving repeated association and
dissociation of transcription factors (TFs) to
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operator sites on the DNA. At present, our
knowledge of the timescale for a TF to local-
ize the relevant operator sites in vivo is highly
uncertain, although some experiments indicate
search times on the order of minutes for the lac-
tose repressor (LacI) in Escherichia coli (15). An
estimate of the association rate, kon, of a TF to a
specific operator can be obtained from a calcu-
lation of the time required for a single protein
molecule, diffusing randomly with a diffusion
constant D, to find a target of diameter a in a
volume V (53):

kon = 4πDa/V. 1.

This is an upper bound on the on-rate in par-
ticularly because TFs often bind to nonspecific
DNA and thereby may lose substantial time
searching far distances from specific operators
(53). However, Equation 1 captures the general
fact that the association rate is higher if the TF
diffuses faster, if the target is bigger, or if the
search volume is smaller. Assuming D for the
TF to be approximately 5 μm2 s−1, as measured
for GFP in E. coli (17), and assuming a to be
the diameter of a typical protein, ≈5 nm, we
obtain kon ≈ 2 s−1 for one freely diffusing TF in
a volume V ≈ 1 μm3.

The corresponding off-rate for the TF leav-
ing the operator is given by (53)

ko f f = 4πDa · (6 · 108 μm−3) · (K/1 M), 2.

where K = exp(�G/kB T ) · 1 M is the equi-
librium binding constant in molar units, �G is
the binding energy, and kBT ≈ 0.62 kcal mol−1

at room temperature. Thus, even for a strong
binding site with, say, K = 1 nM, the off-rate

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 1
Molecular networks of (a) phage λ (58), (b) iron
homeostasis in Escherichia coli (49), and (c) the
p53-dependent apoptosis decision network in
mammals (24). The three networks emphasize
transcription regulation, regulation of metabolic
fluxes, and posttranslational regulation, respectively.
In panel a the orange arrow indicates the flow of
information across the network, leading from UV
induction to lysis. In panel b, the orange arrows
indicate the flow of iron across the network.
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Dissociation
constant/equilibrium
binding constant: for
a complex, this is the
ratio of the
dissociation rate
constant to the
association rate
constant, and is a
measure of the binding
strength of the
complex

is ≈0.05 s−1. The times involved in TF binding
to operator sites (less than a minute) are of-
ten faster than timescales of protein produc-
tion (transcription and translation, typically a
minute or more); therefore, most models as-
sume that association-dissociation occurs so fast
that TF-operator complexes are considered to
be in quasi-equilibrium. That is, one assumes
that the fraction of time the TF spends bound to
the operator adjusts instantaneously to changes
in concentrations of the involved proteins and
DNA.

Under this approximation, the bound frac-
tion is given by the following function of the
regulator (i.e., the TF) concentration, R, and
the dissociation constant, K = exp(�G/kB T ) ·
1 M, which is related to the binding energy of
the TF-operator complex, �G (stronger bind-
ing implies lower K, and vice versa):

bound fraction = R/K
1 + R/K

. 3.

This is similar to the Michaelis-Menten de-
scription of enzyme kinetics, with R analogous
to substrate concentration, and K analogous
to the Michaelis constant describing substrate-
enzyme binding. Just as the Michaelis-Menten
formulation can be extended to incorporate co-
operative effects, so can the above formula be
generalized by adding a Hill coefficient:

bound fraction = (R/K )h

1 + (R/K )h
. 4.

Oligomerization of the TF prior to binding, or
cooperative binding of multiple TFs, is repre-
sented by Hill coefficients h > 1 (dimerization:
h = 2; tetramerization: h = 4). The above
equation can be easily extended to account for
different TFs competing for multiple operator
sites (53). The formalism could also be general-
ized to the cases in which the numbers of the TF
are small by accounting explicitly for all possi-
ble combinations of free molecules as described
in Reference 53. Thus, small numbers do
not exclude the equilibrium approach to gene
regulation.

Transcription Regulation

A common type of link in a RN represents
a TF activating or repressing a promoter. If
the TF activates the promoter, its activity
is proportional to the bound fraction from
Equation 4:

Activity ∼ (R/K )h

1 + (R/K )h
, 5.

whereas if the TF represses the promoter,

Activity ∼ 1
1 + (R/K )h

. 6.

A large Hill coefficient makes activation
more sensitive to variations in R when R is
approximately equal to K, approaching a step
function when h becomes very large. Express-
ing the promoter activities in this manner in
fact remains valid even when there is substan-
tial binding of the TF to nonspecific sites, as
this simply results in a weaker effective bind-
ing of the TF to the specific operator (53), i.e.,
a larger K. Thus, nonspecific binding can be
accounted for by measuring specific binding
strength to particular sites relative to genome-
wide nonspecific binding. In Equations 5 and 6,
we have not explicitly modeled the binding of
the RNA polymerase and the subsequent steps
that lead to production of mRNA. For a sin-
gle promoter in steady-state conditions, this is
not a serious limitation since nonequilibrium
effects can also be absorbed into an effective K,
preserving the form of Equations 5 and 6 (44).
However, more detailed modeling may be re-
quired to reproduce certain dynamical features,
such as bunched mRNA production due to
slow TF binding (44) and delayed response due
to slow initiation of transcription, long-lived
mRNAs, slow protein folding (5), or, in eu-
karyotes, export/import of macromolecules be-
tween cellular compartments.

Given the simplifications made above, the
dynamics of the concentration, C, of a protein
produced from a gene repressed by a TF can
then be modeled using the following differen-
tial equation:

dC
dt

= leak + capacity
1 + (R/K )h

− C
τ

. 7.
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The positive terms model production, whereas
the last term models degradation of the protein.
leak accounts for cases in which repression can-
not reach 100%. capacity sets the maximum pro-
duction rate of the protein over the basal level
leak. Notice that we do not model transcription
and translation separately; i.e., we do not have a
separate equation for the mRNA concentration.
This is reasonable whenever mRNA turnover is
faster than protein turnover. Typically, mRNA
half-lives are shorter than the corresponding
protein half-lives, so this is often a good as-
sumption. [The half-life of total E. coli mRNA
is 6.8 min (48).] The lifetime of the protein is
given by the parameter τ , which takes into ac-
count both passive and active degradation, as
well as dilution due to cell growth. Note that
using a degradation rate proportional to C in-
volves making the simplifying assumption that
none of the active degradation processes is lim-
ited by cellular factors.

We especially stress the importance of the
parameter τ . A small value of τ on the one
hand leads to a fast adjustment to new steady-
state levels, but on the other hand increases
protein turnover and thus the metabolic cost.
Figure 2a shows how C responds to a sud-
den 100-fold rise in R, from K/10 to 10 K (that
is, from a regime in which the operator-bound
fraction is close to zero to a regime in which it is
close to unity). τ sets the timescale for response
in exactly the same way when the TF activates
the production of the protein (Figure 2c).

Active Degradation and
Irreversible Inactivation

The crucial role during the lifetime of the pro-
tein in setting its response time suggests that
a particularly efficient way of achieving a fast
response is to use a regulator that, instead of
repressing transcription, actively degrades the
protein. Such a regulatory link is displayed in
Figure 2b. The corresponding equation shows
the simplest way of modeling such active degra-
dation, where the rate of degradation is taken
to be γRC. This assumes standard second-order
kinetics of association of R and C, followed by

Co
nc

en
tr

at
io

n
Co

nc
en

tr
at

io
n

Co
nc

en
tr

at
io

n

dC
dt

R
= − C/τ
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Figure 2
Simple ways to regulate the concentration of a protein, C, through negative and
positive control. (a) The regulator, R, acts as a transcriptional repressor. (b) R
catalyzes degradation of C. (c) R is a transcriptional activator. In each case, the
adjacent plot shows schematically how C responds to a sudden 100-fold change
in the concentration of R when each mechanism is modeled by the
corresponding differential equations shown in the figure. To focus attention on
the mathematical forms used for production and degradation terms, we have set
all parameters in these equations (e.g., rate constants, dissociation constants,
Hill coefficients) equal to unity, except for the lifetime of the protein, τ . Note
that active degradation, panel b, can be much faster than transcriptional
repression, panel a. For example 50% of LexA can be degraded within 1 min
after activation of RecA in Escherichia coli (38), which degrades LexA actively.
Such quick action would be impossible if RecA instead worked by repressing
transcription of LexA.

rapid degradation (or irreversible inactivation)
of C. Therefore, one does not need to consider
dissociation of the R-C complex. Thus, 1/γR
becomes the effective average lifetime of the
protein in the presence of the regulator. The
advantage of such a mechanism is that one can
achieve a fast response to changes in R while
maintaining a low degradation rate, and there-
fore low metabolic cost, when R is low. Note
also that in the mathematical formalism used
here it does not matter whether C is a protein or
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SMALL RNA REGULATION

In the text we discussed active degradation or irreversible in-
activation of a protein (see Active Degradation and Irreversible
Inactivation). We mentioned also that inactivation of mRNA by
a sRNA could be modeled similarly. However, there is an addi-
tional interesting feature of regulation by sRNA, namely, that it
is often associated with degradation of both the sRNA (s) and
its target mRNA (m). This can be modeled by the equations
dm/dt = 1−γms −m/τ and ds /dt = α−γms −s , where α quan-
tifies the regulatory input and γ the mutual interaction strength
(35, 36, 42, 43). High γ or α allows a high (regulated) degradation
rate of m, a rate that increases with γα. The speed of response, af-
ter a change in α, increases with the value of γ. Furthermore, one
expects switch-like behavior of steady-state values of m, as a func-
tion of α, provided that γ is high (36). For RyhB-SodB in E. coli,
one finds (α; γ) ≈ (4; 400), reflecting a large mutual interaction.
In contrast, for the Spot42-galK system (α; γ) ≈ (18; 2), where a
large α indicates a large potential for overproducing sRNA rel-
ative to its target (43). Notice that the above equations apply to
any mechanisms where two molecules mutually inactivate each
other by forming an irreversible complex.

an mRNA. Thus, the same sort of model could
be used to model inactivation of a target mRNA
(C) by a small- or mRNA (R), for instance, by
antisense pairing and subsequent degradation
(35, 36, 40, 42, 43) (see sidebar, Small RNA
Regulation). Active degradation of proteins or
mRNA is a major part of many metabolic and
stress response systems.

DYNAMICS OF SINGLE
FEEDBACK LOOPS

FLs are formed when links like those in
Figure 2 are combined into a closed cyclic
chain; thereby, the influence of each regulator
in this cycle eventually loops back to reach itself.
Depending on the types of links in the cycle,
this effective self-interaction can be positive or
negative, and this strongly determines the be-
havior of the FL. RNs typically have multiple
FLs of various signs. However, we begin by de-
scribing, in this section, the behavior of single,
isolated negative and positive FLs.

Negative Feedback: Homeostasis
and Oscillations

In the RN shown in Figure 1b, an increase in
intracellular iron increases the amount of ac-
tive Fur, a TF that represses production of iron
transporters. Thus, an increase in active Fur re-
duces the intake of iron, thereby closing the cy-
cle and forming a FL. Following the links, one
sees that the overall logic of the loop is to coun-
teract any perturbation in the intracellular iron
level. This is what we mean by negative feed-
back. Figure 1c contains another example: p53
activates the production of Mdm2, which binds
to p53 and inactivates it. In general, a FL is neg-
ative if it has an odd number of repression links.
The logic of negative feedback makes it ideal
for stabilizing systems and minimizing fluctua-
tions (12). Thus, negative feedback is associated
mostly with maintenance of homeostasis. The
most common form is where a small molecule
binds to and inhibits an enzyme that catalyzes
one of the earlier steps in its metabolic path-
way. A similar effect is produced in riboswitches
where the metabolite binds to and inactivates
the mRNA of the necessary enzyme (39). These
negative FLs use only posttranscriptional
regulation.

Negative FLs can also involve transcrip-
tional regulation. In particular, many TFs re-
press the transcription of their own gene,
thereby buffering their regulation of other
genes against global variations in protein-DNA
binding, for example, due to modulations in
intercellular salt concentrations (60). Negative
autoregulation of a TF can be readily mod-
eled using a straightforward modification of
Equation 7 (50):

d R
dt

= leak + capacity
1 + (R/K )h

− R
τ

. 8.

The product τ · capacity is a characteristic con-
centration that is important: R cannot exceed
this value and, therefore, if τ · capacity < K,
negative feedback is effectively always inactive.
Conversely, τ · capacity should be larger than
K for the feedback to be active and relevant.
In steady state, Equation 8 results in R grow-
ing slower than linearly as capacity is increased.
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That is, the steady-state level of R is affected
relatively little by changes in cellular factors
that affect capacity, which is what makes a neg-
ative FL good for homeostasis. In addition, the
steady state is reached faster than in the absence
of feedback (47, 54), which is also useful for
homeostasis.

When negative feedback is delayed, in time
it can give rise to oscillations (Figure 3b). We
can add an explicit time delay to Equation 8,
giving

d R
dt

= leak + capacity
1 + (R(t − τd )/K )h

− R
τ

. 9.

In the parameter regime where negative feed-
back is active, the system favors homeostasis and
shows no oscillations when the time delay, τ d ,
is small (typically, of the order of the regula-
tor lifetime, τ , or less), and shows oscillations
when the delay is larger than a critical amount.
Such time-delayed differential equations have
been used to model oscillations in the develop-
mental regulator Hes1, which inhibits its own
transcription (26, 27), as well as more complex
negative FLs in p53 response (55, 56) and ze-
brafish somitogenesis (34). Time delay can arise
in many ways. Transcription, and translation
in particular, can be relatively slow in eukary-
otes. For example, Hirata et al. (26) suggest
that delays caused by transcription and trans-
lation in production of Hes1 are of the order of
25 min.

Other mechanisms can also cause an effec-
tive time delay, for instance, when a protein
binds to a TF catalyzing its degradation. Such
saturated degradation (13, 29, 56) has been sug-
gested as the source of delay underlying oscil-
lations observed in negative feedback systems
of p53, NF-κB, and Wnt. In such a case, it
may be more appropriate to model the com-
plex formation explicitly instead of hiding it
within a parameter like τ d in Equation 9. Over-
all, when there are oscillations, the period is
set by the slowest rate in the system, which
is usually the decay time of a protein. There-
fore, the pattern of oscillation can be changed
by genetic engineering of system components
(32).
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Figure 3
Schematic illustration of negative and positive feedback loops along with their
respective dynamical behavior. (a) Negative feedback stabilizes the output to a
near-constant level and allows for fast transient increase in production in
response to stress or perturbations. (b) If negative feedback is delayed, the
protein concentrations may oscillate in time. (c) Positive feedback can result in
bistability; i.e., the system can exist stably in either of two distinct steady states.
A second transcription factor that modulates the shift from one state to another
then typically causes an ultrasensitive response (18, 52).

Saturated
degradation: when
degradation of a
protein is catalyzed by
limiting cellular
factors, the rate
saturates at a value
independent of the
protein concentration

Negative Feedback in Stress Response

Cells often need to respond to environmental
stresses, which may be biotic (e.g., viral infec-
tion) or abiotic (e.g., osmotic stress, heat shock,
DNA damage, presence of toxic substances, and
mechanical damage). In any of these situations,
the cell has a repertoire of appropriate proteins
that can mitigate the stress. Accordingly, when
stress is experienced, the cell communicates the
need for stress response proteins to the tran-
scription/translation factors that can activate
production of the required proteins—this is a
situation suitable for negative feedback regula-
tion. However, stress response usually needs to
be initiated as quickly as possible to minimize
the damage caused by the stress. Therefore, one
usually finds that negative FLs in stress response
systems involve protein-protein interactions in
which a TF regulates the production of a
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Motif: small,
well-defined, and
common subnetwork
of regulatory systems

Bistability: refers to a
system that has two
distinct and stable
steady states

protein that in turn catalyzes the proteolytic in-
activation of the TF.

Protein-protein binding/unbinding is a fast
process that can be used to reduce the half-life
of an active protein, thereby making it respond
much faster than if the protein was controlled
by transcription regulation only. A classic ex-
ample of a negative feedback motif that uses
protein-protein binding is shown in Figure 1c:
The p53-dependent response to DNA dam-
age in mammals involves inactivation of p53 by

Catalysis

a Genetic switch

b Sequestering switch

c Autocatalytic switch

Figure 4
Bistability mechanisms. (a) Mutual transcriptional repression, also known as a
genetic switch. The double-tailed arrows in the right panel indicate that the
transcription factors need to cooperatively repress the operators of the
opposing protein. This motif is found in the regulatory network of phage λ

(45). (b) A positive feedback loop that uses strong protein-protein binding so
that only the abundant protein species is available in free form. Here, the blue
promoter is stronger and the heterodimer does not act as a transcriptional
repressor. This motif is found in phage TP901-1 (46). (c) A switch consisting of
catalyzed modifications in which, for example, proteins in the red state can
direct proteins in the blue state to change to red. The directed processes
compete with random background conversions. A version of this mechanism is
found in nucleosome modification processes associated with mating-type genes
in Schizosaccharomyces pombe (14).

binding to Mdm2, among other things. Simi-
lar feedback motifs are found in the heat shock
(6) and in the SOS response systems in E. coli
(1, 30). The main role of negative feedback in
such systems is to bring the system back to its
quiescent state, in which stress response protein
production is halted once the stress is brought
down to a harmless level. From a dynamic point
of view, this kind of behavior is similar to that
in metabolic homeostasis systems—the overall
goal in either case is to stabilize the system and
counteract perturbations.

Positive Feedback: Switch-Like
Responses and Bistability

In contrast to negative feedback, positive feed-
back is often associated with instability and
tends to amplify perturbations. Positive feed-
back can result from self-activation or from
double negative feedback, as illustrated in
Figure 3c. In the extreme, such a regulatory
motif can lead to bistability. That is, the system
can stably exist in one of two distinct states: one
state in which the concentration is low, below
the threshold at which self-activation is trig-
gered, and the other state in which the concen-
tration is high, where self-activation results in
a much higher production rate. Even in less ex-
treme situations, where there is no bistability,
a positive FL of this kind will show a switch-
like response in which the steady state of the
protein concentration shifts sharply and non-
linearly from a low level to a high level, or vice
versa, as cellular factors affecting protein pro-
duction are varied. With noise, the long-term
dynamic behavior of a switch may look like that
shown in Figure 3c, exhibiting periods of time
when the system is in a high or low state, with
relatively rapid transitions between these states
(8).

Figure 4a shows a common transcrip-
tional positive FL consisting of two mutually
repressing TFs. Extending the formalism of
Equation 7, we can model this as follows:

d R
dt

= c R

1 + (L/KL)hL
− R

τR
10.
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and
d L
dt

= c L

1 + (R/K R)h R
− L

τL
, 11.

where for simplicity we have ignored the leak,
assuming it to be negligible for both proteins.
As before, for the feedback to have a chance of
working, the parameters should satisfy τL · c L >

KL and τR · c R > K R. This system is bistable
when (a) c L · τL/KL and c R · τR/K R are not too
different from each other, and (b) Hill coeffi-
cients are greater than 1. When both of these
conditions are met, the system can be in one of
two states: one in which R is large and L is low,
and vice versa. In other words, the first crite-
rion implies that the strength of each repression
must be similar; symmetry aids bistability. The
second criterion is important: Cooperativity in
the interactions is necessary for bistability. The
bistability is more stable and easier to achieve,
the higher the Hill coefficients (i.e., the more
the cooperativity).

Positive Feedback in
Epigenetic Behavior

Bistability is, in fact, a prerequisite for epige-
netic memory—the ability of genetically identi-
cal cells to differ in phenotypes and to maintain
their distinct phenotypes from one generation
to the next.

Epigenetic behavior based on bistability (or,
in general, multistability) is ubiquitous in devel-
opment. Perhaps the simplest, and best-studied,
example of a developmental decision is the lysis-
lysogeny decision of bacteriophage λ (45). The
core of the λ network (Figure 1a) contains
positive feedback implemented by two TFs
(CI and Cro) that mutually repress each other
(the scheme of Figure 4a). Thus, the case of
phage λ can be understood largely on the ba-
sis of the analysis of Equations 10 and 11, even
though this motif ignores many details of the
phage RN. With R corresponding to CI and
L corresponding to Cro, the two states would
correspond to the lysogenic (R high) and lytic
(L high) states exhibited by λ (57). In λ, this
basic motif is augmented by a positive FL due
to CI self-activation and additional regulatory

links that are important for other functions λ

needs to perform (45, 58).
Bacteriophages that have a functional reper-

toire similar to that of phage λ have struc-
turally similar RNs (58), indicating that mutual
repression is a robust way to achieve bista-
bility. However, alternative designs also exist.
For example, phage TP901-1 achieves bista-
bility using the regulatory motif shown in
Figure 4b (46). As opposed to the motif shown
in Figure 4a, this implementation of a positive
FL uses protein-protein binding. For bistabil-
ity the binding must be strong enough so that
only the protein having a larger concentration
exists in its free form, having mopped up most
of the minority protein into the complex. This
results in a large effective Hill coefficient and
therefore helps to achieve bistability.

The scheme in Figure 4c shows a third
possible implementation of a positive FL that
can exhibit bistability. This implementation
can be applied to epigenetics based on nucle-
osome modification in eukaryotes. Consider
two types of opposing histone modifications
(Figure 4c). If the interactions between mod-
ified nucleosomes and the associated modify-
ing enzymes are such that two nucleosomes of
one type can convert an opposing nucleosome
to their type, as in Figure 4c, then the system
can exhibit bistability. The system will then be
found in a state in which most nucleosomes are
of the same type. Once again, therefore, bista-
bility requires some sort of effective coopera-
tivity. This scheme has been used to explain si-
lencing of mating-type genes in yeast (14).

DYNAMICS OF TWO
ENTANGLED FEEDBACK LOOPS

Metabolism and Uptake
of Small Molecules

Phage RNs miss one component, namely,
metabolism. Phages use the energy and re-
sources generated by host metabolism, but sub-
stantial fractions of free-living organisms are
devoted to conversion of food molecules into
raw material for anabolic processes. Metabolic
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Metabolism
rate = γE s

Dilution rate = s

Transport loop Metabolic loop

Transport
rate = σ T

ET

R

Rs

s

σ

Figure 5
Entangled feedback loop (FL) motifs for regulation of uptake and metabolism of small molecules. The small
molecule has an extracellular concentration σ and an intracellular concentration s. It is imported by
transport proteins, T, into the cell, where it is consumed in reactions catalyzed by enzymes, E. In addition, it
may be diluted by cell growth. A regulator, R, binds to the small molecule, thereby sensing its concentration.
R in turn affects production of T and E, thereby closing two FLs. Several logical possibilities exist for all
these interactions: The active form of R may be either the free, unbound form or when it is complexed to the
small molecule; R may repress or activate production of T or E. These alternatives result in different
combinations of the two FLs: both positive, both negative, or one negative and one positive.

networks may be viewed as a mixture of inter-
twined production lines. The flow of matter
along these routes can be quantified computa-
tionally through flux balance and other analy-
ses (28). RNs controlling metabolism contain
a vast number of FLs. The feedback typ-
ically involves the formation of a complex
between a small molecule and a TF that reg-
ulates enzymes that, in turn, affect metabolism
of the small molecule. Not only are such FLs
much more common than purely transcription
FLs, they also function on faster timescales. In
E. coli, about 50% of all TFs bind small
molecules, thus forming a zoo of feedback cir-
cuits on the interface between the RN and the
metabolic network (3, 4).

A typical feedback motif associated with
small-molecule metabolism is shown schemat-
ically in Figure 5. A transcriptional regula-
tor (R) senses the intracellular concentration
of a particular small molecule (s) and regulates

transcription of the transport proteins (T ) us-
ing one FL, facilitating the influx of the small
molecule. With the second FL, R controls tran-
scription of enzymes (E) responsible for the
metabolism of the small molecule. The dynam-
ics of the intracellular concentration, s, of the
small molecule will be given by an equation of
the form

ds
d t

= σ T − γEs − s . 12.

Here, again we make a simplification, namely,
that the enzymes E and T are functioning in the
linear, unsaturated regime. It would be more
correct to use Michaelis-Menten terms, but this
does not change the qualitative behavior we de-
scribe below. We choose units of concentration
so that T and E lie between zero and unity, and
the rate of dilution due to cell growth is unity
(the last term above). σ is the extracellular con-
centration of the small molecule, and γ specifies
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the rate at which the molecule is metabolized
in units of the dilution rate due to cell growth.

γ is an important characteristic parameter
because it controls the ratio between the flux of
small molecules and the size of the intracellu-
lar pool: To begin, let us ignore the feedback,
i.e., set T and E fixed to unity. Then, in steady
state, the intracellular pool will be s = σ/(γ+1),
while the flux will be σ per cell generation. Typ-
ically, small metabolites are processed quickly,
and at any time only a minute fraction of the
small molecules are freely available in the cell,
compared with the flux. In other words, γ is
typically large. This implies that any change
in the uptake or usage of a small molecule is
quickly (within a timescale of the order genera-
tion time/γ) converted into a change in the in-
tracellular concentration of the small molecule.

For iron in E. coli, when growing in rich
medium, a cell will have 10,000 free or loosely
bound Fe2+ ions intracellularly, whereas the
flux is of the order of 106 per cell generation
(61). Therefore γFe ∼ 100. The biological im-
plication is that most of the iron in an E. coli
cell is in fact already integrated into various pro-
teins, which, in our framework, is the same as ir-
reversible consumption of iron. For nutritional
molecules like glucose, galactose and lactose,
the estimate for γ is much higher (61).

Different Ways of Combining Two FLs

In order to model the feedback from the in-
tracellular small-molecule concentration to the
transport and metabolic systems, we must in-
troduce equations for T and E to supplement
Equation 12. As explained above, feedback typ-
ically uses a transcriptional regulator that senses
the small-molecule concentration by forming a
complex with it.

Assuming that s is always much larger than
the regulator concentration, R, we obtain the
concentrations of free and bound R:

R f ree = Rtot 1
1 + s

; {Rs } = Rtot s
1 + s

, 13.

where Rtot is the total amount of regulator and s
is counted in units of the dissociation constant
of the {Rs} complex. The derivation of these

formulae is similar to the derivation of the frac-
tion of TFs bound to an operator site—after all,
the two situations are analogous because both
of them involve complex formations considered
to be in quasi-equilibrium.

The concentration of the active form of R,
denoted R∗, is either Rfree or {Rs} depending on
details of the regulation. In case R∗ is a repres-
sor, the dynamics of E is given by

d E
dt

= leak + capacity
1 + (R∗/KE )hE

− E, 14.

where again leak represents a small basal activ-
ity, and capacity is chosen so that E lies between
0 and 1. A similar equation governs the trans-
port system T. KE,T and hE,T will then parame-
terize the corresponding dissociation constants
and Hill coefficients.

Each FL in Figure 5 can be characterized
by a sign that denotes whether the loop im-
plements positive (+) or negative (−) feedback
on s. Note that a positive metabolism FL does
not mean an increase in the metabolic rate with
increase of s. Rather, it means exactly the oppo-
site: An increase of s leads to a decrease in the
metabolic rate, hence there is a positive feed-
back of the s level onto itself. In describing the
logic of the entangled loop motifs, we use the
notation of two signs; e.g., (+ −) means that
the transport loop is positive and the
metabolism loop negative.

There are four possible logical structures,
each of which can be implemented in two dis-
tinct but logically equivalent ways depending
on whether s inhibits or activates the regulator.
Overall, we find that there is no qualitative dif-
ference between the two implementations (33).
Each of the four structures constrains its func-
tion (Figure 6):

� (− −) Maintains homeostasis of intracel-
lular small-molecule concentration, i.e.,
exhibits relatively small variation of s with
σ; useful for essential molecules that are
harmful at high intracellular concentra-
tions, e.g., iron.

� (+ −) Differentiates between low- and
high-consumption states in a step-like
manner that strongly favors consumption
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s

σ

F
lu

x

Fashion

Collector

Consumer

Socialist Good for
resource homeostasis

Good for
nutrition molecules

Good for
flow homeostasis

Good for
accumulation

F
lu

x

σ

σ

s

σ

T R EE

T R EE

T R EE

T R

sσ

− −

EE

sσ

sσ

sσ

+ −

– +

+ +

Figure 6
Steady-state values of s or flux (σT = γEs + s ) as a function of σ, illustrated
schematically, for each of the four feedback systems. The black curve in each
graph corresponds to standard parameter values where the two loops are equally
strong. The boundary of the red (or blue) region is the behavior when E (T ) is
fixed at unity, i.e., when only the transport (metabolism) feedback loop is active.

sRNA: small
regulatory RNA

of highly abundant molecules; found in
many sugar-uptake systems.

� (− +) Homeostasis of small-molecule
flux. This motif is a subpart of the Fe-
uptake system in E. coli.

� (+ +) Generates robust bistability in
both the flux and the intracellular small-
molecule level.

The functional behavior of each two-loop
motif has tempted us to name them the socialist
(− −), the consumer (+ −), the fashion (− +),
and the collector motif (+ +), respectively (33).

In addition to steady-state behavior, each
motif exhibits a dynamic response to sudden
changes in resources. The response time is lim-
ited primarily by the relatively long time it takes
to stabilize to new levels of E and T. In general,
the timescale for complete recovery is set by the
decay times of E and T. As E and T are usually
abundant workhorse proteins, they are not ac-
tively degraded and decay times are therefore
typically set by dilution during one cell gener-
ation. For some particularly valuable metabo-
lites, the relaxation time may be modulated by
regulating decay times of E. An example of this
is found in the Fe-uptake system in E. coli, where
the role E is taken by mRNA and its degrada-
tion time is modulated by the small regulatory
RNA (sRNA) RyhB (49).

BEYOND MOTIFS

We can now return to some of the more com-
plex networks shown in Figure 1 to summarize
the lessons we have learned from simple models
of regulation and feedback.

The λ network essentially involves only
transcription regulation. Transcription is rela-
tively slow and thus not prone to fast feedback.
The λ circuit is a decision-making and decision-
locking network, where the initial choice is
made quite fast using the rapidly degraded CII
protein. The central memory maintaining the
initial choice is centered around the mutual re-
pression of CI and Cro (Figure 1a). The role
of this switch is to maintain bistability—one
state is lytic growth, the other is lysogeny. The
rest of the network involves unidirectional sig-
nal propagation with little feedback. One case
in which such a signal has been quantified is
induction of phage λ, where UV radiation acti-
vates RecA, which in turn destabilizes the CI-
Cro switch. Therefore, it facilitates excision of
phage DNA and production of sufficient holins
to induce lysis (Figure 1a) (2). Thus, even
pure transcriptional RNs are able to distribute
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information on distances comparable to the fa-
mous six degrees of separation suggested by
studies of human social networks (41). The cen-
tral switch in the core of the network works as
a way to focus signal propagation. A possible
role of the many positive FLs observed in ex-
tended RNs in living systems could be to direct
and focus signals to relevant parts of the net-
work. Adding switches seems to correlate with
robustness in a number of systems (37).

In contrast to the transcription-dominated
λ network is the p53 system of Figure 1c,
in which protein-protein binding plays a cen-
tral role. Posttranslational regulation generally
helps FLs to work on faster timescales than
transcription FLs do and are therefore useful
in stress response systems. Indeed, similar core
motifs are found in the heat shock and SOS
systems of E. coli (1, 30). The unfolded pro-
tein response system also uses mRNA manipu-
lation and translation attenuation to overcome
the stress (9). Strangely enough, not all stress
response systems establish homeostasis quickly.
In the p53 system, for example, oscillations with
a period of 2–4 h have been observed in re-
sponse to DNA damage (11). The cause of these
oscillations is likely to be an effective time de-
lay due to saturated degradation (56), but their
physiological function is unknown.

The third example in Figure 1b, the iron
utilization network, is a model system for study-
ing regulation of small molecules and sRNA.
Fast responses are possible because of the large
γ for Fe consumption and because sRNA reg-
ulation involves fast decay of key mRNA in the
Fe utilization pathway (49). If feedback were
not fast, small perturbations in gene expression
of transporters or enzymes would cause the in-
ternal pool of Fe to fluctuate wildly. In order to
maintain Fe homeostasis, the system uses mul-
tiple negative FLs. In fact, the core of the iron
regulation is the (− −) motif. The Fe system
involves an additional positive feedback on the
Fe utilization side; compare the FL involving
RhyB and mRNA with the FL involving Suf and
FeS in Figure 1b. The purpose of this mixing
of the socialist and the fashion motifs, schema-
tized in Figure 7a, appears to be prioritization

T R EE

sσ

+

+

–

T R

sσ

–

–

g

Consumer when needed

R2

Attempts to
open during
starvation

Shuts down at low s

Takes all at low s

Homeostasis with prioritization in starvationa

b

D

CC

Figure 7
Different ways to combine multiple feedback loops (FLs). (a) A subset of the
Escherichia coli Fe system of Figure 1b. The red FL controls transport. Blue and
purple FLs function to redirect the flux of small-molecule consumption to the
purple arrow when the extracellular concentration of the small molecule falls to
starvation levels. Here, the sign of the FLs is the primary determinant of the
behavior of this motif. (b) A subset of a typical sugar-uptake system, e.g.,
galactose regulation in E. coli. Again, the red FL controls transport. The blue
FL controls metabolism of the sugar. The purple FLs use a second
transcription factor to sense carbon starvation, and respond by increasing
import of galactose and its subsequent conversion to glucose.

during Fe depletion: When Fe gets scarce, neg-
ative feedback (socialist) decreases its utiliza-
tion, whereas positive feedback (fashion) tends
to strengthen the depletion by using the little
Fe that was left. As a result, Fe is channeled into
the FeS channel (by enzymatic conversion, E)
and away from the Fe-using proteins (which are
regulated by the sRNA RyhB) (40).

One must keep in mind, however, that with
an increasing number of FLs combined in one
system it will be harder to pinpoint clear princi-
ples connecting structure and function. One can

www.annualreviews.org • Simplified Models of Biological Networks 55

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

01
0.

39
:4

3-
59

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
N

at
io

na
l C

en
tr

e 
fo

r 
B

io
lo

gi
ca

l S
ci

en
ce

s 
(N

C
B

S)
 o

n 
03

/1
9/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



ANRV411-BB39-03 ARI 2 April 2010 9:52

see this already with more than two entangled
FLs. Consider sugar-uptake systems, which at
the core are consumer motifs but also have an
overarching negative FL that can increase E
and T production during carbon starvation (see
Figure 7b). In contrast to the iron three-loop
motif of Figure 7a, this motif uses a second
TF to sense the level of another small molecule
(cAMP, a measure of carbon starvation). Both
TFs regulate the same set of genes; therefore,
the logic of signal integration at the production
of E and T (51) is also a major determinant
of network behavior (as opposed to the iron

three-loop motif for which the main determi-
nant remains the signs of the FLs). The logic
of signal integration is determined by molecu-
lar details of network components and inter-
actions, e.g., the structure of promoters and
regulatory regions, the mechanism of transcrip-
tion regulation, and the interplay between TFs
(31). The challenge for the bottom-up approach
is to nevertheless extract principles governing
the behavior of multiple entangled FLs. Un-
derstanding such principles would emphasize
core parameters to be measured to predict the
function and dynamics of larger RNs.

SUMMARY POINTS

1. Feedback is an essential part of molecular networks. It allows the cell to adjust the
repertoire of functional proteins to current needs.

2. A FL is primarily characterized by its sign: negative feedback for maintaining homeostasis,
positive feedback for obtaining ultrasensitivity or multiple stable states of the cellular
composition.

3. Negative feedback can cause oscillations if signal propagation around the FL is sufficiently
slow. High Hill coefficients, additional positive FLs, or saturated degradation facilitates
oscillations in a negative FL.

4. Positive feedback can come from strong self-activation of a gene, from mutual repression
between proteins, or by autocatalytic processes. In all cases one can obtain bistability if
reactions involve some sort of cooperativity.

5. Metabolism of small molecules is characterized by a separation of scales. Typically, the
intracellular pool of available small molecules is much smaller than the total amount of
small molecules consumed during one cell generation.

6. Combinations of FLs in small-molecule uptake and metabolism can result in new behav-
ioral features that are significantly different from a simple sum of the behaviors of single
loops.

FUTURE ISSUES

1. How often are simplifying assumptions (e.g., quasi-equilibrium of TF-operator binding)
good approximations, in practice, in living cells?

2. How should one characterize RNs with multiple entangled FLs?

3. To what extent is positive feedback used to focus signals in RNs and thereby facilitate
modularity of the network?

4. How important is the role of physical space in modulating the behavior of a RN?
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