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Abstract
Oscillations play an important physiological role in a variety of biological systems. For
example, respiration and carbohydrate synthesis are coupled to the circadian clock in
cyanobacteria (Ishiura et al 1998 Science 281 1519) and ultradian oscillations with time
periods of a few hours have been observed in immune response (NF-κB, Hoffmann et al 2002
Science 298 1241, Neson et al 2004 Science 306 704), apoptosis (p53, Lahav et al 2004 Nat.
Genet. 36 53), development (Hes, Hirata et al 2002 Science 298 840) and growth hormone
secretion (Plotsky and Vale 1985 Science 230 461, Zeitler et al 1991 Proc. Natl. Acad. Sci.
USA 88 8920). Here we discuss how any bistable system can be ‘frustrated’ to produce
oscillations of a desired nature—we use the term frustration, in analogy to frustrated spins in
antiferromagnets, to refer to the addition of a negative feedback loop that destabilizes the
bistable system. We show that the molecular implementation can use a wide variety of
methods ranging from translation regulation, using small non-coding RNAs, to targeted
protein modification to transcriptional regulation. We also introduce a simple graphical
method for determining whether a particular implementation will produce oscillations. The
shape of the resulting oscillations can be readily tuned to produce spiky and asymmetric
oscillations—quite different from the shapes produced by synthetic oscillators (Elowitz and
Leibler 2000 Nature 403 335, Fung et al 2005 Nature 435 118). The time period and
amplitude can also be manipulated and these oscillators are easy to reset or switch on and off
using a tunable external input. The mechanism of frustrated bistability could thus prove to be
an easily implementable way to synthesize flexible, designable oscillators.

1. Introduction

Oscillations and bistability in biological systems have been the
focus of numerous studies. In order to produce oscillations the
system must necessarily contain a negative feedback loop [10].
For specific implementations of a negative feedback loop, such
as the repressilator or NF-κB signalling, stability analysis
can suggest which parameter values actually give oscillations
[8, 11, 10]. However, such analysis is usually cumbersome
and the results are hard to generalize to other implementations
of negative feedback or more complex networks. Bistable
systems are quite common in biological systems, particularly
in development where they are used as switches and memory
elements [12]. In contrast to oscillators, bistable systems must
necessarily contain a positive feedback loop [13, 12]. Several

robust bistable systems have been synthetically constructed
[14–19]. Figure 1(left) shows the simplest: a self-activating
protein [15, 16], A, which can stably exist in either a low
or a high concentration state. This bistable system can then
be ‘frustrated’ by adding a negative feedback loop through
another protein B (see figure 1, right). When the underlying
bistability pushes A towards the high state, more B is produced,
thereby decreasing A, and vice versa for the low state.

We have borrowed the term ‘frustration’ from the physics
of antiferromagnets, wherein two adjacent magnetic spins
prefer to point in opposite directions: if one is ‘up’, the
other is ‘down’—this is a bistable system. Now if another
spin interacts with these two (this happens, for instance, in
triangular or diamond lattice antiferromagnets) then the third
spin cannot decide whether to be up or down, which also
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Figure 1. Examples of a one protein system with transcriptional
self-activation and a frustrated system based on it. Also shown
schematically is their respective behaviour—bistability for the
former and oscillations for the latter.

destabilizes the other two spins: they are termed ‘frustrated
spins’ [20]. In analogy to this, we call the motif in figure 1
(right) a frustrated bistable system. Such a combination of
a positive and a negative feedback loop forms the core of
several models of synthetic and naturally occurring oscillators
(in different contexts termed either activator–inhibitor, or
relaxation, or hysteresis oscillators) [21–27]. Our analysis
adds to this by showing that the general mechanism of
frustrated bistability is a very flexible way to make synthetic
oscillators with designed properties, and by providing a simple
graphical method that can be used to determine the conditions
for oscillations based on experimental data alone.

2. Basic model of frustrated bistability

To illustrate frustrated bistability we start with the simplest
bistable model system, consisting of a single protein with
transcriptional self-activation, describing the dynamics of its
concentration A by a differential equation:

dA

dt
= α

b + A2

1 + A2
− A. (1)

Here time is measured in units of the lifetime of the protein
and the unit of concentration has been chosen such that half-
activation occurs at A = 1 (see appendix A for the meaning
of the terms and parameters). In these units, then, α is the
maximum rate of production of A and αb is the basal rate.

Bistability exists for a certain range of values (see
appendix A) of the tunable parameter α, which can be
considered an external input. For instance, in the bistable
lactose transport system, the tunable parameter is the rate of
transcription from the lac promoter, which is varied by
changing the amount of IPTG in the system [17]. We then
add frustration by making this input depend on a second
protein B which represses transcription of A and is in turn

transcriptionally activated by A (see figure 1, right):

dA

dt
= α

1 + (B/K)2
×

(
b + A2

1 + A2

)
− A,

dB

dt
= γA − γB.

(2)

γ is the ratio of the half-life of A to that of B. Note that we
have chosen the units of B such that its production rate constant
is equal to the degradation constant γ (this is done only for
simplicity). K then, in these units, is the Michaelis constant
that sets the strength of repression of A by B. (Incidentally,
the choice of Hill coefficient 2, used in the repression of A by
B, is not essential. See appendix B for oscillations produced
with Hill coefficient equal to unity.)

In the absence of this feedback (i.e., if B is held fixed), the
system is bistable for a certain range of B values, as shown in
figure 2(a) (red lines). When the frustration is introduced the
system oscillates, as shown in figure 2(b).

The process producing the oscillations is particularly
clear when the protein B has a much longer half-life than
A (i.e., when γ is small). In this case, there are two clearly
separated timescales: B responds to changes in A slowly,
while A responds relatively quickly. Thus, A is always in
‘equilibrium’, quickly moving to either the high or the low
state depending on the value of B. Starting from low B and
low A,A quickly increases to the high state. This results in
B slowly increasing, and A following the red line marking the
high state in figure 2(a). When B becomes sufficiently large,
however, the high state ends and A quickly jumps to the low
state. Then, B starts to decrease slowly because its production
rate drops. As B decreases, A now follows the red line marking
the low state, until B goes below the lower threshold. Then
A jumps to the high state again and the cycle continues. This
trajectory is shown in figures 2(a) (blue curve) and 2(b).

3. Graphical method for determining conditions for
oscillations

A simple graphical method can be used to deduce which
parameter values give oscillations. For the frustrated bistable
system of equation (2), the activation of B by A, as a
function of A, can be plotted on the same plot as the bistable
solutions, and is shown by the dashed purple line in figure 2(a)
(mathematically, it is the ‘nullcline’ dB/dt = 0, which in this
case is simply the straight line A = B on a linear plot). To
get oscillations, this activation curve must pass between the
low and high state curves without intersecting them. If it does
intersect, the system will not oscillate and instead eventually
settle into a steady state (see appendix C for more details).
Note that both the bistable curves and the activation curve can
be determined entirely experimentally. The bistable curves
are determined by tuning the external input and measuring
the steady-state concentration of the protein as described,
for example, in studies of the lactose transport system and
various synthetic switches [14–18]. The activation curve can
be determined in vitro by similarly measuring the steady-state
concentration of B when different amounts of A are supplied.

This graphical method is completely general and works
for any implementation of frustrated bistability. For instance,
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Figure 2. Frustrated bistability in action. (a) Solid red lines show the stable steady-state concentrations of the self-activating protein A in
the absence of frustration, when B is fixed at different values. The activation of B by A, from equation (2), is shown by the purple dashed
line. In order to get oscillations the activation curve must pass between the red low and high state curves without intersecting them. The
blue curve with arrows is the oscillating trajectory when frustration is added, when the ratio of half-life of A to half-life of B is γ = 0.01.
Other parameters were set to K = 0.07, α = 225, b = 0.01. (b) Time series of A (blue) and B (green) for the oscillating trajectory shown in
(a). (c) Alternative frustrated bistable system, where the frustration is introduced as described by equation (3). With parameter values
chosen to be K = 0.25, α = 0.1, γ = 0.01, b = 0.01, we obtain the blue oscillating trajectory in phase space. For these parameters the
dB/dt = 0 curve (purple dashed line) passes between the low and high state curves. (d) Corresponding time series of A (blue) and B (green)
for the oscillating trajectory shown in (c).

in contrast to the previous example, the frustration could be
introduced via a protein B that is repressed by A and in turn
activates A:

dA

dt
= B

(
b + A2

1 + A2

)
− A.

dB

dt
= α

1 + (A/K)2
− γB.

(3)

Figure 2(c) shows how to use the graphical method to find
oscillations in this system. A more appropriate name for the
dB/dt = 0 curve, in this case, is ‘repression curve’ as it
decreases as A increases, but the idea is the same—to obtain
oscillations the curve must pass between the high and low state
curves without intersecting them.

4. Flexibility in the molecular implementation of
frustration

The same bistable system can be frustrated by a number
of different molecular mechanisms (two of which are

demonstrated in figure 2). The only necessity is the existence
of a net negative feedback from A to itself, via B. In all
cases, the graphical method can be used to determine the
requirements for oscillations.

The mechanism of frustrated bistability also works if B
acts on A post-transcriptionally. We have examined three
broadly different ways of implementing the negative feedback
loop, involving (1) transcription regulation, (2) translation
regulation and (3) degradation or irreversible modification of
A, mediated by B:

(1) Transcription regulation: this is the case discussed in the
two examples of figure 2.

(2) Translation regulation can be implemented in several
ways. For instance, a small non-coding RNA can be
used that is anti-sense to the part of the mRNA sequence
of A. In the iron homeostasis system of E. coli, an
sRNA called RyhB acts like this, and the RyhB–mRNA
complex is then rapidly degraded [28, 29]. Other
sRNAs may catalyze degradation of target mRNA without
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Figure 3. Different shapes of oscillations that can be produced by frustrated bistability. The central colour–contour plot shows how the time
period of the oscillations varies as a function of γ , the ratio of half-life of A to B, and α, the maximal production rate of A. Insets show the
time series for oscillations with varying levels of spikiness, symmetry, time period and amplitude, produced by choosing γ and α values
appropriately.

themselves getting destroyed. Both ways can be used to
implement repression of A by B (see appendix D for a
specific example of frustrated bistability using translation
regulation).

(3) B could directly interact with A and target it for
degradation, for instance by tagging it with a ubiquitin
molecule, which is how Mdm2 acts on p53 [30].
Alternatively, it could sequester A or simply modify it,
for instance by phosphorylation, either way preventing it
from acting as a transcription factor. This function could
be done with or without recycling of B; both ways provide
sufficient frustration.

It is also irrelevant whether the bistability is produced
by a direct self-activation, or an indirect one (for instance
using two mutually repressing proteins [14], like CI and Cro
in lambda phage [19 ,31]). One can also use translation or
other post-transcriptional regulation to produce the bistability.
Again, what is important is the existence of a positive feedback
from A to itself that can produce bistability, not the particular
molecular mechanism used.

5. Varying the shape of oscillations

Figure 3 shows a few different shapes of oscillations that can
be designed from the basic model by varying two relevant
parameters: the ratio of the half-life of A to B, γ , and the
maximal production rate of A, α. Based on figure 3 we can
list a few guidelines for engineering oscillations of a specific
nature:

(1) Spikiness: this is mainly controlled by the ratio between
the half-lives of A and B. Decreasing the stability of
B (increasing the value of γ ) makes the oscillations

smoother. The value of γ can be readily adjusted by
proper tagging of the proteins [32].

(2) Symmetry: the maximal production rate of A affects
symmetry—increasing α makes the oscillations more
asymmetric. α can be increased for example by using a
stronger promoter, enhancing the efficiency of translation
initiation, or by increasing mRNA stability.

(3) Time period: the time period T of the oscillations is
strongly affected by the ratio between the half-lives of
A and B; deepening colours as γ is decreased indicate the
increase of T.

(4) Amplitude: the amplitude of the oscillations is also
controlled by the ratio of the half-lives of A to B: the
larger the value of γ , the smaller the amplitude.

These properties are coupled because a single parameter
can affect several properties simultaneously. For instance,
symmetry is easy to achieve in combination with smoothness;
it is harder to get a symmetric spiky oscillation. However,
by modifying combinations of parameters one can get quite a
variety of different oscillations, as shown in figure 3. Many
of these shapes are quite different from those produced by
existing synthetic oscillators. In particular, spiky oscillations
are observed in many natural situations (e.g., p53 [4], NFkB
[3], growth hormone [6] oscillations) but not in the synthetic
repressilator [8] or metabolator [9].

5.1. Modifying the underlying bistable system

Tinkering with the underlying bistable system is another way
of changing the shape to the desired one. For instance, the
amplitude of the oscillations clearly depends on how far apart
the bistable solutions are. Thus, using a stronger promoter
or one with a lower basal production level, is a good way of
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Figure 4. Altering the bistable system. The amplitude of the
oscillations increases as the separation between the low and high
states is increased, by decreasing the parameter b, which sets the
basal level of expression of A.

increasing the amplitude. Figure 4 shows that the amplitude
of oscillations increases as the basal level, b, is decreased in
equation (2).

Another example: the spikes in the system above are
quite sharp because the concentration of A in the high state
increases quickly as B increases. To get broader peaks one
simply needs to make this dependence weaker. One possibility
is to use a protein A that activates itself at low concentrations
but represses itself at high concentrations. This could be done,
for example, by a dual regulator like CI which behaves exactly
like this by using multiple binding sites with different affinities
[31].

6. Controlling the oscillator

An important issue for synthetic oscillators is the ability to
control them. It should be possible to easily switch on or
off the oscillator as well as to reset it. Frustrated bistable
systems allow these functions to be easily implemented. An
external signal that switches off any of the interactions or the
expression of either protein [18] can be used to turn on or
off the oscillations. Figure 4(a) shows the effect. This could
also be done by introducing another protein that binds to and
degrades B thereby changing its half-life. With such a set-up,
a pulse-like input signal will reset the oscillations, as shown
in figure 4(b). If it is also necessary to make the switching
by a pulse like signal, this can be achieved simply by passing
the signal through another bistable module, which would then
retain the ‘memory’ of the pulse in the external input signal
even after the signal has decayed.

7. Conclusions and outlook

The main points of this paper are summarized as follows:

• A convenient and flexible way of generating oscillations
in genetic circuits is by modifying a bistable system
by adding a destabilizing negative feedback loop (see
figure 1). We call this ‘frustration’ in analogy with
magnetic spin systems.

• A graphical method can be used to determine parameter
values which will result in oscillations, for such frustrated
bistable systems (see figure 2). The method is very
general and works for many alternative implementations
of frustration.

• Finally, such frustrated systems can be easily controlled,
and can be tuned to produce a variety of different shapes
of oscillations, in particular spiky, asymmetric ones (see
figures 3–5).

What makes such frustrated bistable systems particularly
attractive for use as synthetic genetic oscillators is the
flexibility in implementing the bistability and the frustration.
We showed that both transcriptional and translation regulation
could be used to implement the interactions that result in
the bistability and the frustration. Concerning the latter,
Isaacs et al [33] has shown how it is possible to insert a
short cis sequence in a target gene, upstream of the ribosome
binding site, and design a small non-coding RNA that can
bind to this sequence through base-pair matching, thereby
activating translation of the target. Similar techniques could
be used to construct small RNAs that repress translation of
specific mRNAs (as is the case with many naturally occurring
regulatory small RNAs, such as RyhB [28, 29]). Such
translation regulation could be used both in the bistable
part and in the negative feedback loop of a synthesized
frustrated bistable system. The subtle differences in dynamical
behaviour produced by using translation regulation [34, 35]
could be used to generate oscillations different from those of
synthetic oscillators based purely on transcription regulation,
such as the repressilator. In addition, using translation
regulation achieves specificity of regulation without altering
functional properties of the proteins being used in the system.
This is very useful when the synthetic oscillator is intended to
regulate other downstream genes.
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Appendix A. One-protein bistable system

We model the dynamics of the concentration of a self-
activating protein, A, using the following differential equation:

dA

dt
= ν

b + (A/KA)h

1 + (A/KA)h
− A

τ
. (A.1)

The first term models cooperative transcriptional self-
activation with a Michaelis constant KA and Hill coefficient h,
while b determines the basal expression level. ν is the maximal
rate of production of A and τ is its average lifetime. Several
parameters can be eliminated by measuring time in units of τ ,
and concentration of A in units of the Michaelis constant KA:

dA

dt
= α

b + Ah

1 + Ah
− A. (A.2)
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strength α. For α < 2 the system can only be in the low state, where
A ≈ 0.01α. For α > 5 the system can only be in the high state,
where A ≈ α. For 2 � α � 5 both states are stable, i.e., the system
is bistable.

α is then the maximal rate of production of A, in units of
KA, per unit time (the unit of time is the lifetime τ ). Now all
parameters and variables are dimensionless.

This system is bistable for some range of α, provided
h � 2. For example, as default values, we fix b = 0.01, h = 2.
Then the system is bistable for 2 � α � 5: in the ‘low’ state,
A ≈ bα, while in the ‘high’ state A ≈ α, thus there is a 100-
fold separation between the low and high states. For α < 2
only the low state exists, and for α > 5 only the high state
exists (see figure A1).

Appendix B. Frustrated bistable system with Hill
coefficient equal to unity

Earlier, we used a Hill coefficient 2, in the repression of A by
B, to illustrate frustrated bistability. Figure B1 shows that the
system with that Hill coefficient set to 1 also gives oscillations.

The equations in that case are

dA

dt
= α

1 + B/K
×

(
b + A2

1 + A2

)
− A.

dB

dt
= γA − γB.

(B.1)

Compared to figure 2, the bistable curves are different therefore
the same parameter values that worked for the previous case
do not give oscillations here. However, the graphical method
can be applied in this case also to determine suitable parameter
values (see figure B1(a)).

Appendix C. Brief proof of the graphical method

When γ is small, the oscillating trajectory of the system
follows the bistable solutions closely (see figures 2 and B1).
Therefore it is clear that the system will oscillate if

(1) when the trajectory is at the end of the low state, B
decreases further (so A is pushed to the high state);

(2) when the trajectory is at the top of the high state, B
increases (so A is pushed to the low state).

That is,

(1) dB/dt < 0 when the trajectory is at the end of the low
state;

(2) dB/dt > 0 when the trajectory is at the end of the high
state.

Now, along the activation curve dB/dt is exactly zero—
this is how the activation curve is defined. In other words, the
activation curve separates the region where dB/dt < 0 (the
region above it) from the region where dB/dt > 0 (below it).
Thus, the above criteria for oscillations translate to

(1) the activation curve must pass below the end of the low
state;

(2) the activation curve must pass above the end of the high
state.

6
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Figure B1. Frustrated bistable system described by equation (B.1), with parameter values chosen to be K = 0.02, α = 50,
γ = 0.01 and b = 0.01. (a) Oscillating trajectory (blue) in phase space. For these parameters the dB/dt = 0 curve (purple dashed lines)
passes between the low and high state curves. (b) Corresponding time series of A (blue) and B (green).

For larger γ , these criteria are necessary for obtaining
oscillations, but not sufficient—indeed, as seen in figure 3, for
large enough γ no oscillations are observed.

Appendix D. Frustration via translation regulation

The basic model of frustrated bistability, described earlier,
introduced frustration through a protein B which repressed
transcription of A. If instead, B regulated translation of A, for
instance by catalyzing the degradation of the mRNA of A, the
equations would be

dA

dt
= αAm − A.

dAm

dt
= γm

(
b + A2

1 + A2

)
− δAmB − γmAm.

dB

dt
= γA − γB.

(D.1)

Here, γm is the ratio of the half-life of the mRNA to that of the
protein. Am is the concentration of mRNA of A measured in
units such that the production rate of A is α per unit of mRNA,
per lifetime of A. The δAmB term models the binding and
degradation of the mRNA–B complex. To understand how the
frustration works in this case, consider the typical case where
the half-life of the mRNA is much less than that of the protein.
In that case, the mRNA dynamics occurs on a much faster
timescale than the protein dynamics and can be considered to
be in equilibrium. That is, dAm/dt ≈ 0. The equations then
simplify to

dA

dt
= α

1 + δB/γm

×
(

b + A2

1 + A2

)
− A.

dB

dt
= γA − γB.

(D.2)

This is identical to the previous example, equation (B.1), with
γm/δ playing the role of K. To achieve the same oscillations
as in figure B1 we could choose, for example, γm = 10 and
δ = 500.

Glossary

Bistable system: a bistable system is one that can exist
stably, for the same parameter values, in two different states,
with different steady-state levels (often, one low and one
high) of protein concentration, or gene expression, or
whatever variables characterize the system. Whether the
system enters one or the other state depends on what initial
values these variables start out with. Bistability has been
observed, for example, in the lactose transport system in
E. coli [17] and silencing of the mating-type regions in S.
pombe [36].

Frustration: in the physics of antiferromagnets, interacting
magnetic spins like to align in opposite directions. However,
in a triangular lattice, for example, there is no configuration
of spin directions that can satisfy this condition for each
pair—the third spin of the triangle destabilizes the other two.
Such a situation is termed ‘frustration’ and the spins are
called ‘frustrated spins’ [20].

Synthetic genetic networks: these are artificially
constructed networks that combine genes and regulatory
elements from cells in combinations that are not known to
occur naturally in biological systems. The goal of this is to
design and construct networks with a desired behaviour (for
example bistability [14–18] or oscillations [8, 9]), and also,
thereby, to increase our understanding of naturally occurring
gene regulatory networks.

Spiky oscillations: oscillations are often visualized as
being smooth and sinusoidal. In biological systems, however,
observed oscillations are often quite spiky. That is, they are
characterized by short, sharp increases in protein
concentration or gene expression, separated by long periods
of stasis. Such spiky oscillations have been seen, for
example, in hormone production and NF-κB signalling (the
term ‘spiky oscillations’ was introduced to describe the latter
in [11]).
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