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Abstract
The microenvironment influences gene expression so that the behavior of a cell is largely determined
by its interactions with the extracellular matrix, neighboring cells, and soluble local and systemic
cues. We describe the essential roles of context and organ structure in directing mammary gland
development and differentiated function and in determining the response to oncogenic insults,
including mutations. We expand on the concept of “dynamic reciprocity” to present an integrated
view of development, cancer, and aging and posit that genes are like the keys on a piano: Although
they are essential, it is the context that makes the music.
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INTRODUCTION
The function of an organ relies upon the organ’s constituent cell types and overall organization.
It is the obvious uniqueness of this structure that distinguishes, e.g., a breast from a kidney and
that directs the cells within the former to make milk and within the latter to filter blood and
make urine; this is so despite the fact that they share an identical genome. But whereas tissue
specificity is a certainty, there is little compelling evidence for the concept of terminal
differentiation except in organs in which differentiation is defined by cell death or loss of nuclei.
The instability and plasticity of the differentiated state (Bissell 1981, Blau & Baltimore
1991) allow phenotypic evolution to occur over the lifetime of a cell, tissue, organ, and
organism to ensure adaptability and survival. The differentiated phenotype accomplishes this
while being both (a) robust (stable to minor perturbations; the breast almost never turns into a
kidney in vivo) and (b) labile, or responsive to external influences. With regard to the latter
characteristic, given the appropriate cues, a resting mammary gland can easily be coaxed into
a spectacular reversible functional differentiation program during pregnancy, corneal
epithelium can be induced to sprout feathers or hair (Coulombre & Coulombre 1971, Ferraris
et al. 1994), and aggressive carcinoma cells can be tamed to form normal tissues by changing
their microenvironment (Mintz & Illmensee 1975) or to revert to a normal phenotype simply
by changing microenvironmental signaling (Weaver et al. 1997, 2002). The interactions
between a cell and its surroundings thus determine its pattern of gene expression and resultant
differentiated phenotype despite the fact that the blueprint of the genome does not change. Here
we describe what we know about the process of tissue specificity from the point of view of the
mammary gland (our experimental organism), but the fundamentals of the issues discussed
extend far beyond this organ. In the end, the unit of functional differentiation is the organism
itself.
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TISSUE ARCHITECTURE IS BOTH A CONSEQUENCE AND A CAUSE (THE
END AND THE BEGINNING)
Dynamic Reciprocity Redux

The structure of a tissue or organ is critical for its function. Loss of tissue architecture is a
prerequisite for, and one of the defining characteristics of, most cancers. Conversely, normal
organ architecture can act as a powerful tumor suppressor, preventing malignant phenotypes
even in cells stricken with gross genomic abnormalities (Mintz & Illmense 1975, Howlett et
al. 1995, Weaver et al. 1997, Wang et al. 2002, Kirshner et al. 2003). But if organ function and
homeostasis are driven by organ architecture, and if every cell in every organ carries the same
genetic information, then how are tissue-specific form and function achieved? Elegant work
by early developmental biologists, some of which is described below, inspired us to postulate
that tissue-specific function is achieved by interactions between the cell and its surrounding
extracellular matrix (ECM), a model dubbed dynamic reciprocity (Bissell et al. 1982).
According to this model, the dynamic bidirectional cross talk from the ECM with the cell
membrane (Bornstein et al. 1982) is extended to the broad realm of gene expression by
connecting ECM–ECM receptor interactions to the cytoskeleton and to the nuclear matrix and
chromatin and back again (reproduced in Figure 1a). An important feature of this model was
that it took the then-evolving work of the role of ECM in development as that of a possible
scaffold to a view of ECM as an integral determinant of tissue specificity itself. Most
importantly, the work of a number of laboratories has provided substantial evidence for the
essential components of the model in the intervening years. Although the original depiction of
dynamic reciprocity dealt mainly with the role of the ECM, the cellular microenvironment also
clearly includes adhesive and soluble paracrine signals from neighboring cells, distant tissues,
and systemic cues (see Figure 1b for updated model). As such, organ structure and consequently
organ function are determined by the dynamic and reciprocal interactions between the organ’s
constituent tissues, the structure and function of which are determined by the dynamic and
reciprocal interactions between the cells and ECM comprising a given tissue. And lest we
forget, each organ is choreographed to function in a dynamic scenario with other organs and
is of little use when removed from the greater context of the organism.

Tissue Interactions in Development
Every organ is composed of tissues derived from the embryonic germ layers: endoderm (which
becomes epithelium of the lungs and digestive organs), mesoderm (which generates bone,
muscle, and mesenchymal connective tissue), and ectoderm (which gives rise to the nervous
system and epithelium of the skin and its derivatives, including the mammary gland). Epithelial
and mesenchymal components interact during development to direct tissue morphogenesis (the
physical creation of normal tissue architecture) and differentiation (acquisition of tissue-
specific functions). That tissue development is not cell autonomous but is instead instructed
by the surrounding environment was hypothesized as early as 1817 (Pander 1817). However,
it was first demonstrated a century later by the elegant experiments of Ethel Browne, and Hans
Spemann and Hilde Mangold, who used hydra and amphibian embryos, respectively (Browne
1909, Spemann 1918, Spemann & Mangold 1924). The famous organizer experiment showed
that certain regions of the embryo could direct the development of adjacent groups of cells into
specific tissues (Spemann 1918, Spemann & Mangold 1924).

These early studies preceded a flurry of work over the next 80 years, demonstrating in many
systems that cells derived from the different germ layers carry on an extensive cross talk to
direct tissue development. Studies of vertebrate skin (Figure 2a) revealed that the identity,
location, and pattern of development of ectodermal epidermal appendages (e.g., hair follicles
in mammals and scales and feathers in birds) are determined by the dermis (a mesodermal
derivative). Using tissue recombination techniques developed in the 1950s, Saunders and
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colleagues found that thigh mesoderm inserted beneath the ectoderm of an embryonic chick
wing induced the wing to form leg feathers instead of flight feathers (Cairns & Saunders
1954, Saunders & Gasseling 1968). Chimeric feathers were occasionally found at the border
of the graft site, demonstrating the specificity of the mesodermal signal. In similar studies
recombining skin tissues from chick and duck, duck mesoderm instructed chick ectoderm to
form feathers anatomically shaped like those of a duck; the converse was also true (Dhouailly
1967, 1970). In perhaps the most striking example, mesoderm from a mouse (which normally
would induce mouse ectoderm to form hair follicles) was combined with corneal epithelium
from a chick (which normally would become an appendage-free transparent surface), resulting
in feather development (Coulombre & Coulombre 1971).

Ectoderm can play an instructive role during development as well. In vertebrates, the
mesenchyme of the outgrowing limb is surrounded by a dorsal rim of ectoderm, the apical
ectodermal ridge (AER). When the AER is removed, the limb fails to develop properly; when
the AER covering the eventual wing is grafted onto the stump of a growing leg, the region
develops wing parts (Saunders 1948). The mechanisms underlying induction by AER, skin
mesoderm, and Spemann’s organizer have been studied extensively (reviewed recently in
Wolpert 1998, Capdevila & Izpisua Belmonte 2001, Niehrs 2004) and involve common
paracrine signaling molecules, including members of the fibroblast growth factor, transforming
growth factor (TGF)-β, Wnt, and hedgehog families.

The Impressionable Epithelium
Some of the clearest examples of the importance of epithelial-mesenchymal interactions in
morphogenesis and differentiation have come from recombination experiments using isolated
tissues from the mammary gland and other organs (Figure 2b). Whereas mammary epithelium
recombined with mammary mesenchyme develops a typical mammary tree, recombination
with salivary gland mesenchyme generates structures resembling the salivary epithelial tree
(Kratochwil 1969, Sakakura et al. 1976). Conversely, mammary mesenchyme can induce
epithelial cells from other tissues to build a lactation-competent gland (Cunha et al. 1995).
These experiments demonstrated that even adult cells retain a capacity for alternative modes
of morphogenesis and differentiation. The importance of reciprocal interactions between
epithelium and mesenchyme and the identification of the molecular mediators have now been
demonstrated for several organs, including the lung, kidney, prostate, and salivary and
mammary glands (reviewed in Hieda & Nakanishi 1997, Cardoso 2001, Marker et al. 2003,
Parmar & Cunha 2004, Yu et al. 2004). The molecular players involved in epithelial-
mesenchymal interactions during mammary gland development are detailed in Table 1; similar
roles for many of these molecules have been found in the development of other organs.

Tissue interactions are thus a major source of information regulating tissue-specific activation
of genes leading to the proper development of cells, tissues, and organs (Wessells 1977). As
an example, Figure 3 depicts reciprocal interactions between the cells and tissues that comprise
the adult mammary gland and between the mammary gland and other organs. As alluded to
above and discussed in depth below (see section on Three-Dimensional Models of Mammary
Gland Development), the morphogenesis of the mammary epithelium is regulated by its
interactions with mesenchymal cells. During branching morphogenesis of mammary and other
organs, nerves, blood vessels, and epithelium grow out simultaneously in intimately interacting
trees (Coughlin 1975, Gebb & Shannon 2000). The details of these presumed communications
have yet to be uncovered for the mammary gland, but in skin, peripheral nerves determine the
pattern of arterial branching by stimulating localized secretion of vascular endothelial growth
factor (VEGF) (Mukouyama et al. 2002). Additionally, the kinetics of development and
functional differentiation (milk synthesis and secretion) are controlled by influences external
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to the epithelium, including pituitary and ovarian hormones, and mechanical cues from
suckling at the nipple, which activates contraction of the myoepithelial cells.

Of Terminal Differentiation and Molecular Vitalism
In this age of genomics and gene expression arrays, one could easily accept the argument that
a cell’s status (for example, its identity and the identity of the tissue and organ in which it
resides) could be inferred mainly by examining the genes that it expresses. Although this may
very well prove to be true, it is a fallacy to argue that therefore it is the genes themselves that
determine and regulate the pattern of gene expression. Additionally, are the genes expressed
the sole determinant of the status of a cell or how it may behave? The data from tissue
recombination studies suggest that even differentiated cells retain a high degree of flexibility,
or as Marc Kirschner and colleagues described so eloquently, an “interconvertible multi-
statedness is a key aspect of multicellular self-organization” (Kirschner et al. 2000). This
flexibility is apparent during tissue regeneration and repair and to a remarkable degree in
organisms, such as the newt, that can regenerate entire organs and limbs even in the adult
animal. That a differentiated cell (meaning, for example, a cell that has become a hepatocyte
and functions within the context of the liver) can even respond to cues that direct the
development of a different tissue to express muscle myosin (Chiu & Blau 1984, Blau et al.
1985) should have dispelled the notion that the process of differentiation locks cells into a
particular fate without recourse. Indeed, cultured cells that invariably lose their differentiated
phenotypes when grown in a petri dish can be induced to form both normal and diseased tissue
structures when returned to the appropriate environment in vivo (DeOme et al. 1959, Daniel
& DeOme 1965). Similarly, cells in culture can regain their differentiated phenotypes if the
microenvironment of the culture vessel is tailored to mimic the cell’s normal microenvironment
in vivo (reviewed in Bissell 1981 and below).

THREE-DIMENSIONAL MODELS OF MAMMARY GLAND DEVELOPMENT:
RATIONALE AND EXAMPLES
The Structure of the Human Breast

The mammary gland is an excellent example of an organ, the development and differentiation
of which require dynamic and reciprocal signaling between cells and their (micro)environment.
Unlike other organs, the majority of mammary gland development occurs postnatally during
puberty. In females, a surge of steroid hormones induces the anlage (the mammary ductal
rudiment present at birth) to undergo a burst of branching morphogenesis. The mammary gland
is composed of two tissue compartments, the ectodermally derived epithelium and the
mesodermally derived stroma (depicted schematically in Figure 3). The bilayered epithelial
tree consists of a central layer of luminal epithelial cells surrounded by a layer of myoepithelial
cells and basement membrane (BM), a specialized laminin-rich form of ECM (lrECM). In
humans, the epithelium (both luminal and myoepithelial) is surrounded by a loose intralobular
connective tissue stroma and a denser interlobular stroma, which together account for 80% of
the volume of the resting breast and house nerves, blood vessels, and lymphatics (Drife
1986). The ducts terminate in lobular structures known as terminal ductal lobular units
(TDLUs), which give rise to alveolar buds during pregnancy that become secretory alveoli
during lactation. Luminal epithelium is induced during lactation to produce and vectorially
secrete milk into the ducts; milk is squeezed through the mammary tree to its opening at the
nipple by concerted contraction of myoepithelial cells induced by suckling. Once lactation is
terminated by cessation of suckling, the gland remodels during involution by the concerted
action of hormones, metalloproteinases, and molecules involved in apoptosis (Talhouk et al.
1991,1992; for a recent review, see Hennighausen & Robinson 2005).
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Signaling by the Microenvironment
Interactions between luminal epithelial cells, ECM and its remodeling enzymes, and the other
cells of the gland are critical for development and differentiation (Fata et al. 2004, Parmar &
Cunha 2004). Myoepithelial cells secrete laminin-1 to build the BM that surrounds the
epithelial compartment (Gudjonsson et al. 2002), direct the polarization of luminal epithelial
cells (Runswick et al. 2001, Gudjonsson et al. 2002), and regulate morphogenesis of the ductal
tree (Niranjan et al. 1995). Loss of these activities correlates with breakdown of normal
mammary architecture and leads to tumor progression (reviewed in Adriance et al. 2005).
During branching morphogenesis at puberty (Witty et al. 1995, Fata et al. 1999, Wiseman et
al. 2003), and later during involution of the gland upon weaning (Talhouk et al. 1992, Lund et
al. 1996), extensive breakdown and remodeling of the ECM occur via precise expression/
activation/inhibition of matrix-degrading enzymes, especially members of the matrix
metalloproteinase (MMP) family. Inappropriate expression of MMPs causes breakdown of the
BM, disrupting functional differentiation (milk protein expression) of luminal epithelial cells
(Sympson et al. 1994, Witty et al. 1995) and, in the case of MMP-3, leading to epithelial-to-
mesenchymal transition (EMT), apoptotic cell death, genomic instability, induction of a
reactive fibrotic stroma, and eventually tumor formation (Sympson et al. 1995; Alexander et
al. 1996; Lochter et al. 1997; Thomasset et al. 1998; Sternlicht et al. 1999, 2000; Radisky et
al. 2005). One mechanism by which destruction of BM leads to EMT and genomic instability
is through increased levels of cellular reactive oxygen species, which upregulate expression of
certain transcription factors and cause oxidative DNA damage (Radisky et al. 2005).

Proper development of the ductal tree depends on permissive and instructive cues from the
stromal compartment. For example, both epithelial and stromal cells express estrogen receptor
(ER)-α, and mammary glands from ER-α-knockout mice have a rudimentary underdeveloped
ductal tree (Bocchinfuso & Korach 1997). Experiments recombining epithelium and stroma
from wild-type and ER-α-knockout mice demonstrated that estrogen signaling is required in
stromal cells during ductal morphogenesis (Cunha et al. 1997). Further experiments in culture
revealed that, in response to estrogen, stromal fibroblasts produce hepatocyte growth factor
(HGF), which acts in a paracrine role to induce growth of the epithelial tree (Zhang et al.
2002a). Reciprocal signaling from epithelium to the stroma is also required for the development
of the gland. Epidermal growth factor receptor (EGFR) is required in the stromal compartment
(Wiesen et al. 1999). The EGFR ligand, amphiregulin, is expressed on and cleaved from the
surface of the epithelium by the cell-surface sheddase ADAM (a disintegrin and
metalloproteinase)-17, presumably in response to estrogen signaling (Sternlicht et al. 2005).
Consequently, mammary development is impaired in mice expressing signaling-defective
EGFR (Fowler et al. 1995, Xie et al. 1997, Sebastian et al. 1998). These positive signals are
balanced by negative cues, including TGF-β. Members of the TGF-β superfamily and their
receptors are expressed throughout development of the gland (reviewed in Daniel et al. 2001,
Serra & Crowley 2005). TGF-β in particular inhibits branching morphogenesis during puberty
(Silberstein & Daniel 1987, Robinson et al. 1991, Pierce et al. 1993), blocks formation of
alveoli and secretion of milk during pregnancy (Jhappan et al. 1993, Kordon et al. 1995, Siegel
et al. 2003), and promotes apoptosis during involution (Nguyen & Pollard 2000, Gorska et al.
2003, Bailey et al. 2004).

The mesenchymal compartment also expresses morphogens, including epimorphin (Hirai et
al. 1998, 2001; Simian et al. 2001) and members of the Wnt and notch families, that guide the
development of the epithelial tree (Uyttendaele et al. 1998). That overexpression of epimorphin
in the mammary gland leads to tumor development (Bascom et al. 2005) highlights the stroma’s
importance in regulating conversion to the malignant phenotype, a concept introduced more
than 100 years ago (Paget 1889). Normal stroma has tumor-suppressive properties, in contrast
to stroma derived from breast cancer. Embryonic mammary mesenchyme can induce
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differentiation of mammary tumors (DeCosse et al. 1973). Conversely, human breast cancer
xenografts produce significantly faster growing tumors when the cells are mixed with
carcinoma-derived fibroblasts than when the cells are mixed with normal fibroblasts (Camps
et al. 1990, van Roozendaal et al. 1996, Dong-Le Bourhis et al. 1997) or when they are injected
into a previously irradiated stroma (Barcellos-Hoff & Ravani 2000). The latter effect is
apparently due to irradiation-induced activation of TGF-β, which is the culprit in wound-
induced tumors (Sieweke et al. 1990) and is known to lead to a fibrotic response in abnormal
microenvironments by increasing synthesis of ECM molecules such as collagen I (Ehrhart et
al. 1997). Increased tissue stiffness itself can promote malignant transformation by leading to
deregulated integrin signaling (Paszek et al. 2005), and patients with such fibrotic lesions have
a poor prognosis (Colpaert et al. 2001).

Breast carcinomas consist not only of the aberrant epithelial cells and stroma but also recruited
blood vessels, activated fibroblasts, and infiltrating macrophages, lymphocytes, and
leukocytes. Growing evidence points to recruitment of macrophages as important for breast
tumor progression, with macrophage infiltration correlating with a poor prognosis (Leek et al.
1996, Goswami et al. 2005). Finally, alterations in the stroma are not solely due to changes in
the constituent population of cells or deposition of ECM because stroma associated with breast
tumors contains both genetic and epigenetic alterations (Deng et al. 1996, Washington et al.
2000, Allinen et al. 2004, Hu et al. 2005), and stromal fibroblasts in which the TGF-β type II
receptor is inactivated stimulate the development of tumors in the adjacent epithelium
(Bhowmick et al. 2004, Radisky & Bissell 2004). Clearly, the context in which an epithelial
cell receives an oncogenic insult plays a large role in whether or not that cell generates a frank
tumor, as shown in a number of earlier studies (for a review, see Kenny & Bissell 2003).

Organotypic Culture Models to Study Form, Function, and Dysfunction
Many of the details of microenvironmental signaling in the mammary gland have been
uncovered using three-dimensional (3D) culture models (for historical overviews, see Bissell
et al. 2003, 2005; Nelson & Bissell 2005). Differentiated mammary epithelial cell structure
and function can be reproduced in culture when cells are given an appropriate
microenvironment that recapitulates aspects of the above-described tissue structure. When
grown on plastic substrata, human and rodent mammary epithelial cells flatten out and fail to
respond to lactogenic cues; that is, they “forget” their mammary phenotype. However, when
grown within a malleable lrECM, these same cells will assemble into polarized 3D acinar
structures that resemble alveoli in vivo (Emerman & Pitelka 1977, Lee et al. 1985, Barcellos-
Hoff et al. 1989, Aggeler et al. 1991). Cells that are not attached to BM undergo apoptosis
(Boudreau et al. 1995), and apoptosis of cells in the center of the structures leads to the
formation of hollow lumina (Blatchford et al. 1999, Debnath et al. 2002, Mills et al. 2004), a
process similar to canalization of the ducts in vivo (Humphreys et al. 1996). When stimulated
with lactogenic hormones, cultured acini of rodent epithelial cells express and secrete milk
proteins into the central lumina (Emerman & Pitelka 1977; Lee et al. 1984, 1985; Streuli et al.
1995b). The binding of laminin-1 to integrin and other ECM receptors, now shown to include
dystroglycan (M.L. Wier, M.L. Oppizzi, M.D. Henry, A. Onishi, K.P. Campbell, et al.,
manuscript submitted), causes changes in both cell shape and biochemical signaling to induce
functional differentiation (Streuli et al. 1991, 1995b; Roskelley et al. 1994; Muschler et al.
1999). Even though milk appears to be expressed upon parturition with all protein constituents
simultaneously, 3D culture studies have revealed that there is specificity in the regulation by
microenvironmental context: Lactoferrin expression only requires cell rounding and β-casein
can be expressed by single, rounded cells in contact with laminin, whereas the expression of
whey acidic protein (WAP) requires formation of the polarized acinus (reviewed in Roskelley
et al. 1995).
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In addition to illuminating the processes of acinus formation and milk protein secretion, 3D
culture models have been highly successful in recapitulating the epithelial remodeling and
invasion central to the branching morphogenesis that builds the initial epithelial tree during
puberty. Primary epithelial organoids or mammary epithelial cell lines cultured within gels of
collagen I or lrECM can be induced to form branching structures by coculture with stromal
fibroblasts or by exogenous addition of growth factors, such as HGF or epidermal growth factor
(EGF) (Brinkmann et al. 1995, Soriano et al. 1995, Yang et al. 1995, Hirai et al. 1998, Niemann
et al. 1998, Simian et al. 2001), or of cytokines, such as members of the tumor necrosis factor
(TNF)-α family (Lee et al. 2000, Michaelson et al. 2005). Blocking either MMP activity or cell
binding to epimorphin prevents branching (Hirai et al. 1998, Lee et al. 2000, Simian et al.
2001, Michaelson et al. 2005). To initiate a branch, epithelial cells must transiently loosen their
interactions with neighboring cells and invade the surrounding ECM. Culture models of
mammary and kidney epithelial branching have revealed that cells at the leading edge of
branches undergo a transient or partial EMT (O’Brien et al. 2004; C.S. Chen, C.M. Nelson, S.
Bennett, C. Gilles, Y. Hirai, et al., manuscript in submission)—one of many developmental
processes frequently hijacked by cancer cells—which requires coordinate signaling from
growth factors, MMPs, and epimorphin.

Recreating the microenvironment in culture also allows one to distinguish clearly between cells
that do and do not differentiate (such as normal and tumorigenic breast cells), something
difficult to achieve in traditional two-dimensional cultures. Whereas normal cells form
polarized growth-arrested acini when cultured in 3D lrECM (Barcellos-Hoff et al. 1989), breast
cancer cell lines or primary cells derived from carcinomas form highly disorganized and
proliferative colonies reminiscent of tumors (Petersen et al. 1992, Weaver et al. 1995).
Antagonizing one or more of the many pathways that are dysregulated in tumor cells causes
them to functionally revert to a normal phenotype: The cells stop growing, form polarized
acini, and are less tumorigenic when injected into nude mice (Howlett et al. 1995, Hirschi et
al. 1996, Weaver et al. 1997, Wang et al. 1998, Kirshner et al. 2003, Liu et al. 2004, Park et
al. 2006). Additionally, the activation levels of the other signaling pathways normalize to levels
seen in nontumorigenic cells (for a review, see Bissell et al. 2005). These results demonstrate
that tumorigenicity is context dependent, that tissue structure can be dominant over genotype,
and that differentiation therapy, a concept used in treating some forms of leukemia, is a
potentially powerful strategy for cancer therapy.

TISSUE SPECIFICITY IN THE MAMMARY GLAND AND BEYOND: CONTEXT
IS ALL
From ECM to ECM-Response Elements

In the presence of a malleable laminin-rich substratum, mammary epithelial cells round up,
organize into acinar structures, hollow out to form a central lumen, and secrete milk proteins,
including β-casein, in response to lactogenic hormones. The laminin-induced expression of
β-casein involves activation of an ECM-response element (ECM-RE) in the promoter of the
β-casein gene (Schmidhauser et al. 1990, Schmidhauser et al. 1992, Myers et al. 1999) by β1-
integrin-induced phosphorylation of the prolactin receptor, thus allowing prolactin to regulate
the DNA-binding activity of the Stat5 transcription factor (Streuli et al. 1995a, Edwards et al.
1998). ECM-REs have been found in the promoter regions of several proteins, including those
of αs1-casein (Jolivet et al. 2005), albumin (Liu et al. 1991), and TGF-β, which is regulated
negatively by laminin (Streuli et al. 1993). Given that a multitude of ECM molecules is part
of what comprises the microenvironment, we can imagine that the family of ECM-REs will be
refined in the future to include, for example, laminin-response element, collagen-response
element, and various combinations thereof. ECM also regulates the expression of tissue-
specific transcription factors, such as mammary gland factor (MGF, or Stat5a) (Schmitt-Ney
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et al. 1991), which can thereby transduce context-dependent information indirectly by binding
to the promoter regions of milk protein genes (Groner & Gouilleux 1995).

ECM-induced formation of the polarized acinus affects signaling between epithelial cells. In
response to laminin, mammary epithelial cells upregulate expression of several of the connexin
gap junction proteins, enhancing gap junctional intercellular communication (GJIC) (El-
Sabban et al. 2003). Inhibiting GJIC downregulates β-casein expression. That loss of connexin
expression leads to and correlates with tumor progression and that reexpression of connexins
can inhibit the metastatic phenotype highlight the importance of cell-cell communication in
guiding and responding to tissue architecture (Carystinos et al. 2001). Indeed, disrupting tight
junctions prevents the establishment of tissue polarity and disrupts the structure of already
polarized cells, leading to neoplastic growth (reviewed in Itoh & Bissell 2003).

Aside from inducing signal transduction through integrins and determining tissue morphology,
the microenvironment also affects the structure of the nucleus. Histone acetylation promotes
chromosome decondensation and unfolding, increasing the accessibility to transcription factors
and other regulatory machinery, thereby enhancing transcription (Jenuwein & Allis 2001).
Activation of the ECM-RE in the promoter of the β-casein gene can be modulated by altering
the organization of histones (Myers et al. 1998), and addition of laminin induces histone
deacetylation in mammary epithelial cell lines (Pujuguet et al. 2001). Recent experiments have
demonstrated that cell rounding by itself (independent of cell-ECM interactions) leads to
histone modifications (J. Le Beyec, R. Xu, S.Y. Moonlee, C.M. Nelson, A. Rizki, and M.J.
Bissell, unpublished data). Because the cytoskeleton appears to physically connect the ECM
to the nucleus through ECM receptors (Maniotis et al. 1997), and because destruction of ECM
by MMPs leads to genomic instability through alternative splicing of the Rac1 transcript
(Radisky et al. 2005), it is tempting to speculate that the effects due to changes in cell
morphology are transmitted to the nucleus through the cytoskeleton. Taken together, these data
support and expand dynamic reciprocity (Figure 1a,b), whereby tissue specificity is determined
and maintained by interactions of adhesion receptors with surrounding ECM and neighboring
cells. These interactions activate downstream signaling pathways, in conjunction with altering
cytoskeletal structure and cell and nuclear morphology, to modulate binding of transcription
factors to the microenvironment-specific response elements of tissue-specific genes. The
resulting changes in gene expression modify a panoply of signaling proteins produced by the
cell, including ECM proteins and tissue-specific transcription factors, cementing the organ-
specific phenotype.

Tissue Specificity Throughout Evolution
If context directs development, then do organs that develop similar structures do so using
similar contextual cues? The answer, at least for the branched organs of placental mammals,
appears to be a qualified “yes.” The pancreas, lung, kidney, prostate, and salivary and mammary
glands all develop by branching morphogenesis, driven by epithelial-mesenchymal
interactions involving stimulatory signaling in part from HGF and EGF, balanced by inhibitory
signaling from members of the TGF-β family, and regulated by ECM and MMPs (reviewed in
Davies 2002). This conservation of contextual signaling was first glimpsed in the tissue
recombination experiments of the 1960s, discussed above (see section on Tissue Architecture
Is Both a Consequence and a Cause). Interestingly, the epithelium in these organs is initially
derived from different germ layers: endoderm in the pancreas and lung, mesoderm in the
kidney, and ectoderm in the mammary gland. However, there are also major differences in the
contexts under which each of these organs develops, which likely plays a role in the final tissue-
specific architecture and function achieved. The pattern of branching of the lung is determined
by embryonic patterning cues (Chuang & McMahon 2003), the kidney has its own growth
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factor [glial cell–derived neurotrophic factor (GDNF)], and the mammary gland develops
uniquely in the context of puberty.

Although the mammary gland is a relatively recent evolutionary acquisition (Oftedal 2002),
the similarities between its development and that of other, more ancient organs (such as the
pancreas, which is present as a branched structure even in cartilaginous fish, of which the last
common ancestor to mammals was 450 Mya) suggest that some of the above-described
mechanisms for directing tissue specificity may be conserved (last reviewed in Ashkenas et
al. 1996). Indeed, homologs of ECM proteins and integrins are present in many invertebrates.
The nematode worm Caenorhabditis elegans expresses collagens and a β1-integrin homolog,
βpat-3; mutations in the collagen IV homologs emb-9 and let-2 are embryonic lethal, suggesting
the importance of BM in worm development (Kramer 1994). The fly Drosophila
melanogaster expresses laminins, dystroglycan, and a number of α- and β-integrins, and similar
to the mammary gland, dystroglycan is required for generation of apico-basal polarity in
Drosophila epithelial cells (Deng et al. 2003). Hydra express laminins, collagens, MMPs, and
a putative β1-integrin, which are required for proper epithelial morphogenesis during head and
tentacle regeneration (Shimizu et al. 2002, Zhang et al. 2002b). Even the slime mold
Dictyostelium discoideum expresses ECM during its multicellular slug phase and stalk
development, which is regulated by a Stat transcription factor homolog (Shimada et al.
2004). ECM-REs are also evolutionarily conserved, at least functionally, if not in nucleotide
sequence: Sea urchin embryonic development requires collagen-induced activation of a short
promoter element in the LpS1 gene (Seid et al. 1997). Because cytoskeleton is, in general,
conserved through different phyla (Muller et al. 2005), it is likely that cell and tissue context
play an analogous role in the development, differentiation, and homeostasis of many
organisms.

INTEGRATION
A fundamental property of all known (and therefore, presumably, successful) forms of life is
the ability to adapt to changes in both the environment external to the organism and the internal
(micro)environment. Terminal change—an inability to adapt—in all dynamic systems leads
to equilibrium, which for living things is death. Dynamic reciprocity, then, is scalable both in
time and space and is a mechanism by which single cells within tissues maintain homeostasis
in spite of an uncertain environment over the organism’s lifetime. Tissue-specific context is
thus important not only for development and differentiation but also as a protective mechanism
against cancer and other diseases. However, as much as we might wish otherwise, tissue context
is not static even in the adult, succumbing eventually to the effects of living: reactive oxygen
species, carcinogens, diet, shrinking telomeres—in sum, the effects of aging (Hasty et al.
2003). The context of an old breast is not the same as that of a young breast. As menopause
approaches, epithelial cells die off, the stromal compartment alters, the entire morphology of
the organ changes. It is instructive to combine our vast knowledge of developmental biology
with emerging concepts in tissue specificity so as to generate an integrated understanding of
development, homeostasis, cancer, and aging.

The essence of what we have laid out here is that the integration of signaling hangs on the
structure of an organ, for structure has information, a kind of information distinct from the
genomic blueprint of the cell. When one considers all of the signaling pathways involved in
differentiation, the complexity is staggering. There is clearly more than one way of integrating
the same combination of signals into a phenotype (Bissell et al. 2003); this is precisely why
development is so miraculously robust.
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FUTURE DIRECTIONS: DECODING THE LANGUAGE OF FORM
Organ architecture is thus both a consequence and a cause for development, differentiation,
and homeostasis. But how does the architecture of an organ (or tissue, or cell) make itself
heard? We understand something about the alphabet (ECM, receptors, cytoskeleton, nuclear
matrix, chromatin) and even less about the rules of grammar that turn random words into
commands (activation of tissue-specific response elements). We believe that decoding this
language requires abandoning the currently fashionable “molecule-centric” style of inquiry
and adopting a more interdisciplinary approach that takes into account dynamic changes,
spatial segregation of events, and tissue architecture.

SUMMARY POINTS

1. Development, differentiation, and homeostasis are controlled by cell-cell
interactions, cell-ECM interactions, ECM-degrading enzymes, and soluble cues
(hormones, cytokines, and growth factors).

2. Malignant phenotype can be reverted without changing genotype. Thus phenotype
can be dominant over genotype.

3. Signaling pathways are context dependent.

4. Maintenance of homeostasis requires maintenance of form.
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Glossary

Microenvironment local and systemic constituents surrounding a cell, including ECM,
other cells, and soluble factors released locally or transmitted from
other organs, such as hormones

ECM extracellular matrix

Morphogenesis the process of development by which an organ achieves its final
structure

Mesenchyme mass of connective tissue, mainly derived from mesoderm, in
embryonic and developing organs that usually develops into the stroma

BM basement membrane

lrECM laminin-rich ECM

TDLU terminal ductal lobular unit

EMT epithelial-to-mesenchymal transition

MMP matrix metalloproteinase

ECM-RE ECM-response element
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Figure 1.
(a) The original model of dynamic reciprocity, or the minimum required unit for tissue-specific
functions. N, nucleus; MT, microtubules; IF, intermediate filaments; MF, microfilaments; C,
collagen. Reprinted from Bissell et al. (1982) with permission from Elsevier. (b) A more
complete view of dynamic reciprocity.
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Figure 2.
The dramatic effect of tissue-tissue interactions. (a) Embryonic ectoderm/mesoderm
recombination experiments determined that the identity of the mesoderm dictated the identity
of the ectodermal appendage. (b) Epithelial/mesenchymal recombination experiments
determined that the identity of the mesenchyme dictated the architecture of the developing
epithelium. When mammary gland (MG) epithelium is recombined with salivary gland (SG)
mesenchyme, the resulting structure can still produce milk, although the epithelial tree
resembles a salivary gland. Panel b adapted from Parmar & Cunha (2004).
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Figure 3.
The structure and function of the mammary gland are influenced by communication with
distant organs and between constituent tissues. (a) The human breast is a bilayered epithelial
ductal tree (pink) embedded in a complex stroma. Signals released from distant organs
influence ductal and acinar morphogenesis during puberty (*) and pregnancy (#) (reviewed in
Hovey et al. 2002). (b) The epithelium consists of a layer of luminal epithelial cells (LEP)
surrounded by myoepithelial cells (MEP) and basement membrane (BM). The epithelium is
surrounded by a fibrous stromal compartment and adjacent fatty stroma. Molecular details of
epithelial-mesenchymal interactions are described in Table 1.
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Table 1

Epithelial-mesenchymal interactions in the mammary gland

Signaling by stroma Signaling by epithelium

Stromal ligand/cue Epithelial receptor Epithelial ligand/cue Stromal receptor

During ductal development/puberty HGF cMet Amphiregulin EGFR (ErbB1)

IGF-I IGF-I receptor TGF-β TGFβR-I, -II

Activin/inhibin B Activin receptors PTHrP PTHrP receptor

Epimorphin Unknown

MMP-2, -3, -9, -11 N/a

During alveolar development/pregnancy Neuregulin ErbB3/ErbB4

Activin/inhibin B Activin receptors

KGF (FGF-7) FGFR2-IIIb

Epimorphin Unknown

MMP-3 N/a
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