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The study of fitness landscapes, which aims at mapping geno-
types to fitness, is receiving ever-increasing attention. Novel exper-
imental approaches combined with next-generation sequencing
(NGS) methods enable accurate and extensive studies of the fitness
effects of mutations, allowing us to test theoretical predictions
and improve our understanding of the shape of the true under-
lying fitness landscape and its implications for the predictability
and repeatability of evolution. Here, we present a uniquely large
multiallelic fitness landscape comprising 640 engineered mutants
that represent all possible combinations of 13 amino acid-changing
mutations at 6 sites in the heat-shock protein Hsp90 in Saccha-
romyces cerevisiae under elevated salinity. Despite a prevalent pat-
tern of negative epistasis in the landscape, we find that the global
fitness peak is reached via four positively epistatic mutations. Com-
bining traditional and extending recently proposed theoretical and
statistical approaches, we quantify features of the global multi-
allelic fitness landscape. Using subsets of the data, we demon-
strate that extrapolation beyond a known part of the landscape
is difficult owing to both local ruggedness and amino acid-specific
epistatic hotspots and that inference is additionally confounded
by the nonrandom choice of mutations for experimental fitness
landscapes.
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Since first proposed by Sewall Wright in 1932 (1), the idea
of a fitness landscape relating genotype (or phenotype) to
the reproductive success of an individual has inspired evolution-
ary biologists and mathematicians alike (2—4). With the advance-
ment of molecular and systems biology toward large and accurate
datasets, the fitness landscape concept has received increasing
attention across other subfields of biology (5-9). The shape of
the fitness landscape carries information on the repeatability
and predictability of evolution, the potential for adaptation, the
importance of genetic drift, the likelihood of convergent and
parallel evolution, and the degree of optimization that is (the-
oretically) achievable (4). Unfortunately, the dimensionality of a
complete fitness landscape of an organism—that is, a mapping of
all possible combinations of mutations to their respective fitness
effects—is much too high to be assessed experimentally. With
the development of experimental approaches that allow for the
assessment of full fitness landscapes of tens to hundreds of muta-
tions, there is growing interest in statistics that capture the fea-
tures of the landscape and that relate an experimental landscape
to theoretical landscapes of similar architecture, which have been
studied extensively (10). It is, however, unclear whether this
categorization allows for an extrapolation to unknown parts of
the landscape, which would be the first step toward quantify-
ing predictability—an advancement that would yield impacts far
beyond the field of evolutionary biology, in particular for the
clinical study of drug-resistance evolution in pathogens and the
development of effective vaccine and treatment strategies (8).
Existing research in this rapidly growing field comes from
two sides. Firstly, different empirical landscapes have been
assessed (reviewed in ref. 4), generally based on the combination
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of previously observed beneficial mutations or on the dissection
of an observed adaptive walk (i.e., a combination of muta-
tions that have been observed to be beneficial in concert).
Secondly, theoretical research has proposed different land-
scape architectures [such as the House-of-Cards (HoC), the
Kauffman NK (NK), and the Rough Mount Fuji (RMF) model],
studied their respective properties, and developed a number
of statistics that characterize the landscape and quantify the
expected degree of epistasis (i.e., interaction effects between
mutations) (10-14).

The picture that emerges from these studies is mixed, report-
ing both smooth (15) and rugged (16, 17) landscapes with both
positive epistasis [i.e., two mutations in concert are more advan-
tageous than expected; (18)] and negative epistasis [i.e., two
mutations in concert are more deleterious than expected (refs. 19
and 20 but see refs. 21 and 22)]. Current statistical approaches
have been used to rank the existing landscapes by certain features
(10, 14) and to assess whether the landscapes are compatible with
Fisher’s Geometric Model (23). A crucial remaining question is
the extent to which the nonrandom choice of mutations for the
experiment affects the topography of the landscape and whether
the local topography is indeed informative as to the rest of the
landscape.

Here, we present an intragenic fitness landscape of 640 amino
acid-changing mutations in the heat-shock protein Hsp90 in Sac-
charomyces cerevisiae in a challenging environment imposed by
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high salinity. With all possible combinations of 13 mutations of
various fitness effects at 6 positions, the presented landscape is
not only uniquely large but also distinguishes itself from pre-
viously published work regarding several other experimental
features—namely, by its systematic and controlled experimen-
tal setup using engineered mutations of various selective effects
and by considering multiple alleles simultaneously. We begin by
describing the landscape and identifying the global peak, which
is reached through a highly positively epistatic combination of
four mutations. Based on a variety of implemented statistical
measures and models, we describe the accessibility of the peak,
the pattern of epistasis, and the topography of the landscape.
To accommodate our data, we extend several previously used
models and statistics to the multiallelic case. Using subsets of
the landscape, we discuss the predictive potential of such mod-
eling and the problem of selecting nonrandom mutations when
attempting to quantify local landscapes to extrapolate global
features.

Results and Discussion

We used the EMPIRIC approach (24, 25) to assess the growth
rate of 640 mutants in yeast Hsp90 (Materials and Methods).
Based on previous screenings of fitness effects in different envi-
ronments (26) and on different genetic backgrounds (20), and
on expectations of their biophysical role, 13 amino acid-changing
point mutations at 6 sites were chosen for the fitness landscape
presented here (Fig. 1). The fitness landscape was created by
assessing the growth rate associated with each individual muta-
tion on the parental background and all possible mutational com-
binations. A previously described Monte Carlo Markov chain
(MCMC) approach was used to assess fitness and credibility
intervals (ref. 27 and Materials and Methods).
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Fig. 1. Individual amino acid substitutions and their effect on the parental
background in elevated salinity, obtained from 1,000 samples from the pos-
terior distribution of growth rates. Boxes represent the interquartile range
[i.e., the 50% confidence interval (Cl)], whiskers extend to the highest/lowest
data point within the box +1.5 times the interquartile range, and circles
represent outliers; gray and white background shading alternates by amino
acid position. The box below indicates with colored dots which mutations
are involved in the focal landscapes discussed throughout the main text:
the four mutations leading from the parental type to the global optimum
(“opt”), the four individually most beneficial mutations on the parental
background (“best”), and the four mutations with the individually low-
est growth rates on the parental background (“worst”). (Inset) Parental
sequence at positions 582-590 and assessed amino acids by position.
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Fig. 2. (A) Empirical fitness landscape by mutational distance to parental
type. Each line represents a single substitution. Vertical lines appear when
multiple alleles have been screened at the same position. There is a global
pattern of negative epistasis. The three focal landscapes are highlighted. (B)
Close-up on the beneficial portion of the landscape. (C) Expected (“Exp.”)
versus observed (“Obs.”) fitness for the focal landscapes, obtained from
1,000 posterior samples. We observe strong positive epistasis in the land-
scape that contains the global optimum, whereas the other two are domi-
nated by negative epistasis. In A-C, the y axis depicts growth rate as a proxy
for fitness.

The Fitness Landscape and Its Global Peak. Fig. 2 presents the
resulting fitness landscape, with each mutant represented based
on its Hamming distance from the parental genotype and its
median estimated growth rate. Lines connect single-step sub-
stitutions, with vertical lines occurring when there are multiple
mutations at the same position (Fig. 1). With increasing Ham-
ming distance from the parental type, many mutational combina-
tions become strongly deleterious. Thus, we observe strong neg-
ative epistasis between the substitutions that, as single steps on
the parental background, have small effects. This pattern is con-
sistent with Fisher’s Geometric Model (28) when combinations
of individually beneficial or small-effect mutations overshoot the
optimum and with classic arguments predicting negative epistasis
based on mutational load (29). It is also intuitively comprehen-
sible on the protein level, where the accumulation of too many
mutations is likely to destabilize the protein and render it dys-
functional (30).

The global peak of the fitness landscape is located four muta-
tional steps away from the parental type (Fig. 2B), with 98%
of posterior samples identifying the peak. The fitness advan-
tage of the global peak reaches nearly 10% over the parental
type and is consistent between replicates (Materials and Meth-
ods and SI Appendix, Fig. S3_1). Perhaps surprising given the
degree of conservation of the studied genomic region (figure
S5 in ref. 24), it is important to note that these fitness effects
are measured under highly artificial experimental conditions
including high salinity, which are unlikely to represent a nat-
ural environment of yeast. The effects of the individual muta-
tions comprising the peak in a previous experiment without
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added NaCl were —0.04135, —0.01876, —0.03816, and —0.02115
for mutations W585L, A587P, N588L, and M589A, respectively,
emphasizing the potential cost of adaptation associated with
the increased salinity environment (data from ref. 20; see also
ref. 26).

Curiously, the global peak is not reached by combining the
most beneficial single-step mutations on the parental back-
ground but via a highly synergistic combination of one beneficial
and three “neutral” mutations (i.e., mutations that are individu-
ally indistinguishable from the parental type in terms of growth
rate). In fact, each of the five beneficial local optima shows a simi-
lar signature of positive epistasis (S Appendix, Fig. S3_2). Fig. 2C
demonstrates that a combination of the four mutations involved
in the global peak (opt) predicts only a 4% fitness advantage.
Furthermore, even a combination of the four individually most-
beneficial, single-step mutations on the parental background in
the dataset (best) (considering at most one mutation per posi-
tion) only predicts a benefit of 6%. Notably, the actual com-
bination of these four mutations on the parental background
is highly deleterious and thus exhibits strong negative epistasis.
Although negative epistasis between beneficial mutations during
adaptation has been reported more frequently, positive epista-
sis has also been observed occasionally (18, 31), particularly in
the context of compensatory evolution. In fact, negative epista-
sis between beneficial mutations and positive epistasis between
neutral mutations has been predicted by de Visser et al. (32).
Furthermore, our results support the pattern recently found in
the gene underlying the antibiotic resistance enzyme TEM-1
B-lactamase in Escherichia coli, showing that large-effect muta-
tions interact more strongly than small-effect mutations such that
the fitness landscape of large-effect mutations tends to be more
rugged than the landscape of small-effect mutations (13) and
that mutations that were selected for their combined beneficial
effect on a wild-type background tend to interact synergistically,
whereas mutations selected for their individual effects interact
antagonistically (4, 13).

Adaptive Walks on the Fitness Landscape. Next, we studied the
empirical fitness landscape within a framework recently pro-
posed by Draghi and Plotkin (33). Given the empirical landscape,
we simulated adaptive walks and studied the accessibility of the
six observed local optima. In addition, we evaluated the length of
adaptive walks starting from any mutant in the landscape, until
an optimum is reached. In the strong selection weak mutation
limit (34), we can express the resulting dynamics as an absorbing
Markov chain, where local optima correspond to the absorbing
states, and in which the transition probabilities correspond to the
relative fitness increases attainable by the neighboring mutations
(Materials and Methods). This approach allowed us to derive ana-
lytical solutions for the mean and variance of the number of steps
to reach a fitness optimum (SI Appendix, Supporting Information
1: Extended Materials and Methods), and the probability to reach
a particular optimum starting from any given mutant in the land-
scape (Fig. 3 and SI Appendix, Figs. S3_3 and S3_4).

Using this framework, we find that the global optimum can
be reached with nonzero probability from almost 95% of starting
points in the landscape, and is reached with high probability from
a majority of starting points - indicating high accessibility of the
global optimum (Fig. 3). The picture changes when restricting
the analysis to adaptive walks initiating from the parental type
(Fig. 3 and SI Appendix, Figs. S3_3 and S3_4). Here, although
73% of all edges and 78% of all vertices are included in an adap-
tive walk to the global optimum, it is reached with only 26%
probability. A local optimum two substitutions away from the
parental type (Fig. 3C) is reached with a much higher probability
of 47%. Hence, adaptation on the studied landscape is likely to
stall at a suboptimal fitness peak. This observation indicates that
the local and global landscape pattern may be quite different, an
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Fig. 3. (A) Distribution of average lengths of adaptive walks starting from
any type in the full landscape (i.e., absorbing times of the Markov chain).
The red line indicates mean path length for adaptive walks from the
parental genotype. (B and C) Distribution of absorbing probabilities, that
is, the probability to reach a specific optimum starting from a given geno-
type computed for all genotypes in the dataset. The red line corresponds to
the respective probability when starting from the parental sequence. The
global optimum (B) is, in general, reached with a very high probability, but
there are starting points from which it is poorly accessible.

observation that is confirmed and discussed in more detail below
(see Predictive Potential of Landscape Statistics). In line with the
existence of multiple local fitness peaks, we find that pairs of alle-
les at different loci show pervasive sign (30%) and reciprocal sign
(8%) epistasis (35), whereas the remaining 62% are attributed to
magnitude epistasis (i.e., there is no purely additive interaction
between alleles; for a discussion of the contribution of experi-
mental error, see SI Appendix, Fig. S3.5).

Epistasis Measures and the Topography of the Fitness Landscape.
Next, we considered the global topography of the fitness land-
scape. Various measures of epistasis and ruggedness have been
proposed, most of them correlated and hence capturing similar
features of the landscape (10). However, drawing conclusions
has proven difficult because the studied landscapes were cre-
ated according to different criteria. Furthermore, the majority of
published complete landscapes are too small to be divided into
subsets (but see refs. 10 and 12), preventing tests for the consis-
tency and hence the predictive potential of landscape statistics.
The landscape studied here provides us with this opportunity.
Moreover, because multiple alleles at the same site are contained
within the landscape, we may study whether changes in the shape
of the landscape are site- or amino acid-specific.

We computed various landscape statistics (roughness-to-slope
ratio, fraction of epistasis, and the recently proposed gamma
statistics; SI Appendix, Supporting Information 1: Extended
Materials and Methods) (10, 11, 14) and compared them with
expectations from theoretical landscape models [NK (36-38),
RMF (39, 40), HoC (41), egg-box landscapes (14); for brief
definitions of these terms, see SI Appendix, Supporting Infor-
mation 2: Overview of Different Fitness Landscape Models Intro-
duced in the Main Text]. Whenever necessary, we provide an
analytical extension of the used statistic to the case of mul-
tiallelic landscapes (Materials and Methods). To assess consis-
tency and predictive potential, we computed the whole set of
statistics for (i) all landscapes in which 1 amino acid was com-
pletely removed from the landscape (a cross-validation approach
(42), subsequently referred to as the “drop-one” approach),
(if) all possible 360 diallelic sublandscapes, and (iii) for all
1,570 diallelic, 4-step landscapes containing the parental geno-
type, highlighting as special examples the three focal landscapes
discussed.

We find that the general topography of the fitness landscape
resembles that of a RMF landscape with intermediate rugged-
ness, which is characterized by a mixture of a random HoC com-
ponent and an additive component (Fig. 4 4 and B). Whereas the
whole set of landscape statistics supports this topography and our
conclusions, the gamma statistics measuring landscape-averaged
correlations in fitness effects, recently proposed in ref. 14, proved
to be particularly illustrative. We will therefore focus on these in
the main text; we refer to ST Appendix for additional results (e.g.,
measurement uncertainty and adaptive walks).
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Fig. 4. (A) Expected pattern of landscape-wide epis-

tasis measure 4 (SI Appendix, Eq. $1_15) with muta-
tional distance for theoretical fitness landscapes with
6 loci from ref. 14. (B) Observed decay of ~, with
mutational distance under the drop-one approach is

quite homogenous, except when hot spot mutation
588P is removed; 95% Cls are contained within the
lines for the global landscape. (C) Observed decay of
~g for all diallelic six-locus sublandscapes. Depend-

ing on the underlying mutations, ~4 is vastly differ-

ent, suggesting qualitative differences in the topog-
raphy of the underlying fitness landscape and in the
extent of additivity in the landscape. Three focal 05|
landscapes representative of different types and ~4

for the full landscape have been highlighted. (D)
Observed decay of ~4 for all diallelic four-locus sub-
landscapes containing the parental type, indicative
of locally different landscape topographies. High-
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huge variation in r/s for subparts of the fitness landscape, especially when considering the four-locus subsets.

Predictive Potential of Landscape Statistics. When computed based
on the whole landscape and on a drop-one approach, the land-
scape appears quite homogeneous, and the gamma statistics
show relatively little epistasis (Figs. 4B and 5B). At first sight,
this result contradicts our earlier statement of strong negative
and positive epistasis but can be understood, given the differ-
ent definitions of the epistasis measures used: above, we have
measured epistasis based on the deviation from the multiplica-
tive combination of the single-step fitness effects of mutations on
the parental background. Because these effects were small, epis-
tasis was strong in comparison. Conversely, the gamma measure
is independent of a reference genotype and captures the fitness
decay with a growing number of substitutions as a dominant and
quite additive component of the landscape.

Only mutation 588P has a pronounced effect on the global
landscape statistics and seems to act as an epistatic hotspot
by making a majority of subsequent mutations (of individually
small effect) on its background strongly deleterious (clearly vis-
ible in Figs. 4B and 5C). This finding can be explained by look-
ing at the biophysical properties of this mutation. In wild-type
Hsp90, amino acid 588N is oriented away from solvent and forms
hydrogen bond interactions with neighboring amino acids (24).
Proline lacks an amide proton, which inhibits hydrogen bond
interactions. As a result, substituting 588N with a proline could
disrupt hydrogen bond interactions with residues that may be
involved in main chain hydrogen bonding and destabilize the
protein. In addition, the pyrrolidine ring of proline is extremely
rigid and can constrain the main chain, which may restrict
the conformation of the residue preceding it in the protein
sequence (43).

The variation between inferred landscape topographies in-
creases dramatically for the 360 diallelic, 6-locus sublandscapes
(Fig. 4C). Whereas all sublandscapes are largely compatible with
an RMF landscape, the decay of landscape-wide epistasis with
mutational distance (as measured by ~4) shows a large variance,
suggesting large differences in the degree of additivity. Interest-
ingly, various sublandscapes, typically carrying mutation *588P,
show a relaxation of epistatic constraint with increasing muta-
tional distance (i.e., increasing ~4) that is not captured by any
of the proposed theoretical fitness landscape models, sugges-
tive of systematic compensatory interactions (but see the egg-box
model for an explicit example featuring nonmonotonicity in vq).
The variation in the shape of the fitness (sub)landscapes is also

14088 | www.pnas.org/cgi/doi/10.1073/pnas.1612676113

reflected in the corresponding roughness-to-slope ratio (inset of
Fig. 4C and D), further emphasizing heterogeneity of the fitness
landscape with local epistatic hotspots.

Finally, the 1,570 di-allelic four-locus landscapes containing
the parental genotype, although highly correlated genetically,
reflect a variety of possible landscape topographies (Fig. 4D),
ranging from almost additive to egg-box shapes, accompanied by
an extensive range of roughness-to-slope ratios. The three focal
landscapes discussed above are not strongly different compared
with the overall variation and yet show diverse patterns of epis-
tasis between substitutions (Fig. 5).
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Fig. 5. (A) Epistasis measure Va;.8)—(4;.5) (S/ Appendix, Eq. S1.8; (A;, Bj) on
the x axis) between any two substitutions, averaged across the entire land-
scape. The majority of interactions are small to moderate (blue). Parts of the
fitness landscape show highly localized and mutation-specific epistasis, rang-
ing from strong magnitude epistasis (white) to sign and reciprocal sign epis-
tasis (yellow). (B) The average epistatic effect YA (S/ Appendix, Eq. $1-10)
of a mutation occurring on any background is always small. (C) The aver-
age epistatic effect Y4, (SI Appendix, Eq. S1-13) of a background on any
new mutation is usually small, except for mutations to *588P, which shows a
strong magnitude effect. (D) Locus-specific gamma for the four mutations
leading to the global optimum (Top), the four largest single-effect mutations
(Middle), and the single-effect mutations with the lowest fitness (Bottom).
The opt landscape exhibits strong sign epistasis between loci 587 and 588 and
between loci 588 and 589. Also, the best landscape exhibits pervasive epista-
sis with sign epistasis between locus 588 and loci 585 and 586, respectively.
We observe almost no epistasis in the worst landscape.
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Thus, predicting fitness landscapes is difficult indeed. Extrap-
olation of the landscape, even across only a single mutation,
may fail due to the existence of local epistatic hotspot muta-
tions. Although the integration of biophysical properties into
landscape models is an important step forward (e.g., ref. 44),
we demonstrate that such models need to be mutation-specific.
Considering a site-specific model [e.g., BLOSUM matrix (45)]
is not sufficient. Newer models such as DeepAlign may provide
the opportunity to allow integration of mutation-specific effects
via aligning two protein structures based on spatial proximity
of equivalent residues, evolutionary relationship, and hydrogen
bonding similarity (46).

Conclusion

Originally introduced as a metaphor to describe adaptive evo-
lution, fitness landscapes promise to become a powerful tool in
biology to address complex questions regarding the predictability
of evolution and the prevalence of epistasis within and between
genomic regions. Due to the high-dimensional nature of fit-
ness landscapes, however, the ability to extrapolate will be
paramount to progress in this area, and the optimal quantita-
tive and qualitative approaches to achieve this goal are yet to be
determined.

Here, we have taken an important step toward addressing
this question via the creation and analysis of a landscape com-
prising 640 engineered mutants of the Hsp90 protein in yeast.
The unprecedented size of the fitness landscape, along with the
multiallelic nature, allows us to test whether global features could
be extrapolated from subsets of the data. Although the global
pattern indicates a rather homogeneous landscape, smaller sub-
landscapes are a poor predictor of the overall global pattern
because of “epistatic hotspots.”

In combination, our results highlight the inherent difficulty
imposed by the duality of epistasis for predicting evolution. In
the absence of epistasis (i.e., in a purely additive landscape), evo-
lution is globally highly predictable because the population will
eventually reach the single-fitness optimum, but the path taken
is locally entirely unpredictable. Conversely, in the presence of
(sign and reciprocal sign) epistasis evolution is globally unpre-
dictable, because there are multiple optima and the probability
to reach any one of them depends strongly on the starting geno-
type. At the same time, evolution may become locally predictable
with the population following obligatory adaptive paths that are
a direct result of the creation of fitness valleys owing to epistatic
interactions.

The empirical fitness landscape studied here appears to be
intermediate between these extremes. Although the global peak
is within reach from almost any starting point, there is a
local optimum that will be reached with appreciable probabil-
ity, particular when starting from the parental genotype. From
a practical standpoint, these results thus highlight the danger
inherent to the common practice of constructing fitness land-
scapes from ascertained mutational combinations. However, this
work also suggests that one promising way forward for increasing
predictive power will be the utilization of multiple small land-
scapes used to gather information about the properties of indi-
vidual mutations, combined with the integration of site-specific
biophysical properties.

Materials and Methods

Here, we briefly outline the materials and methods used. A more detailed
treatment of the theoretical work is presented in S/ Appendix.

Data Generation. Codon substitution libraries consisting of 640 combina-
tions (single up to sextuplet mutants) of 13 previously isolated individ-
ual mutants within the 582-t0-590 region of yeast Hsp90 were generated
from optimized cassette-ligation strategies, as previously described (24) and
cloned into the p417GPD plasmid that constitutively expresses Hsp90.
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Constitutively expressed libraries of Hsp90 mutation combinations were
introduced into the S. cerevisiae shutoff strain DBY288 (can1-100 ade2-1
his3-11,15 leu2-3,12 trp1-1 ura3-1 hsp82: :leu2 hsc82: :leu2 ho: : :pgals-
hsp82-his3) using the lithium acetate method (47). Following transfor-
mation, the library was amplified for 12 h at 30 °C under nonselective
conditions using galactose (Gal) medium with 100 pg/mL ampicillin (1.7 g/L
yeast nitrogen base without amino acids, 5 g/L ammonium sulfate, 0.1
g/Lasparticacid, 0.02 g/L arginine, 0.03 g/Lvaline, 0.1 g/L glutamicacid, 0.4 g/L
serine, 0.2 g/L threonine, 0.03 g/L isoleucine, 0.05 g/L phenylalanine, 0.03 g/L
tyrosine, 0.04 g/L adenine hemisulfate, 0.02 g/L methionine, 0.1 g/L leucine,
0.03 g/L lysine, and 0.01 g/L uracil with 1% raffinose and 1% Gal). After ampli-
fication, the library culture was transferred to selective medium similar to Gal
medium but raffinose and Gal are replaced with 2% (wt/vol) dextrose. The
culture was grown for 8 h at 30 °C to allow shutoff of the wild-type copy of
Hsp90 and then shifted to selective medium containing 0.5 M NaCl for 12 gen-
erations. Samples were taken at specific time points and stored at —80 °C.

Yeast lysis, DNA isolation, and preparation for Illumina sequencing were
performed as previously described (25). Sequencing was performed by Elim
Biopharmaceuticals and produced =30 million reads of 99% confidence at
each read position based on PHRED scoring (48, 49). Analysis of sequencing
data were performed as previously described (26).

Estimation of Growth Rates. Individual growth rates were estimated accord-
ing to the approach described in ref. 20 using a Bayesian MCMC approach
proposed in ref. 27. Nucleotide sequences coding for the same amino acid
sequence were interpreted as replicates with equal growth rates. The result-
ing MCMC output consisted of 10,000 posterior estimates for each amino
acid mutation corresponding to an average effective samples size of 7,419
(minimum 725). Convergence was assessed using the Hellinger distance
approach (50) combined with visual inspection of the resulting trace files.

Adaptive Walks. In the strong selection weak mutation limit (51), adapta-
tion can be modeled as a Markov process only consisting of subsequent
fitness-increasing, one-step substitutions that continue until an optimum
is reached (so-called adaptive walks). This process is characterized by an
absorbing Markov chain with a total of n different states (i.e., mutants),
consisting of k absorbing (i.e., optima) and n—k transient states (i.e., nonop-
tima). Defining w(g) as the fitness of genotype g, and gy;; as the genotype
g carrying a mutant allele at locus i, the selection coefficient is denoted by
si(9) = w(gyj)) — w(g), such that the transition probabilities Pa.gy; for going
from any mutant g to any mutant g; are given by the fixation probabil-
ity (52, 53) normalized by the sum over all adaptive, one-mutant neighbors
of the current genotype g. If g is a (local) optimum, pg o = 1. Putting the
transition matrix P (54) in its canonical form and computing the fundamen-
tal matrix then allows to determine the expectation and the variance in the
number of steps before reaching any optimum and to calculate the proba-
bility to reach optimum g when starting from genotype g’ (55). Robustness
of the results and the influence of specific mutations were assessed by delet-
ing the corresponding columns and rows in P (i.e., by essentially treating the
corresponding mutation as unobserved) and recalculating and comparing all
statistics to those obtained from the full dataset.

Correlation of Fitness Effects of Mutations. Strength and type of epistasis
were assessed by calculating the correlation of fitness effects of mutations
(14), which quantifies how the selective effect of a focal mutation is altered
when put onto a different genetic background, averaged over all geno-
types of the fitness landscape. Extending recent theory (14), we calculated
the matrix of epistatic effects between different pairs of alleles (A;,B;) and
(A;,B;) termed Va;.8)—4;.5) (SI Appendix, Eq. S1.8), the vector of epistatic
effects between a specific pair of alleles (A;, B;) on all other pairs of alleles
V(ang)— (S Appendix, Eq. S1.9), the vector of epistatic effects between all

pairs of alleles on a specific allele pair (4;, B;) termed Y 4;.5) (SI Appendix,
Eq. $1.12), and the decay of correlation of fitness effects v, (S/ Appendix,

Eqg. S1-15) with Hamming distance d averaged over all genotypes g of the
fitness landscape.

Fraction of Epistasis. Following refs. 35 and 56, we quantified whether spe-
cific pairs of alleles between two loci interact epistatically and, if so, whether
these display magnitude epistasis [i.e., fitness effects are nonadditive (57),
but fitness increases with the number of mutations], sign epistasis (i.e.,
one of the two mutations considered has an opposite effect in both back-
grounds) or reciprocal sign epistasis (i.e., if both mutations show sign epis-
tasis). In particular, we calculated the type of epistatic interaction between
mutations g;; and g (with i # j) with respect to a given reference geno-
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type g over the entire fitness landscape. There was no epistatic interaction if
silgr) — sil9)] < e = 10~%, magnitude epistasis if si(@)sj(g)) > 0 and
si(@)si(g;)) > 0, reciprocal sign epistasis if 5;(g)s;(g[;)) < 0 and s;(g)si(g;;)) <
0, and sign epistasis in all other cases (58).

Roughness-to-Slope Ratio. Following ref. 11, we calculated the roughness-
to-slope ratio p by fitting the fitness landscape to a multidimensional lin-
ear model using the least-squares method. The slope of the linear model
corresponds to the average additive fitness effect (10, 23), whereas the
roughness is given by the variance of the residuals. Generally, the bet-
ter the linear model fit, the smaller the variance in residuals such that
the roughness-to-slope ratio approaches 0 in a perfectly additive model.
Conversely, a very rugged fitness landscape would have a large residual
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