
To what extent can we understand the function and 
evolution of genetic systems by examining one gene at 
a time, and to what extent do we need to worry about 
the potentially daunting number of possible interac-
tions among the thousands or tens of thousands of 
genes operating within most organisms? Individual 
components versus entire systems — this is an old topic 
of debate within genetics, but the recent rush towards 
combining comprehensive functional genomics and 
systems biology with high-resolution genetic mapping 
is now providing the necessary empirical muscle to 
address these issues much more thoroughly than was 
possible in the past. At the same time, a deeper under-
standing of the functional basis of gene interactions is 
generating an exciting intersection among a wide set of 
genetic disciplines, ranging from protein biochemistry 
to evolutionary genetics. We have never been in a better 
position to assess the part that gene interactions play 
within biological systems.

It has been approximately 100 years since William 
Bateson invented the term ‘epistasis’ to describe the 
discrepancy between the prediction of segregation 
ratios based on the action of individual genes and the 
actual outcome of a dihybrid cross1. The use of the term 
epistasis has since expanded to describe nearly any set 
of complex interactions among genetic loci (BOX 1). Over 
the years geneticists have used epistasis to describe three 
distinct things: the functional relationship between 
genes, the genetic ordering of regulatory pathways and 
the quantitative differences of allele-specific effects 
(FIG. 1). Using the same word to describe subtly different 
phenomena has generated surprisingly little confusion 

in the literature — mostly because of the tendency for 
different areas of genetics to almost completely ignore 
one another. This is no longer possible. Molecular 
geneticists are now studying how specific allelic effects 
traverse complex regulatory networks, and evolutionary 
geneticists are moving from statistical descriptions of 
genetic variation to identification of the specific nucle-
otide changes that are responsible for adaptive evolution. 
What has become clear in the century since the concept 
of epistasis was introduced, however, is that most of the 
systems that underlie cellular, developmental and physi-
ological function are composed of many elements that 
interact with one another, often in complex ways. The 
challenges that are generated by the presence of epistasis 
in a system provide a focal point for the unification of 
traditionally disparate areas of research and show that 
this fundamental genetic concept is more relevant now 
than it ever has been.

In this article I first review various definitions of 
epistasis and show what they have in common and how 
they differ. I then turn to how the analysis of epistatic 
interactions between genes can be used to elucidate the 
global structure of these systems. I will also examine  
the impact that epistasis has on our ability to under-
stand the genetic basis of natural variation, especially 
how it pertains to genetic variation associated with dis-
ease within human populations. Finally, I review vari-
ous models of how evolution builds complex systems 
and I explore how recent studies of molecular evolution 
can be used to determine the role that epistasis has in 
directing the path of evolutionary change. As this Review 
has such a broad scope, it will not be possible to cover 
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Abstract | Epistasis, or interactions between genes, has long been recognized as 

fundamentally important to understanding the structure and function of genetic pathways 

and the evolutionary dynamics of complex genetic systems. With the advent of 

high-throughput functional genomics and the emergence of systems approaches to biology, 

as well as a new-found ability to pursue the genetic basis of evolution down to specific 

molecular changes, there is a renewed appreciation both for the importance of studying 

gene interactions and for addressing these questions in a unified, quantitative manner.
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all of the relevant literature. However, there has been a 
number of recent, more specialized reviews that cover 
topics such as the evolutionary impacts of epistasis2–5, 
the role of epistasis in complex traits6–8, the impact of 
epistasis on human disease9–11, statistical issues in detect-
ing epistasis12–17 and the use of synthetic interactions  
to define complex interaction networks18,19.

Differing perspectives on gene interactions
Over the years the disparate needs of geneticists have led 
to a plethora of differently nuanced meanings for the term 
epistasis, all of which involve gene interactions at various 
levels (BOX 1). Although a few scientists have suggested 
using the more generic term ‘gene interaction’ to encom-
pass the variety of phenomena labelled as epistasis, so that 
epistasis can retain its original, more specialized meaning1, 
this seems untenable given the history of use. As is evident 
below, traditional uses of epistasis to order genes within 
pathways have become increasingly quantitative, further 

obscuring the boundaries of its definition and suggest-
ing that expansion rather than contraction of the usage 
of epistasis is required. The uses of the term epistasis can 
be condensed into three main categories, each of which 
have been defined in many ways, so I impose my own 
labels (BOX 1; FIG. 1).

‘Functional epistasis’ addresses the molecular inter-
actions that proteins (and other genetic elements) have 
with one another, whether these interactions consist 
of proteins that operate within the same pathway or of 
proteins that directly complex with one another18. This is 
a strictly functional description without a direct genetic 
link, although we would obviously predict a genetic con-
sequence if the functional relationship between the pro-
teins were to be disrupted. Because the use of the term 
epistasis is confusing enough without it being adopted as 
a completely general description of complex systems, we 
would do well to avoid this usage and reserve ‘epistasis’ 
solely to describe the consequences of allelic substitu-
tion, as described below. There are other descriptive 
terms, such as ‘protein–protein interaction’, that can be 
used in this context.

‘Compositional epistasis’ is a new term that is 
intended to describe the traditional usage of epistasis as 
the blocking of one allelic effect by an allele at another 
locus. The only way that this effect can be manifested, 
however, is by combinatorially substituting one allele 
for another against a standard background. Thus, the 
genotypic composition of an individual is changed only 
at the loci of interest, with the rest of the background 
being invariant. Compositional epistasis therefore 
describes the way that a specific genotype is composed 
and the influence that this specific genetic background 
has on the effects of a given set of alleles. If we expand 
this to include genetic interactions beyond those that 
are exposed in the double mutant homozygote, then we 
essentially have the definition of epistasis that is being 
used in modern systems biology. This does not have 
to be limited to qualitative categories of phenotypes: it 
can also include quantitative measures of interaction 
against a fixed background (BOX 2).

‘Statistical epistasis’ is the usage of epistasis that 
is attributed to Fisher (BOX 1), in which the average 
deviation of combinations of alleles at different loci 
is estimated over all other genotypes present within 
a population. Fisher’s approach solves two problems. 
First, it yields the appropriate measures for describ-
ing evolutionary change20. Second, there are far more 
genetic combinations possible within a population 
(even in bacteria) than can ever be manifested, so 
there is no such thing as a standard genetic background 
within a natural population, only the set of back-
grounds that is most likely to be encountered within 
a given population sample. A compositional epistasis 
approach can not be formally applied to natural popula-
tions because it is impossible to enumerate all possible 
genetic interactions for any real population. Statistical 
epistasis can be thought of as the deviation induced 
by simultaneously substituting two alleles at different 
loci within a randomly selected individual within the 
population, after taking into account what we would 

 
Box 1 | Epistasis: what’s in a name?

There have been many different uses of the term epistasis over the last 100 years, which 
leads to the potential for some confusion now that more biologists from different areas 
of genetics are increasingly looking at gene interactions. The original definition comes 
from William Bateson94, who was specifically concerned with the observation that, in 
some dihybrid crosses, not all possible phenotypic classes were observed and that some 
gene combinations resulted in novel phenotypes. Some of the mutations seemed to be 
‘stopping’ or ‘standing above’ the effects of other mutations. Such mutations were said 
to be epistatic (the ones being blocked were called hypostatic). It was clear from these 
circumstances that the mutations must be interacting with one another, at least in the 
loose sense that they exist within pathways that both influence the same phenotype.

Perhaps it was natural, therefore, that R. A. Fisher95 used a derivative of this term, 
‘epistacy’, to mean any statistical deviation from the additive combination of two loci 
in their effects on a phenotype (BOX 2). Unfortunately, population geneticists rapidly 
adopted the term ‘epistasis’ to apply to this second, much more general class of 
phenomena1, and so we are left with a situation in which geneticists studying genetic 
segregation of usually discrete phenotypes mean one thing by epistasis, whereas 
population and quantitative geneticists mean something slightly different. It is 
especially troubling that finding epistasis in one context (for example, during 
segregation in a specific cross) does not necessarily mean that there will be epistasis 
in the other context (for example, in the statistical sense). Worst of all, the opposite 
will frequently be true: an absence of the detection of epistasis in the statistical sense 
does not mean that there are no interesting interactions between loci in the stricter 
genetic sense12,88. There is perhaps a bit of irony in the fact that most scientists who 
work with epistasis rely on context to define the type of gene interaction that they 
are referring to.

There are a few other conceptual barriers to generating a more unified approach to 
gene interactions and epistasis. One issue arises from the way that one views how 
organisms are assembled. Are organisms constructed, with genes and their individual 
effects serving as the building blocks, or do organisms come to us as wholes, with each 
component only being understandable within the context of the complete system96? 
The first approach characterizes the approach to epistasis followed by most population 
geneticists, who tend to build up genotypes as though each allele has a specific 
predetermined effect that can be perturbed in certain circumstances by an interaction 
term describing epistasis. This viewpoint also fits in well with a traditional mutational 
approach to examine the function of a gene, as the mutant and wild-type functions of 
genes can be examined, manipulated and combined. The second approach has been 
used by quantitative geneticists and others studying natural variation or complex 
allelic series, because in this context it become unclear what is part and what is whole 
— what is the reference standard against which each allele can be tested? Because 
there is no such thing as a ‘naked’ gene with no broader genomic context, the 
building-block model must ultimately be left to the theoreticians, but any real data will 
have to be examined using an effects model (BOX 2).
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expect the effect of substituting each allele separately 
would be. It is important to note that statistical epistasis 
does not simply mean that phenotypes are measured  

quantitatively, but that they are sampled from a popula-
tion as opposed to being intentionally constructed, as 
is described by compositional epistasis.

Figure 1 | Different viewpoints of epistasis. Coat colour variation in mammals has long been is one of the most 

fruitful examples in the study of the relationship between genotype and phenotype, with over 120 loci and 800 alleles 

described in mice alone101. The coat colour genetic pathway can be used to illustrate different usages of the term 

epistasis. In the original sense, defined by Bateson, epistasis arises when the effects of alleles at one locus are blocked 

by the presence of a specific allele at another locus. For example, a cross between agouti and extension (now called 

the melanocortin 1 receptor or Mc1r) double heterozygotes (AaEa) yields the non-Mendelian segregation ratio of 

9:4:3 (instead of 9:3:3:1) (a), with the excess extension offspring (highlighted by a yellow background) suggesting that 

the Mc1r locus operates downstream of agouti (an example of recessive epistasis). Crosses with other mutants can be 

used to order other components of the genetic pathway, relying on combinations of knockout mutants to generate 

compositional epistasis (BOX 1). The outcomes of this same cross can be illustrated in a 3x3 genotype interaction table 

that is common in population genetics, images are representative of similar phenotypes (b). The biochemistry of this 

pathway within the melanocyte has since been fully elucidated (c). Activation of MC1R turns on production of 

eumelanin, as opposed to the default production of pheomelanin. The agouti protein acts an antagonist to MC1R, 

leading to periodic activation of the agouti protein and banding of colour on individual hairs. Disruption of other loci, 

such as the classic tyrosinase locus (Tyr; previously known as albino), destroys function of the entire pathway. The 

specific interactions between the proteins in this pathway are representative of functional epistasis. Recently, Steiner 

et al.102 have used this pathway to probe natural variation between dark-coloured forest mice and light-coloured 

beach mice (d). They found that the adaptive transition from dark (D) to light (L) that accompanied the movement of 

mice from the forest to the beach is accomplished by an interaction between structural changes to the agouti locus 

and regulatory changes to the Mc1r locus. The specific effects of these interactions can be approximately quantified 

by averaging the effects of these markers over all sampled genetic backgrounds to give an estimate of the statistical 

epistasis between these loci. Interestingly, the pattern of epistasis for these loci in nature is reversed from the 

standard cross (e), presumably because the Mc1r allele in the beach mice has partial function and is therefore still 

susceptible to suppression from agouti. This observation is a clear illustration that epistasis is a property of specific 

alleles, rather than a particular locus in general. MSH, -melanocyte-stimulating hormone; ATRN, attractin; DCT, 

dopachrome tautomerase; TYRP1, tyrosinase-related protein 1; xCT, solute carrier family 7 (cationic amino acid 

transporter, y+ system), member 11. Images in parts a, b are reproduced, with permission, from REF. 103  (1979) 

Springer-Verlag. Images in part c are modified, with permission, from REF. 104  (2006) The Genetics Society.  

Part d is modified from REF. 102. Part e is courtesy of Hopi Hoekstra, Harvard University, USA.
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Admixture
The pattern of genetic variation 
that occurs when a population 
is derived from founders that 
originated from more than one 
ancestral population.

Punnett square
A method of calculating the 
outcomes of a genetic cross  
by multiplying the expected 
frequency of gametes from  
a mother by the expected 
frequency of gametes from  
the father.

Hardy–Weinberg 
equilibrium
A theoretical description of the 
relationship between genotype 
and allele frequencies that is 
based on expectation in a 
stable population undergoing 
random mating in the absence 
of selection, new mutations 
and gene flow; under these 
conditions (and in the absence 
of linkage disequilibrium) the 
genotype frequencies are 
equal to the product of the 
allele frequencies.

The last two views of epistasis are complementary 
to one another. Compositional epistasis measures the 
effects of allele substitution against a particular fixed 
genetic background, whereas statistical epistasis meas-
ures the average effect of allele substitution against the 
population average genetic background. Measures of sta-
tistical epistasis are dependent on genotype frequencies, 
which might make them a transient statistic. However, 
Fisher would undoubtedly point out that any measure 
of interaction is dependent on the specific genetic con-
text in which it is measured, so simply choosing a fixed 
genetic background to test for allelic effects is equivalent 
to setting allele frequencies at other loci to 1.0; therefore, 
compositional epistasis might be considered an arbitrary 

measurement. There is a compromise between precision 
and generality when comparing the two types of epistasis.  
Statistical measures are often an average from variable 
epistatic effects at many different loci, which might lead 
to these effects being cancelled out2,21.

The hierarchical structure of the relationship between 
compositional and statistical epistasis is similar, for 
example, to the way that a Punnett square might be seen 
as a special case of the Hardy–Weinberg equilibrium con-
dition under specific mating conditions. Some authors 
have referred to substitution against a fixed background 
as ‘physiological’22 or ‘functional’20 epistasis, but I do 
not favour these terms in this context because they are 
still essentially statistical measures and do not tell us  

 
Box 2 | Measures of epistasis

In principle, detecting epistasis using Bateson’s definition (BOX 1) is straightforward, because the phenotypes are 
qualitative and few in number. Once epistasis is made more quantitative and is expanded to include nearly any kind of 
genetic interaction, then things get more complex. First of all, epistasis means that something different happens when 
a particular set of alleles from different loci are found in combination than when they are apart. But different from 
what? It must be different from what we would expect if the effects of the two loci were combined independently. 
Here, however, the scale of measurement becomes important. Fisher defined epistasis as a deviation from the additive 
expectation of allelic effects95. For a haploid model, this could be represented as W

xy
 = 

x
 + 

y
 + , where is the 

individual effects of each allele at loci x and y, is the deviation that is due to epistasis and W is the observed 
phenotype. Relationships for diploids are more complex because of the possibility of one locus interacting with the 
dominance state of the other locus14. Fisher presumably chose this definition because additive linear models are 
tractable from a statistical point of view. Part of the reason that Fisher did not think that epistasis was that important is 
because he felt that there would usually be some scale to which the phenotypic values could be transformed, such that 
the effects would be additive.

In the late 1960s, population geneticists started using deviation from a multiplicative model of gene action as the 
definition of epistasis, instead of deviation from the additive model. This is because the evolutionary trajectories of 
loci with multiplicative fitness are independent of one another. In particular, if no linkage disequilibrium is present in 
the ancestral population, then none will develop if fitness effects are multiplicative86. A multiplicative haploid model 
would be represented as W

xy
 = 

x y
 +  It is an underappreciated fact, however, that if linkage disequilibrium is already 

present in the base population, then it can still be maintained under a multiplicative model97, so there is no perfect 
scale with which to measure epistasis. For some traits, such as fertility, an additive scale might be natural, whereas for 
other traits, such as mortality, the multiplicative approach is probably more appropriate. Perhaps not surprisingly, 
different measures can lead to different interpretations of epistasis98. Aylor and Zeng99 discuss possible extensions to 
common models of epistasis that attempt to span classical and statistical frameworks.

That linkage disequilibrium can be generated by epistasis is sometimes proposed as an indicator of gene interaction, 
although this would frequently be expected to be a weak effect relative to other factors such as admixture, and this 
expectation depends on how one measures epistasis. The stability of linkage disequilibrium depends strongly on the 
recombination rate, especially when linkage is tight97. Now that we have a firm idea of the genomic structure of many 
organisms, we know that there can often be many genes with recombination map distances less than 0.01 or 0.05, so 
this might not be a trivial effect for many genes.

Much like the definitions of epistasis, there is a range of terms associated with particular forms of epistatic effects. 
Examples include synergistic, diminishing, antagonistic, aggravating, ameliorating, buffering, compensatory and 
reinforcing. Most of these refer to similar phenomena, which makes it difficult to understand what individual 
researchers mean when they use these terms. For example, synergistic epistasis occurs when an individual with a 
particular two-locus combination of alleles displays a phenotype beyond that expected from the individual effects of 
the alleles. If these are deleterious mutations then the phenotype is less than expected, but for positive mutations the 
phenotype is greater than expected. So sometimes synergistic epistasis means ‘extra good’ and sometimes it means 
‘extra bad’. The field would benefit if all of these terms, which have context-dependent meanings, were replaced with 
two simple terms: positive epistasis and negative epistasis100. Positive epistasis means that the phenotype is higher 
than expected and negative epistasis means that the phenotype is lower than expected. These two terms are 
preferable because their meaning is immediately clear and because it is the sign of the epistasis that matters in most 
evolutionary processes (such as the generation of linkage disequilibrium), not the change in relative direction of the 
effects of the individual loci2. This change in relative direction can be addressed using another simple term, sign 
epistasis5. This term indicates that the direction of the epistatic and individual effects differ from one another and that 
the direction of selection on the individual alleles changes depending on the genetic context. For example, if two 
mutations lower fitness when found individually but increase fitness when found together, then this results in an 
adaptive valley, which has different functional and evolutionary implications than if the sign of the individual effects 
and epistasis are in the same direction (FIG. 4).
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Dauer larva
A developmentally arrested, 
immature, long-lived and 
non-feeding form of 
Caenorhabditis elegans that 
forms under conditions of food 
scarcity and high population 
density, and that resumes 
development if food levels 
increase.

Synthetic-lethal mutations
Two mutations are considered 
to be synthetically lethal if they 
result in death when both are 
present, whereas an individual 
with either mutation alone  
is viable.

anything about gene function in the way that, for 
instance, a molecular biologist would use the term.

Ultimately, different uses of epistasis can be unified 
under a single perspective, using the view that epistasis 
measures biallelic substitution under different genetic 
backgrounds, whether they are fixed or average. It is as 
simple — and as complex — as that.

Epistasis as a tool
One of the first characteristics studied by Bateson and 
Punnett23 that revealed a pattern of epistasis was flower 
colour in sweet peas. As illustrated in nearly every genet-
ics textbook, it is possible to cross two colourless (white) 
flowers and recover purple flowers in the offspring. The 
non-Mendelian segregation ratios of the F2 plants in 
this cross (9:7) suggest that two complementary genes 
are interacting with one another (FIG. 2). Our modern 
interpretation is that these genes produce enzymes 
that operate in the anthocyanin pathway, such that a  
mutation in either gene can disrupt flower colour.

In general, the fact that the phenotype of an indi-
vidual depends strongly on the specific combination of 
alleles at two or more loci suggests that this dependency 
must be informative about the nature of the functional 
interaction between these loci (FIG. 1). Although many 
anecdotal cases were collected towards the beginning 
of the twentieth century, this idea was exploited most 
fully by Beadle and Tatum and their students during the 
advent of biochemical genetics24. Separate knockouts 
that each disrupt a particular function can be crossed 
together in order to observe the nature of the interac-
tion and thereby order the genetic pathway25. This can 
be used most effectively in organisms in which large 
numbers of mutants can be generated, crossed and 
phenotyped26. For instance, in Caenorhabditis elegans, 
epistasis analysis has been used extensively to order doz-
ens of genes into pathways affecting diverse traits such 
as sex determination27, the development of the vulva28 
and entry into the dauer larva resting stage29. In each case, 
ordering of the regulatory pathways genetically preceded 
molecular characterization and provided a strong set of 
functional models or hypotheses that could then be 
used to make predictions about the probable functions 
of the identified genes and be tested by the molecular  
characterization of the gene products.

High-throughput approaches. The vast majority of 
studies that have used epistasis to analyse the structure 
of genetic pathways have used a small set of genes that 
had previously been identified to influence the trait 
of interest using single-mutant analysis. However, the 
entire premise of epistasis is that genetic interactions can 
generate novel phenotypes when found in combination 
with one another. How better to discover such interac-
tions than by looking for interactions between randomly 
selected genes? Even better, why not conduct a system-
atic study of the possible pairwise interactions between 
all genes? The problem here, of course, is one of scale. 
The number of pairwise interactions between genes 
grows at approximately the square of the number of  
genes: n(n – 1) to be exact, where n is the number  

of loci, or n(n + 1) if the parental strains are included. 
These numbers are halved if reciprocal interactions do 
not need to be tested. This type of study is a daunting but 
achievable task for the 190 interactions resulting from 20 
genes, but would be close to impossible for the over 18 
million possible interactions for every gene in the yeast 
genome. Despite this challenge, such comprehensive 
approaches are beginning to be executed, spurred on by 
the availability of comprehensive deletion and knock-
down libraries, and of high-throughput maintenance 
and screening techniques.

One among the first studies of this type was per-
formed by Tong et al.30, who used a high-throughput 
analysis approach (synthetic genetic array analysis) to 
examine the interactions of 8 different deletion mutants 
against an array of ~4,700 other deletion backgrounds. 
They later expanded this query set to 132 different 
genes31. The interactions revealed in this study define a 
network of ~1,000 genes involving ~4,000 interactions, 
with most interactions tightly grouped in self-similar 
functional clusters. These results help us understand 
how complex gene networks can build robustness into 
cellular systems32 but, because they are based on a growth 
versus no growth criterion, they are largely qualitative33. 
St. Onge et al. provide a good example of how classical 
compositional epistasis can be combined with a more 
quantitative approach in their examination of the genetic 
interaction system that influences the resistance of yeast 
to the mutagen methyl methanesulphonate (MMS)34. 
Using 26 mutants that are known to influence MMS 
resistance, St. Onge et al. constructed all 650 possible 
double-deletion strains. Of these, 10 interactions gener-
ated synthetic-lethal mutations, 67 were classified as ‘aggra-
vating interactions’ (negative epistasis; BOX 2) and 45 were 
classified as ‘alleviating interactions’ (positive epistasis), 
on the basis of a multiplicative model. The interactions 
within the positive epistasis class, which provide greater 
than expected resistance to MMS, were used to generate 
a functional interaction map among the loci (FIG. 2). Most 
of the already known genetic pathways were identified, 
in addition to a few novel connections. Interestingly, nine 
of the ten deletion combinations that yielded essentially 
the same growth characteristics both in the single and 
double mutants (that is, a coequal relationship) involved 
direct interactions between protein subunits, suggesting 
that it might be possible to connect particular epistatic 
outcomes with specific forms of functional interaction.

More complex synthetic interactions. There is no reason 
to expect all forms of epistasis to be revealed simply by the 
absence of a gene, which is certainly an extreme approach 
to perturbing complex systems. For example, Kroll et al.35 
devised a method for looking for interactions that are 
induced after systematically overexpressing genes. Using 
this approach, Sopko et al.36 found that, when overex-
pressed in Saccharomyces cerevisiae, about 15% of a set of  
5,280 yeast genes induced a growth defect, with most  
of the overexpression effects not matching the pheno-
types of their corresponding deletions. Testing a deletion 
of the cyclin-dependent kinase gene pho85 across the 
overexpression library revealed 65 synthetic interactions, 
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a most of which were previously unknown. There are of 
course an endless combination of knockout, overexpres-
sion, natural and induced alleles that can be combined to 
probe a given library or array. The fact that the specific 
interaction results obtained depend on the nature of the 
probe (deletion, overexpression and so on) in the few  
studies that have been conducted thus far is perhaps not 
surprising, but does indicate that the overall structure 
of the interaction network is likely to be complex and 
allele-specific. There is also the possibility of something 
like a ‘network uncertainty principle’, in which perturba-
tion of one part of the network is likely to cause changes 
in the nature of the interactions between other elements 
of the network37.

Synthetic mapping via RNAi knockdowns. The existence 
of comprehensive deletion libraries and high-throughput  
screening methods have made S. cerevisiae a particu-
larly powerful system for systematically dissecting epi-
static interaction networks (reviewed in REFS 18,19). 
Unfortunately, such approaches are unlikely to be widely 
applicable, so what about other organisms? Again, the 
problem here is one of scale. How do we generate and 
score so many possible combinations? Perhaps the clev-
erest approach for getting around this problem in multi-
cellular organisms has been the use of RNAi libraries to 
knock down (rather than knock out) genes in a system-
atic fashion. Lehner et al.38 used 37 strains of C. elegans 
with mutations in cell-signalling components to query 
an RNAi library of ~1,750 genes involved in signal 
transduction, transcriptional regulation and chromatin 
remodelling. The query was executed by raising each 
strain on bacteria that express double-stranded RNA of  
the target gene of interest, and observing how many 
of these ~65,000 combinations resulted in disrupted 
growth and/or reproduction. This yielded a genetic net-
work of 349 interactions involving 162 genes. Although 
the number of interactions might seem low consider-
ing the total number that are possible, it is on the same 
order as that observed in S. cerevisiae, which displays 
around 0.6% of interactions for non-essential genes31,  
with the frequency of interactions for essential genes 
being much higher at 3.3%39. Despite these gross simi-
larities, it seems that the structure of the interaction net-
works between yeast and worms is somewhat divergent, 
with perhaps fewer than 5% of the interactions shared 
in common40.

Integrating epistasis data with data from other sources. 
The obvious next step for these analyses is to link the 
network structure revealed by epistasis analysis to infor-
mation obtained from other methods, such as yeast two-
hybrid, chromatin immunoprecipitation and gene expression 
assays, to build a comprehensive map of the full ‘inter-
actome’41–44. Because the scale of experiments required, 
a currently fruitful approach seems to be to concentrate 
on a large but finite set of genes that are known to be 
involved in a well-defined biological process. For exam-
ple, Collins et al.45 used all of the pairwise interactions 
of the 743 genes known to influence chromosomal proc-
esses such as DNA repair, transcriptional regulation and 

Figure 2 | Reconstructing genetic pathways using epistasis analysis. a | A 

classical example of epistasis using flower colour in sweet peas. Combinations of 

mutations at two loci that encode enzymes that are responsible for processing 

anthocyanin operate within a single biochemical pathway. b | Construction of the 

epistatic network of genes underlying sensitivity to the mutagen methyl 

methanesulphonate (MMS) in Saccharomyces cerevisiae. The fitness of all 650 

combinations of 26 genes known to be sensitive to MMS were measured 

quantitatively; combinations showing departures from multiplicative interactions 

are connected in the network. Arrows represent five interaction subtypes: coequal 

(dashed black lines), partial masking (solid grey lines), masking (solid red lines), 

partial suppression (solid black lines) and suppression (dashed grey lines). WT, wild 

type; Δx, effect of deletion at first locus; Δy, effect of deletion at second locus. 

Photos in part a are reproduced, with permission, from http://www.photographybydave-

lines.com  Dave Lines. Part b is modified, with permission, from REF. 34  (2007) 

Macmillan Publishers Ltd. All rights reserved.
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Chromatin 
immunoprecipitation
A technique used to identify 
potential regulatory sequences 
by isolating soluble DNA 
chromatin extracts (complexes 
of DNA and protein) using 
antibodies that recognize 
specific DNA-binding proteins.

chromatid segregation in yeast. This allowed them to 
place their interaction results in the context of already 
well-explored systems, such as the biochemistry of the 
multiprotein Mediator transcriptional co-activation 
complex. In this case, epistatic interactions corresponded 
well to known physical interactions among proteins, 
but also allowed novel interactions to be detected above 
what would otherwise be a chaotic set of more than half 
a million potential interactions.

A continuing challenge for the future is finding 
ways to overcome the inherent scaling problem of the 
exponential growth in the number of possible genetic 
interactions. Furthermore, now that we are beginning 
to look at pairwise interactions, how do we know 
whether third- or higher-order interactions will also be 
relevant20? Returning to the theme of this section, how-
ever, high-throughput screens by themselves are not 
going to explain the basis for why the interaction exists. 
Interaction networks are simply hypotheses that need to 
be rigorously tested using other functional approaches. 
In this, epistasis analysis has proven to be a valuable 
tool, the use of which is sure to continue to grow.

Epistasis as an obstacle
The presence of epistasis can greatly obscure the map-
ping between genotype and phenotype. In contrast 
to mutation-based studies, which start with a known 
genetic lesion and then ask how a specific locus 
interacts with other loci, the goal of complex trait 
analysis, or QTL mapping, is to start with a given set 
of phenotypes and then to identify the genes that are 
responsible for generating differences among individu-
als within a population. Some of the issues that arise in 
QTL mapping in the presence of gene interactions are 
illustrated by a recent study by Carlborg et al.46 into the 
genetic basis of the response to selection on body size 
in chickens (FIG. 3). After approximately 40 generations 
of selection, males in the low-weight line weighed six 
times less than males in the high-weight line. It would 
seem likely that there would be a strong genetic signal 
behind such a difference. However, after examining 
many marker loci for their individual effects, only one 
QTL (named Growth9) seemed to have an effect, and 
the signal for that was weak. However, by looking for 
epistatic relationships among the markers the authors 
were able to identify five additional genomic regions 
with significant effects on growth, each of which only 
showed their effects in the high-growth background, 
that is, the line with the Growth9 QTL (FIG. 3). Together, 
this loose network of epistatic genes accounted for 45% 
of the difference among the selected lines, an overall 
effect of 3.3 phenotypic standard deviations. The indi-
vidual effect of Growth9 was completely accounted 
for by its epistatic interactions with the other QTLs. A  
similar pattern of modules of interacting QTLs has  
been identified as influencing obesity in mice47. 
Although the genes underlying these QTLs still need 
to be identified, it is clear that the vast majority of the 
genetic information in this system would have been 
missed if this study had not also looked for possible 
interactions.

Similar hidden effects are undoubtedly lurk-
ing within natural populations as well. For example, 
Ehrenreich et al.48 used association mapping at 36 can-
didate loci to investigate the genetic basis of natural 
variation in shoot-branch architecture within popula-
tions of Arabidopsis thaliana. They were able to identify 
three loci with significant associations with morphol-
ogy in the wild, but none of these loci were implicated 
in a standard QTL-mapping experiment involving 
recombinant inbred lines. Interestingly, however, 
these loci did exhibit significant epistatic relationships 
among one another within these lines. The authors 
conclude that epistasis might be prevalent within these 
populations. If nothing else, this study illustrates that 
moving between association and QTL-mapping stud-
ies can be complicated by genotype-specific patterns of 
epistasis. Association mapping in natural populations 
will be based on statistical epistasis, whereas QTL map-
ping in two inbred lines draws closer to compositional 
epistasis49,50 (although the total number of segregating 
backgrounds is still huge). Similar interactions under-
lying complex traits have been found in odour-sensing 
behaviour in Drosophila melanogaster51, growth and 
yield in tomatoes52, the A. thaliana metabolome53, 
the skeletal architecture of mice54, and in large-scale 
studies of yeast growth55, morphology56 and gene  
expression57,58.

Variation within natural populations. From mutational 
studies we know that epistasis in the classical sense is 
ubiquitous because genes interact in hierarchical sys-
tems to generate biological function. For quantitative 
genetics and the genetics of complex traits, however, it is 
the residual variation segregating within natural popula-
tions that determines differences among individuals, not 
the total scaffold of biological function. Traditionally, 
quantitative genetics has focused on aggregate meas-
ures, such as genetic variance and heritability, to esti-
mate genetic effects. There seems to be little evidence 
that epistatic variance has an important role in most 
populations59, although epistasis at individual loci can 
make significant contributions to additive variance60. 
Now that we are beginning to dissect the specific genetic 
basis of complex traits, will epistasis have a larger part 
to play? The answer is that we still do not know. This is 
partly because, even after several decades of work in this 
area, identifying the causal basis of individual variation 
in complex traits has remained fairly elusive, and partly 
because the statistical issues involved in estimating large 
numbers of potential interaction effects has limited the 
power of most existing studies. However, both of these 
barriers are beginning to fall.

Epistasis in human health and disease. By its very nature  
epistasis is a property of whole genotypes. Epistatic 
effects are therefore most clearly revealed in the eccen-
tricities of particular individuals. So it is not surprising 
that some of the best examples of epistasis are emerging 
from an area in which the focus on the individual reigns 
above all else: human health. Here we have the most 
complex of complex traits.
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Part of the motivation for the recent enthusiasm 
for looking for genetic interactions underlying human 
disease is the sense that previous failures to identify, 
and especially to replicate, significant individual genetic 
effects might be driven by underlying complexity gener-
ated by epistasis6,11. Indeed, epistatic shielding of disease 
alleles is one possible explanation for their persistence 
within populations61. Given the rapid increase in the 
size and precision of human association studies, we are 
now entering an era in which we can rigorously address 
the question of whether previous problems are a func-
tion of limitations in the data or are truly the result of 
genetic complexity62.

There are numerous cases of epistasis appearing as a 
statistical feature of association studies of human disease. 
A few recent examples include coronary artery disease63, 
diabetes64, bipolar effective disorder65 and autism66. 
Unfortunately, in only a few cases has the functional 
basis of these potential interactions been revealed. One 
of these cases involves the genetic interactions underly-
ing the autoimmune disease multiple sclerosis. Here, 
Gregersen et al.67 found evidence that natural selection 
might be maintaining linkage disequilibrium between the 
histocompatibility loci HLA-DRB5*0101 (DR2a) and 
HLA-DRB1*1501 (DR2b) (FIG. 3), which are known to be 
associated with multiple sclerosis; linkage disequilibrium 
can be generated by strong epistasis among adjacent loci 
(BOX 2). To test the idea that epistasis is occurring between 
DR2a and DR2b, Gregersen et al. generated genetically 
engineered mice that synthesize the corresponding 
human immune proteins and found that mice producing 
the protein product of DR2b were highly susceptible to 
disease, whereas those producing the DR2a product did 
not progress towards disease. Then, in a crucial test, mice 
expressing both alleles had an overall reduced suscep-
tibility to disease, suggesting that DR2a modulates the 
impact of DR2b. One possible model for this interaction 
is that DR2b stimulates the production of T cells that are 
sensitive to the antigen that induces multiple sclerosis, 
whereas DR2a suppresses or even leads to the death of 
these cells68 (FIG. 3). Such an interaction could help to 
explain why these negative effects could be segregat-
ing within human populations: under most conditions 
the influence of these two factors balance each other, 
presumably to generate a heightened response to real 
pathogens. Multiple sclerosis is a complex disease with 
a fairly weak genetic signal69, and the epistatic effect of 
these two immune genes has yet to be tested in humans. 
This is because the natural recombinants between DR2a 
and DR2b that would be required for such an analysis 
have yet to be observed68. These issues only serve to 
highlight how difficult it can be to identify underlying 
complex diseases, even without the extra complica-
tions that can arise when epistasis between two loci  
dramatically affects disease penetrance.

Limitations to inference. As the field moves toward 
whole-genome association mapping, the problem of 
scale that pervades all interaction tests becomes intense. 
The total number of tests that would be required suggests 
that stringent significance thresholds will be needed to 

Figure 3 | Epistasis in complex traits. a | More than 40 generations of selection on 

body weight in chickens has led to a large difference among lines. b | QTL mapping of  

an F2 cross between the divergent body-weight lines revealed a network of six genes 

that explains 45% of the among-line difference. Five of these loci only show their  

effects through epistasis with the sixth (Growth9). c | An example of one of the 

genotype–phenotype relationships between two of these genes. Note the large 

difference in the double Growth12–Growth9 high-weight line homozygotes (HH).  

d | Epistasis in the autoimmune reaction that is thought to underlie many cases of 

multiple sclerosis. Mice that had been transformed to produce human T-cell antigen 

receptors are then also subsequently transformed to express the human major 

histocompatibility (MHC) loci HLA-DRB5*0101 (DR2a), HLA-DRB1*1501 (DR2b) or both. 

The incidence of disease is much lower when both loci are present, even though the 

DR2a locus does not independently influence disease onset. e | These two loci encode 

antigen-binding proteins that are expressed on the surface of an antigen-presenting  

cell (APC). A possible model for the epistatic effect is that the overall antigenic effect is 

maintained by a balance between T-cell proliferation induced by DR2b and T-cell 

apoptosis induced by DR2a. The complex relationship between these two loci might 

explain the complex pattern of onset and the periodic nature of some multiple sclerosis 

cases. Parts a–c are modified, with permission, from REF. 46  (2006) Macmillan 

Publishers Ltd. All rights reserved. Part d is based on data from REF. 67 (2006) 

Macmillan Publishers Ltd. All rights reserved. Part e is modified, with permission, from 

REF. 68  (2006) Macmillan Publishers Ltd. All rights reserved.
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Linkage disequilibrium
A measure of whether alleles at 
two loci coexist in a population 
in a non-random fashion. 
Alleles that are in linkage 
disequilibrium are found 
together on the same 
haplotype more often than 
would be expected under a 
random combination of alleles.

control against false positives, but this in turn means that 
the only epistatic effects that will be detected will have to 
be huge and/or sample sizes will need to be very large70. 
Indeed, larger studies are more likely to detect epistasis 
than smaller ones6. Any suggestions to limit testing to only 
those QTLs with significant main effects71 are probably 
ill-advised: epistatic interactions with the largest relative 
effect sizes will be those with small main effects and we 
already know that epistasis is frequently detected in the 
absence of main effects50,72. Carlborg and Haley6 advocate 
a sequential approach in which potentially interesting 
QTLs are first identified using a high false-discovery 
rate, and are then used for subsequent tests for genetic 
interactions. Specialized breeding designs can be used to 
increase the resolution and the ability to detect complex 
interactions13,73. As above, the most productive approaches 
are probably going to involve coupling mapping strategies 
with other functional assays in an effort to focus on the 
interactions that are most likely to matter42,43. Although 
there is strong evidence that epistasis can be important in 
determining variation in natural and human populations, 
only further detailed studies will tell us whether this is a 
widespread or a limited phenomenon.

Structure and evolution of complex systems
Where does all of this epistasis come from? Is there 
something about the evolution of genetic systems that 
yields epistasis as a by-product? Because evolutionary 

change is predicated on the current state of a genetic sys-
tem, functional epistasis is an extremely likely outcome 
of the evolutionary process. Because future changes are 
built upon past changes, the ‘tinkering’ nature of evolu-
tion74 has the potential to build somewhat baroque sys-
tems. As solutions to one functional problem become 
fixed within an evolutionary lineage, future functional 
changes will frequently be built by adding additional 
elements to these existing systems, as when new effec-
tor molecules attach themselves to the backbone of an 
existing signal transduction pathway, for example. This 
will be true whether or not epistatic variation is present 
or important while selection is operating (FIG. 4).

Under this view, evolving genetic systems are 
something of a house of cards. Removing one central 
component, which is epistatic to many other genes, can 
bring the whole structure down. This is more because of 
the overall structural dependence induced by historical 
contingency than because it is a result of some intricately 
pieced-together machine75. Indeed, Crow76 has conjec-
tured that alleles with more severe effects, such as knock-
outs, will be more likely to display epistasis than alleles 
with more subtle genetic effects because larger pertur-
bations are more likely to disrupt the overall structure 
of the genetic system. Thus, the fact that perturbation 
approaches, as outlined above, commonly reveal epista-
sis does not necessarily mean that the alleles responsible 
for evolutionary change also tend to be epistatic. Each 

Figure 4 | Three different views of the generation of epistasis under natural selection. Three hypothetical 

adaptive landscapes are shown, in which the mean fitness of a population is a function of underlying variation at two 

or more loci. Topography lines display points of equal fitness, with warmer colours indicating areas of higher fitness. 

a | Under ‘Fisherian adaptation’77, adaptive evolution is seen as a hill-climbing process in which new beneficial 

mutations that increase fitness build upon substitutions that are already fixed within the population. Here, epistasis 

is a by-product of the historical contingency built into the evolutionary process (both from the random effects of 

mutations and from shifts in the adaptive optimum), but at any given time point the average or additive effects of a 

particular mutation are responsible for the actual evolutionary change. b | In Wright’s shifting balance process105, 

epistasis generates multiple adaptive peaks in the fitness landscape. If they are stable, these valleys can only be 

traversed by genetic drift or by tight linkage. Here, epistasis has a fundamental role in determining the direction and 

likelihood of any particular evolutionary change. c | In Gavrelet’s holy landscape model106, adaptive landscapes are 

rugged, as in part b, but the multidimensional nature of the fitness landscape leads to ridges of nearly equal fitness 

that populations move along, either by directional selection or by genetic drift. This is represented here by a ridge of 

nearly equal fitness, with end points that are spatially separated by a deep valley. In multidimensional space, this 

might be something more like a tunnel connecting regions of high fitness and avoiding complex adaptive valleys. 

Here, epistasis will be strongly apparent after populations diverge, and it might affect the direction of evolutionary 

change, but it would not generate a barrier to change as in Wright’s model.
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Box 3 | Epistasis within a locus

One of the best systems for rigorously testing the 
functional and evolutionary consequences of 
epistasis is in the within-locus interactions that 
characterize protein folding and activity. The best 
example of this so far comes from the investigation 
by Ortlund et al.82 into the evolution of novel function 
in vertebrate steroid receptors. The first step in this 
study was to use phylogenetic methods to 
reconstruct the inferred ancestral protein sequence 
that pre-dates the separate evolution of the 
mineralocorticoid and glucocorticoid steroid 
receptors, and to test its function81. It turns out that 
the ancestral protein is promiscuous and interacts 
with a variety of steroid ligands, even with ligands 
that were not present within the ancestral organism. 
Specialization therefore occurred through the 
evolution of a glucocorticoid-specific receptor from 
a more general mineralocorticoid ancestor. This 
process was achieved through changes at two 
interacting sites: serine (Ser) at position 106 replaced 
by proline (Pro; S106P) and leucine (Leu) at position 111 replaced by glutamine (Gln; L111Q). When these changes 
occur individually, S106P destroys receptor function, whereas L111Q has little functional effect. When both 
changes are present, however, the S106P site modifies the architecture of the protein and allows the L111Q site 
to form a novel hydrogen bond with cortisol — a clear case of functional epistasis (see figure part a; AncGR1 
represents the ancestral protein, AnGR2 the modified protein). Ortlund et al. place proteins containing these 
changes into ‘group X’. Three more amino-acid changes (group Y) are needed to yield the final specificity to 
cortisol, but these substitutions destabilize the protein. They must therefore be preceded by two further 
amino-acid changes (group Z) that stabilize the perturbation in protein structure that is induced by the changes 
in the X and Y groups. Ortlund et al. call the Z-group substitutions ‘permissive’ mutations, because they seem to 
have little effect on receptor function, but are a crucial step for allowing the other functional changes to occur. 
There is another permissive mutation, tyrosine (Tyr) at position 27 replaced by arginine (Arg; Y27R) (see figure 
part b), which precedes all of these changes, and which generates a novel cation–  interaction (that replaces a 
weaker hydrogen bond) that stabilizes portions of the protein that would have otherwise been destabilized by the 
changes described above.

Together, these structural interactions create a specific order in which the evolutionary substitutions must 
occur. There are a number of possible pathways for these changes (see figure part c), but only a few are 
functionally viable because the so-called ‘conformational epistasis’ generated by structural failure of the  
protein limits the evolutionary options. Here the evolution is from a generalized response in the ancestral protein 
(AncGR1) to the hormones aldosterone (green), cortisone (purple) and docetaxel (orange) to specificity to 
cortisone alone (+XYZ); filled circles represent a response to the hormone, outlined circles represent no response. 
In this example, we have a direct tie between specific amino-acid changes, epistatic interactions generated by 
their influence on protein structure and the impact that these interactions have on subsequent evolutionary 
change. This figure is modified, with permission, from REF. 82  (2007) American Association for the Advancement 
of Science.
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allelic difference, including those generated by induced 
mutations, needs to be evaluated on a case-by-case basis. 
Although epistasis is usually portrayed as a property of 
a given locus, as we have seen it is actually a property  
of individual alleles at multiple loci. Unfortunately, allelic 
variation for epistatic effects has yet to be studied in a 
systematic fashion2.

It is important to remember that most models of the 
evolution of genetic systems (such as those depicted in 
FIG. 4) are simple metaphors of complex genetic phe-
nomena. One of the problems in this approach is the 
representation of complex, multidimensional processes 
as three-dimensional cartoons. It is clear that taking these 
kinds of cartoons too literally can lead to a limited view 
of possible evolutionary dynamics, such as neglecting the 
possibility of complex ridges connecting regions of high 
fitness. Fisher’s77 view was that the evolutionary process 
is so multidimensional that there will always be some 
axis along which selection can move a population, such 
that adaptive valleys, even if they exist, will be localized 
in their effects. Kauffman has emphasized the opposite, 
showing that the number of valleys can rapidly increase 
with increasing dimensions78. To a large extent this is an 
empirical question, albeit one that is extremely difficult 
to address adequately.

The bottom line is that epistasis and genetic interac-
tions are an inevitable consequence of the evolutionary 
process, no matter how it is conceived. This means that 
functional biologists have to confront the reality of com-
plex genetic systems, regardless of their ultimate cause. 
This is the exquisite — and sometimes frustrating — 
result of 3.5 billion years of descent with modification.

Epistasis and the path of evolutionary change. Epistasis 
can have an important influence on a number of evo-
lutionary phenomena, including the genetic divergence 
between species79, the evolution of sexual reproduction4 
and the evolution of the structure of genetic systems80. 
One of the more interesting long-term questions in evo-
lutionary biology is whether or not epistasis determines 
the path of evolutionary change. Although the focus here 
has traditionally been on interactions between disparate 
loci, currently the best systems for investigating this 
question are derived from functional studies of interac-
tions operating within individual proteins (BOX 3). Thus 
far, these studies81–85 have shown that epistasis can have 
a strong role in limiting the possible paths that evolution 
can take, but not in limiting its eventual outcome. Of 
course, this might be partly due to the fact that inacces-
sible evolutionary outcomes might never be observed, 
but this in itself is an important result. These studies 
have been especially valuable in helping to build a bridge 
between the functional analysis of epistasis that has char-
acterized molecular genetics and the long-term impact 
of epistasis on genetic change that has characterized  
much of the debate in evolutionary biology.

The evolution of regulatory complexity. One conse-
quence of a systematic search for gene interactions is that 
the consequences of linkage can tend to be overlooked. 
As seen in the case of the histocompatibility loci in  

multiple sclerosis, linkage can facilitate the maintenance 
of epistatic interactions (and vice versa)86 and could 
help to explain how molecular complexity evolves. Such  
linkage is self-evident when looking at evolution of pro-
tein function, but recent analysis of patterns of gene regu-
lation suggest that there can be complex patterns of gene 
regulation in localized genomic regions87 that might be 
the result of similar types of evolutionary constraints. We 
need to look at interactions between promoters, coding 
genes, microRNAs, chromatin remodelling and other fac-
tors that Bateson would never have dreamed of, as being 
parts of epistatic networks with evolutionary dynamics 
that can be guided by complex sets of genetic interactions 
and their genomic relationship with one another.

Conclusion: building toward the future
It should be apparent that the global analysis of gene-
interaction patterns bears a striking resemblance to 
what is now called systems biology88. One of the central 
questions in this field is whether there are emergent 
properties of complex systems that are not predicted 
from looking at individual system components, yet are 
essential for understanding the function of the system 
as a whole. From an evolutionary standpoint, we might 
also add questions such as whether the structure of the 
system has evolved to facilitate these properties (for 
example, robustness, modularity and evolvability33,80,89).

The answers to these questions will rely on our ability 
to expand the use of epistasis in two directions. First, as 
has already been occurring in a few model systems, we 
need to explore more of the potential interaction space 
through high-throughput screens of genetic interac-
tions, transcriptional regulation, protein modification 
and interaction, and phenotypes. Second, we need to 
complete the unification of classical and statistical views 
of gene interaction by encouraging molecular biologists 
to continue to become more quantitative in their meas-
ures of genetic outcomes and evolutionary geneticists 
to become more mechanistic in their interpretations of 
evolutionary change. As this occurs, all sides of epistasis 
(FIG. 1) should become unified through the metaphor of 
quantitative flow across a genetic network.

This approach can be used to predict the emergence of 
epistasis in the traditional sense90, can facilitate the use 
of knockout and gain-of-function studies to test system-
level predictions91–93, and can help direct tests that should 
lead to the elucidation of the functional nature of the 
interactions. This quantitative detail can then be used 
to understand the implications of these interactions 
from systems and evolutionary viewpoints in order to 
understand the broader population-level consequences 
of epistasis for generating differences among individuals. 
This is neither reductionist nor holistic, but a powerful 
combination of the two. The overwhelming combinator-
ics of the problem is a major issue (and at some point 
insurmountable), so progress will ultimately need to be 
based on strong hypotheses generated from functional 
information. Given recent work in this area, it is likely 
that for the next century the concept of epistasis will be 
even more central to biology than it has over the past 
century.
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	Epistasis as an obstacle
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