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Abstract

Natural selection drives populations towards higher fitness, but crossing fitness valleys or plateaus may facilitate progress
up a rugged fitness landscape involving epistasis. We investigate quantitatively the effect of subdividing an asexual
population on the time it takes to cross a fitness valley or plateau. We focus on a generic and minimal model that includes
only population subdivision into equivalent demes connected by global migration, and does not require significant size
changes of the demes, environmental heterogeneity or specific geographic structure. We determine the optimal speedup of
valley or plateau crossing that can be gained by subdivision, if the process is driven by the deme that crosses fastest. We
show that isolated demes have to be in the sequential fixation regime for subdivision to significantly accelerate crossing.
Using Markov chain theory, we obtain analytical expressions for the conditions under which optimal speedup is achieved:
valley or plateau crossing by the subdivided population is then as fast as that of its fastest deme. We verify our analytical
predictions through stochastic simulations. We demonstrate that subdivision can substantially accelerate the crossing of
fitness valleys and plateaus in a wide range of parameters extending beyond the optimal window. We study the effect of
varying the degree of subdivision of a population, and investigate the trade-off between the magnitude of the optimal
speedup and the width of the parameter range over which it occurs. Our results, obtained for fitness valleys and plateaus,
also hold for weakly beneficial intermediate mutations. Finally, we extend our work to the case of a population connected
by migration to one or several smaller islands. Our results demonstrate that subdivision with migration alone can
significantly accelerate the crossing of fitness valleys and plateaus, and shed light onto the quantitative conditions
necessary for this to occur.
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Introduction

Natural selection drives populations towards higher fitness (i.e.

reproductive success), but crossing fitness valleys or plateaus may

facilitate progress up a rugged fitness landscape. Rugged fitness

landscapes arise from epistasis, i.e. interactions between genetic

variants. For instance, two mutations together can yield a benefit

while each of them alone is detrimental: such reciprocal sign

epistasis can give rise to a fitness valley [1,2]. While the high

dimensionality of genotype space makes it challenging to probe the

structure of fitness landscapes [3,4], evidence has been accumu-

lating for frequent landscape ruggedness, especially in recent years

[1,2,4–15].

Population structure can play an important role in evolution

[16–24]. In particular, the time taken to cross a fitness valley or

plateau depends on population size since stochastic effects such as

genetic drift have an increased importance in small populations,

allowing neutral and deleterious mutations to fix with increased

probability [25–28]. Population subdivision into demes can allow

the maintenance of larger genetic diversity due to increased

genetic drift as well as to the quasi-independent explorations of the

fitness landscape that are run in parallel by each deme.

Subdivision may thereby facilitate valley or plateau crossing

locally and subsequent migration can then spread beneficial

mutations throughout the entire subdivided population ("meta-

population’’). This idea was first discussed by Wright in his shifting

balance theory [29–32] and the importance of this effect has been

the subject of a long debate [33–42]. In this work, we investigate

the role of subdivision with global migration alone, without

additional effects such as strong dependence of deme size on

fitness, including extinction and refounding of demes, which

played a crucial role in Wright’s theory. Our generic and minimal

model enables us to quantatively determine the conditions under

which population subdivision accelerates fitness valley or plateau

crossing.

Studying quantitatively the effect of subdivision on evolution

may help in inferring fitness landscape structure from evolution

experiments [43]. Work on structured populations has been used

as qualitative proof of landscape ruggedness [16]. Current

experiments investigating the evolution of subdivided populations

at various migration rates have produced mixed results, some

demonstrating faster adaptation of subdivided populations [44],
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and others not [45]. It is therefore important to determine under

what conditions subdivision accelerates fitness valley or plateau

crossing. Additionally, population subdivision is extremely com-

mon in natural systems. For instance, evidence has recently been

found for compartmentalization of HIV in different organs of a

single patient [46,47].

Here we show that subdivision can significantly accelerate

fitness valley or plateau crossing over a wide parameter range,

both with respect to a non-subdivided population and with respect

to a single deme. Intuitively, deleterious or neutral intermediate

mutations may fix in individual demes, allowing for the

maintenance of a larger proportion of these mutants in a

metapopulation than in a well-mixed population. We first

determine the optimal speedup of valley or plateau crossing by

subdivision, in the best possible scenario where valley or plateau

crossing by the metapopulation is driven by that of its fastest deme.

This enables us to demonstrate that isolated demes must be in the

sequential fixation regime for subdivision to significantly accelerate

crossing. We then determine the conditions under which the best

possible scenario can be realized. Using Markov chain theory, we

obtain analytical expressions for the parameter range where valley

or plateau crossing by a metapopulation is as fast as that of its

fastest deme. Our analytical predictions are verified using

stochastic simulations. Furthermore, we discuss the effect of

varying the degree of subdivision of a population, and investigate

the trade-off between the magnitude of the optimal speedup and

the width of the parameter range over which it occurs. Finally, we

extend our work to weakly beneficial mutations and to a

population connected to smaller islands, and we discuss the

magnitude and robustness of the effect for realistic parameter

values.

Results

Our results are organized as follows. First, we specify our model

for the evolutionary dynamics of a subdivided population with

migration. Then, we focus on the ‘best possible’ scenario where the

metapopulation is driven by its fastest deme. We calculate the ratio

of the valley-crossing time for the metapopulation to the valley-

crossing time for an equally-sized well-mixed population under

this strong assumption. This yields the optimal speedup that may

be obtained by subdivision, and enables us to demonstrate that

sequential fixation in individual demes is necessary to achieve a

significant speedup. Then, we determine the range of parameter

values for which the best possible scenario is attained, i.e. the

valley-crossing time for the metapopulation is indeed dominated

by the valley-crossing time of its fastest deme. Qualitatively,

migration has to be both rare enough to enable demes to cross the

fitness valley or plateau quasi-independently and frequent enough

to allow fast spreading of the final beneficial mutation to the whole

metapopulation once it has fixed in the fastest deme: these

conditions yield an optimal window of migration rates. Finally, we

compare our analytical predictions with results from stochastic

simulations.

Model of evolutionary dynamics in a subdivided
population

We focus on asexual individuals, characterized by their

genotype and associated fitness f . Each individual has a division

rate proportional to f , and a death rate d , which is the same for

all. We consider an ensemble of D identical demes, each with a

constant number N of individuals. The division rate averaged over

the individuals of a deme is thus equal to the death rate d . We

treat migration as a random exchange of two individuals between

two different demes, occurring at rate 2m per individual. In our

model, exchange between any two demes is equally likely, as in

Wright’s "island model’’ [29]. This constitutes a generic and

minimal model of subdivision with migration, without any

dependence of migration rate on the average fitness of a deme

(in contrast with models where demes containing beneficial

mutants increase significantly in size and migrate more rapidly

[30,33]), or additional effects of extinction and re-founding of

demes [30,32,33], specific geographic structure [16,17,19–21], or

spatially heterogeneous environments [18,22–24], on which

previous studies focused.

We consider the simplest fitness valley or plateau, involving

three successive genotypes denoted by ‘0’, ‘1’ and ‘2’ (see Fig. 1A).

The initial genotype is taken as reference for fitness: f0~1. We

denote the fitnesses of the subsequent genotypes by f1~1{d and

f2~1zs. The first mutation is assumed to be either neutral

(d~0), which yields a fitness plateau, or deleterious (dw0), which

corresponds to a fitness valley, while the second mutation is

assumed to be beneficial (sw0). We focus on first mutations that

are not too strongly deleterious: d%1. We only allow forward

mutations, and note that including back mutations does not

qualitatively affect crossing times [28]. Finally, we assume that all

mutations have probability m per division, but generalization to

different mutation probabilities is straightforward.

In this paper, we focus on the average time tm required for the

whole metapopulation to cross the fitness valley or plateau, i.e. to

fix mutation ‘2’ in all demes, starting from an initial state where all

individuals have genotype ‘0’.

The best possible scenario
For small enough migration rates, each deme in the metapop-

ulation performs a quasi-independent trial at crossing the valley or

plateau. At best, the valley or plateau crossing time tm of the whole

metapopulation is dominated by that, tc, of the ‘‘champion’’ deme

in the metapopulation, i.e. the deme that crosses the fitness valley

or plateau fastest.

Author Summary

Experimental evidence has recently been accumulating to
suggest that fitness landscape ruggedness is common in a
variety of organisms. Rugged landscapes arise from
interactions between genetic variants, called epistasis,
which can lead to fitness valleys or plateaus. The time
needed to cross such fitness valleys or plateaus exhibits a
rich dependence on population size, since stochastic
effects have higher importance in small populations,
increasing the probability of fixation of neutral or
deleterious mutants. This may lead to an advantage of
population subdivision, a possibility which has been
strongly debated for nearly one hundred years. In this
work, we quantitatively determine when, and to what
extent, population subdivision accelerates valley and
plateau crossing. Using the simple model of an asexual
population subdivided into identical demes connected by
gobal migration, we derive the conditions under which
crossing by a subdivided population is driven by its fastest
deme, thus giving rise to the maximal speedup. Our
analytical predictions are verified using stochastic simula-
tions. We investigate the effect of varying the degree of
subdivision of a population. We generalize our results to
weakly beneficial intermediates and to different popula-
tion structures. We discuss the magnitude and robustness
of the effect for realistic parameter values.

Population Subdivision and Rugged Landscapes
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We now focus on this best possible scenario, which is illustrated

schematically in Fig. 1B: first, the champion deme crosses the

valley or plateau by sequential fixation, and then the beneficial

mutation rapidly spreads by migration of through the whole

metapopulation. Once this best possible scenario is characterized,

the crucial question will be whether, and under what conditions, it

can be attained: this point will be addressed in the following

section.

Determination of tc. Valley or plateau crossing by a non-

structured, well-mixed population can occur by two different

mechanisms: sequential fixation and tunneling. The former

corresponds to fixation of mutation ‘1’ in the whole population,

and to subsequent fixation of the beneficial mutation ‘2’.

Conversely, the latter occurs when the beneficial mutation arises

in a small fluctuating minority of first-mutants, and fixes directly:

tunneling does not involve fixation of the intermediate mutation

‘1’ [28]. For given values of the parameters d, s, and m, sequential

fixation is the fastest process for small populations, where genetic

drift plays an important part. Tunneling becomes the dominant

process of valley or plateau crossing when the number N of

individuals per deme exceeds a threshold value N|, which

depends on d, s, and m (see Ref. [28] for a full discussion of this

threshold value). Fig. 1C shows simulation results for the valley

crossing time t of a non-subdivided population versus its size, and

illustrates these two different regimes and the transition between

them. Note that in our simulations (described in Methods, Sec. 1),

we hold fixed the carrying capacity K of populations (or demes)

instead of the number of individuals N. This softer constraint is

more realistic and avoids some possible biases in the metapopu-

lation case (see Methods, Sec. 1.2). In practice, each individual

divides at a rate f (1{N=K) and dies at a constant rate d: hence,

at steady-state, N&K(1{d=f ). We choose d~0:1, and fitnesses f

of order one, thus N&0:9K .

We now consider D independent demes with no migration, and

we determine the crossing time tc of the fastest of these D demes,

both for demes in the sequential fixation regime and for demes in

the tunneling regime.

Demes in the sequential fixation regime. Let

pij~
1{e

fi{fj

1{e
N(fi{fj )

ð1Þ

denote the probability of fixation of genotype ‘j’, with fitness fj ,

starting from a single individual with genotype ‘j’ in a deme where

all other individuals initially have genotype ‘i’ and fitness fi=fj

[25,28]. If fi~fj , the probability of fixation of genotype ‘j’ reads

pij~1=N. Valley or plateau crossing by sequential fixation

involves two successive steps. The first step, fixation of the

intermediate mutation ‘1’, occurs with rate r01~Nmdp01, where

Nmd is the total mutation rate in the deme. (Recall that the deme

size N is fixed, and that d represents the birth/death rate. Note

that the correspondence with Ref. [28] is obtained by multiplying

by 1=d all the timescales in this reference, which are expressed in

numbers of generations.) Similarly, the second step, fixation of the

final beneficial mutation ‘2’, has rate r12~Nmdp12. The first step is

longer than the second one since mutation ‘1’ is neutral or

deleterious, while mutation ‘2’ is beneficial. If the first step

dominates, the distribution of crossing times is approximately

exponential with rate r01. The shortest crossing time among D

Figure 1. Population subdivision with migration can accelerate fitness valley crossing. A. Fitness valley: fitness f versus genotype g. B.
Schematic representation of the best possible scenario, for a metapopulation with D~7 demes. Each square represents a deme of identical size, and
a row represents the metapopulation. Colors represent genotypes, with the color-code defined in A. Initially (top row), all demes have genotype ’0’.
The demes explore the fitness landscape described in A quasi-independently, and one of them, the "champion’’ deme (second from the left here),
crosses the fitness valley first (second and third row). Individual demes are assumed to be in the sequential fixation regime, so this deme fixes first
mutation ’1’ and then mutation ’2’. The beneficial mutation ’2’ then spreads by migration, which is modeled by random exchange of individuals
between demes (arrow on the fourth row), leading to fixation of mutation ’2’ in the whole metapopulation (fifth row). C. Average valley crossing time
t of a non-structured population, as a function of its carrying capacity K , in logarithmic scale. Dots are simulation results, averaged over 1000 runs for
each value of K ; error bars represent 95% confidence intervals (CI). Theoretical predictions from Ref. [28] are plotted for the sequential fixation regime
(blue line) and for the tunneling regime (red line), using N~0:9K (see text) to make the correspondence. The transition between these two regimes
is indicated by a dotted line. The carrying capacities at stake in D are highlighted in green (id : isolated deme; ns: non-subdivided population).
Parameter values: d~0:1, m~8|10{6 , s~0:3 and d~6|10{3 . D. Average valley crossing time tm of a metapopulation composed of D~7 demes
each with carrying capacity K~357 (total carrying capacity: DK~2499), plotted versus the migration-to-mutation rate ratio m=(md), in logarithmic
scale. Parameter values are the same as in C, and only the migration rate m is varied. Dots represent simulation results averaged over 1000 runs for
each value of m, and error bars are 95% CI. Black vertical lines represent the limits of the interval of m=(md) in Eq. 14. Blue (resp. red) line: valley
crossing time for an isolated deme (id) with K~357 (resp. a non-subdivided population (ns) with K~2500) for the same parameter values, averaged
over 1000 runs; shaded regions: 95% CI. Dashed blue (resp. red) lines: corresponding theoretical predictions from Ref. [28] (see C).
doi:10.1371/journal.pcbi.1003778.g001
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independent demes is then distributed exponentially with rate

Dr01 (see Methods, Sec. 2). Thus, the average crossing time of the

champion deme reads tc&(Dr01){1. Denoting by tid&r{1
01 the

average crossing time for an isolated deme, we obtain

tc

tid

&
1

D
: ð2Þ

Hence, the champion deme crosses the valley D times faster on

average than a single deme. This simple result holds for

Dp01%p12. For simplicity, we restrict ourselves to this regime in

the main text, but we provide the general method for calculating

tc in Methods, Sec. 2. We use this general method to calculate

numerically the exact value of tc in our examples below.

Demes in the tunneling regime. Assuming that Nmv1, so

that there is no competition between different mutant lineages,

valley or plateau crossing by tunneling involves a single event with

constant rate, namely the appearance of a ‘‘successful’’ ‘1’-mutant,

whose lineage includes a ‘2’-mutant that fixes [28]. Crossing time

is thus exponentially distributed. Therefore, in this case too, the

crossing time tc of the champion deme among D isolated demes is

D times smaller than that of an average isolated deme (see

Methods, Sec. 2): Eq. 2 is valid in the tunneling regime too.

Sequential fixation in individual demes is necessary for

significant speedups. In the best possible scenario, where

crossing by the metapopulation is dominated by that of the

champion deme, i.e. tm&tc, the previous paragraph shows that

tm=tid&1=D, both when isolated demes are in the sequential

fixation regime and when they are in the tunneling regime. Hence,

it is necessary to have

tid

tns

vD , ð3Þ

where tns is the average crossing time of the non-subdivided

population, for subdivision to speed up valley or plateau crossing

in the best scenario (i.e. for tm&tc to be smaller than tns). This

necessary condition is general since it holds a fortiori beyond the

best scenario. Graphically, in Fig. 1C, which is a logarithmic plot

of crossing time versus population size for a non-structured

population, the slope of the line joining the isolated deme to the

non-subdivided population has to be less negative than -1 in order

for speedups to be possible. Recall indeed that the nonsubdivided

population is D times larger than an isolated deme. The necessary

condition in Eq. 3 leaves the possibility of significant speedups in

the non-trivial case where a single isolated deme crosses slower

than a non-subdivided population (tidwtns). Fig. 1D demonstrates

a significant speedup by subdivision obtained in this regime where

1vtid=tnsvD.

Let us consider a metapopulation such that isolated demes are

in the tunneling regime. Then, the larger non-subdivided

population with ND individuals is also in the tunneling regime

[28]. Assuming that NDmv1, valley or plateau crossing by this

non-subdivided population follows the same laws as crossing by

the demes. Since the average crossing time by tunneling is

inversely proportional to population size (see Ref. [28] and

Fig. 1C), we obtain tid=tns~D, in contradiction with Eq. 3. This

implies that, even in the best possible scenario, subdivision cannot

accelerate crossing if isolated demes are in the tunneling regime

(since here, tm=tns&1). Thus, having isolated demes in the

sequential fixation regime is a necessary condition for subdivision

to accelerate crossing. Importantly, however, the non-subdivided

population is not required to be in the sequential fixation regime.

For instance, in Fig. 1D, the non-subdivided population is in the

tunneling regime. Note that when NDmw1, the population enters

the semi-deterministic regime [28] and the average crossing time

need not be proportional to 1=N. Minor speedups may exist in this

regime, but such effects are beyond the scope of this work. In all

the following, we will focus on the regime NDmv1.

Maximal possible speedup by subdivision. The speedup

gained by subdividing a population of a given total size is directly

described by the ratio tm=tns of the valley crossing time of a

metapopulation to that of a non-subdivided population. Here, we

discuss the values this ratio can take in the best possible scenario,

where valley crossing by the metapopulation is dominated by that

of the champion deme, and we determine the valley depth for

which the highest speedups are obtained (i.e. for which this ratio is

smallest).

Let us first focus on the case where both the non-subdivided

population and the isolated deme are in the sequential fixation

regime. The average valley crossing time by the champion deme

reads tc&1=(DNmdp01) (see our calculation of tc above). In the

best possible scenario, tm&tc. The average valley crossing time by

the non-subdivided population is tns&1=(DNmdp’01), where

p’01~(ed{1)=(eDNd{1) is the fixation probability of an individ-

ual with genotype ‘1’ in a population of ND individuals where all

the others initially have genotype ‘0’ (see Eq. 1). Hence, we obtain

tm

tns

&
p’01

p01
~

eNd{1

eDNd{1
: ð4Þ

In the case of a plateau, this reduces to tm=tns~1=D. These

results demonstrate that if both the non-subdivided population and

the isolated deme are in the sequential fixation regime, then

subdivision significantly accelerates crossing in the best scenario.

The speedup by subdivision becomes larger (i.e. tm=tns becomes

smaller) when the number of demes D is increased at fixed valley

depth d and fixed deme size N (or fixed total population size

N~ND). Besides, for D&1, the ratio in Eq. 4 decreases when d is

increased at fixed N and D: the highest speedups are obtained for

the deepest valleys. However, as d is increased, the non-subdivided

population will eventually enter the tunneling regime (see Fig. 1C).

Let us now consider the alternative case, where the non-

subdivided population is in the tunneling regime, while the isolated

demes are in the sequential fixation regime. In this case,

tc~1=(NDmdp01), where p01 is the fixation probability of a ‘1’-

mutant in an isolated deme (see Eq. 1), while tns~1=(NDmdq),
where q is the probability that a ‘1’-mutant is ‘‘successful’’ in the

tunneling process, i.e. that its lineage includes a ‘2’-mutant that

fixes in the non-subdivided population [28]. Hence, in the best

scenario, where tm&tc, we obtain

tm

tns

&
q

p01

: ð5Þ

Since q is independent from population size [28], it also

represents the probability of successful tunneling in an isolated
deme. For isolated demes in the sequential fixation regime, qvp01

by definition [28]. Hence, Eq. 5 entails tm=tnsv1. Thus, speedups

always exist in the best scenario, provided that the necessary

condition that isolated demes cross the plateau by sequential

fixation is satisfied. In the case of a fitness plateau, q~
ffiffiffiffiffi
ms
p

[28],

while p01~1=N . Hence, Eq. 5 yields

Population Subdivision and Rugged Landscapes
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tm

tns

&N
ffiffiffiffiffi
ms
p

: ð6Þ

In the other extreme case of a sufficiently deep valley that

satisfies d&2
ffiffiffiffiffi
ms
p

, we have q~ms=d [28]. Using the condition

d%1, Eq. 1 yields p01~d=(eNd{1). Hence, Eq. 5 gives

tm

tns

~ms
eNd{1

d2
: ð7Þ

Interestingly, these expressions of tm=tns are independent of D
at fixed N . This stands into contrast with the regime discussed

above where the non-subdivided population is in the sequential

fixation regime. At fixed N, the ratio tm=tns expressed in Eq. 7 is

minimal for

d&
1:594

N
: ð8Þ

The minimum of tm=tns, corresponding to the largest speedup

by subdivision, is obtained for this value of d:

tm

tns

&1:544N2ms : ð9Þ

The small values of mutation probabilities in nature ensure that

the values of tm=tns in Eqs. 6 and 9 can be very small.

Conditions for subdivision to maximally accelerate valley
or plateau crossing

The previous section was dedicated to the study of the best

possible scenario, where the valley or plateau crossing time tm of

the whole metapopulation is dominated by that, tc, of the

champion deme in the metapopulation (i.e. the one that crosses

fastest). We now determine analytically the conditions under

which this best possible scenario is attained. For this, we focus on

migration rates much smaller than division/death rates, 2m%d,

such that fixation or extinction of a mutant lineage in a deme is not

perturbed by migration. In addition, we assume that isolated

demes are in the sequential fixation regime, since we showed

above that it is a necessary condition for subdivision to significantly

accelerate crossing, and that it is a sufficient condition for

subdivision to accelerate crossing in the best scenario.

In a nutshell, migration must be rare enough for demes to

evolve quasi-independently, but frequent enough to spread the

beneficial mutation rapidly. The analytical results below allow for

predicting the range of migration rates such that subdivision

maximally accelerates valley or plateau crossing.

First condition: Quasi-independence. Migration must be

rare enough for demes to remain shielded from migration while they

harbor the intermediate mutation. Hence, the average time for a

deme of ‘1’-mutants to fix the beneficial mutation ‘2’, which reads

t12~1=r12~1=(Nmdp12), must be smaller than the average

extinction time, te, for a deme of ‘1’-mutants to be wiped out by

migration from other demes with genotype ‘0’. The total rate of

migration events in the metapopulation is DNm, so te~ne=(DNm),
where ne is the average total number of migration events required for

the ‘1’-mutants to go extinct. The first condition, t12vte, thus yields

m

md
v

nep12

D
: ð10Þ

Let us now estimate ne. If one deme has fixed genotype ‘1’ while

all the others still have genotype ‘0’, the probability that a

migration event involves the mutant deme is pr~2=D. Following

such a ‘‘relevant’’ migration event, extinction of the mutant (‘1’)

lineage occurs if the ‘0’ migrant fixes in the ‘1’ deme while the ‘1’

migrant does not fix in the ‘0’ deme: this occurs with probability

p10(1{p01). Conversely, the number of mutant demes increases to

two with probability p01(1{p10), and otherwise remains constant.

For Nd&1, using also d%1, we have p01&de{Nd%p10&d (see

Eq. 1). Hence, migration-induced increases in the number of

mutant demes can be neglected, and we obtain

ne&
1

prp10(1{p01)
&

D

2d
: ð11Þ

In Methods, Sec. 3, we derive the general expression of ne,

which does not require Nd&1, using finite Markov chain theory

[25]. Note that this general expression is important because

subdivision generically most accelerates valley crossing for Nd&1
(see Eq. 8).

Second condition: Rapid spreading. Migration must be

frequent enough for the average spreading time ts of the final

mutation through the whole metapopulation to be shorter than the

valley or plateau crossing time tc&1=(Dr01) by the champion

deme. Let ns be the average number of migration events required

for the final beneficial mutants (with genotype ‘2’) to spread by

migration, once the champion deme has fixed genotype ‘2’. Then,

we can write ts~ns=(DNm), and the second condition reads

nsp01v
m

md
: ð12Þ

Let us now estimate ns, starting from a state where the

champion deme has fixed genotype ‘2’, while all others still contain

genotype ‘0’. (Note that some demes may have genotype ‘1’, but

this is rare since fixation of mutation ‘1’ is the slowest step.

Moreover, this would not change the spreading time for a plateau

and would shorten it for a valley.) Let us focus on the regime

where s%1 but Ns&1, such that mutation ‘2’ is substantially, but

not overwhelmingly, beneficial [28]. As in the above discussion

about ne, we then obtain p20%p02. Thus, it is possible to neglect

any migration-induced decrease in the number of demes with

genotype ‘2’, which we denote by i. The probability that a

migration step exchanges individuals with different genotypes is

pi~2i(D{i)=½D(D{1)�, and the probability that such a relevant

migration step increases i by one is p02&s. Hence, we obtain

ns&
XD{1

i~1

1

pis
~

D{1

s

XD{1

i~1

1

i
&

D log D

s
, ð13Þ

where the last expression is obtained for D&1. In Methods, Sec. 3,

we use finite Markov chain theory to derive the general analytical

expression for ns, which does not require Ns&1.

Combination of the two conditions. Together, Eqs. 10 and

12 yield the interval of m=md over which subdivision maximally

accelerates valley or plateau crossing. For
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nsp01%
m

md
%

nep12

D
, ð14Þ

we expect the valley or plateau crossing time tm of the whole

metapopulation to be dominated by that of the champion deme:

tm=tid&1=D, where tid&r{1
01 is the average crossing time for an

isolated deme, and in the best scenario, tm&tc&tid=D.

In the regime where Ns,Nd&1 and s,d%1, we can use the

simple expressions of ne and ns given in Eqs. 11 and 13, which

yields

de{Nd

s
D log D%

m

md
%

1

2
1z

s

d

� �
: ð15Þ

The ratio, R, of the upper to lower bound in Eq. 15 reads

R~
1

2D log D

s

d
1z

s

d

� �
eNd : ð16Þ

This ratio increases exponentially with N (this dependence on N
comes from that of p01). This entails that, in this regime, the

interval of m=(md) where subdivision most accelerates crossing

becomes wider as N increases. However, the width of this interval

is limited by the fact that isolated demes have to be in the

sequential fixation regime (see Discussion). While the expressions

of the interval bounds in Eq. 15 are more illuminating and easier

to derive than the general ones, the latter, given in Methods, Sec.

3, actually play important roles since the highest speedups of valley

crossing gained by subdivision are generically obtained for Nd&1
(see Eq. 8).

Case of the fitness plateau. We have obtained an explicit

expression of the interval of m=md over which subdivision

maximally accelerates valley crossing in the case of a relatively

deep fitness valley where Nd&1 while d%1. In the opposite limit

of a fitness plateau (d~0), retaining the assumptions Ns&1 and

s%1, Eq. 14 can also be simplified. For this, we use the expression

of ne obtained in Eq. 35 of Methods, Sec. 3, and the expression of

ns in Eq. 13, and we note that, since mutation ‘1’ is neutral,

p01~1=N and p12~p02&s. Eq. 14 then becomes:

1

Ns
D log D%

m

md
%

Ns

2
log D , ð17Þ

where we have used N&1 and D&1. The ratio, R, of the upper to

lower bound in Eq. 17 reads

R~
N2s2

2D
: ð18Þ

This simple expression of R demonstrates that the range of m=(md)
over which subdivision maximally accelerates plateau crossing

increases as the deme size N becomes larger, and that this range is

quite wide as long as the number of demes satisfies D%(Ns)2,

which is a realistic condition (recall that we are in the regime

Ns&1).

Simulation results
We now present numerical simulations of the evolutionary

dynamics described above, which enable us to test our analytical

predictions, and to gain additional insight in the process

beyond the optimal scenario. Our simulations are based on a

Gillespie algorithm [48,49], and described in detail in Methods,

Sec. 1.

Let us first focus on the example presented in Fig. 1D, which

shows an example plot of tm as a function of the ratio of migration

to mutation rates, m=(md), obtained through our simulations when

varying only the migration rate. With the parameter values used in

this figure, the interval of Eq. 14 is 5:8|10{2%m=(md)%21.

Note that here, and in the following examples, we use the general

expressions of ns and ne given in Methods, Sec. 3, to compute the

interval of Eq. 14. Fig. 1D features a minimum right at the center

of this theoretically predicted optimal interval. Moreover, this

minimum corresponds to tm~(5:02+0:14) | 105, while

tid~(3:28+0:10) | 106: hence, the metapopulation crosses the

valley on average 6.54 times faster than an isolated deme. This is

very close to the limit of the best possible scenario, where the

metapopulation would cross 7 times faster than an isolated deme

(since D~7 here). This example illustrates that speedups tend

towards those predicted in the best scenario, when the interval in

Eq. 14 is sufficiently wide (here the ratio between its upper and its

lower bound is 359). Besides, tns~(1:74+0:05) | 106 here:

comparing it to the above-mentioned value of tm yields a 3.47-fold

speedup of valley crossing by subdivision. The simulation results in

Fig. 1D also show that significant (albeit smaller) speedups exist

beyond the optimal parameter window.

Fig. 2 shows heatmaps of the valley crossing time of a

metapopulation as a function of the migration-to-mutation rate

ratio, m=(md) (varied by varying m), and of the fitness valley depth,

d. Fig. 2A shows that the optimal interval of Eq. 14 (solid lines)

describes well the region where the ratio tm=tid of the crossing

time of the metapopulation to that of an isolated deme is smallest

and tends to the best-scenario limit 1=D. For migration rates lower

than those in this interval, the ratio tm=tid increases when m
decreases. This can be understood qualitatively by noting that if

m~0, tm is determined by the valley crossing time of the slowest

among the independent demes. In the opposite case of migration

rates larger than those in the optimal interval, tm increases with m,

and it tends to the non-subdivided case, tns, at high values of m, as

expected. Above a threshold value of d (dashed line), tns becomes

smaller than tid , in which case large values of m, such that tm

tends to tns, give a low tm=tid (see Fig. 2A).

Fig. 2B plots the ratio tm=tns of the crossing time of the

metapopulation to that of the non-subdivided population, which

directly yields the speedup obtained by subdividing a population.

It shows that, for the parameter values chosen, subdivision

accelerates valley crossing over a large range of valley depths and

migration rates, extending far beyond the optimal range given by

Eq. 14, and that the metapopulation can cross valleys orders of

magnitude faster than a single large population. In addition, above

a second, larger threshold value of d (dotted line in Fig. 2), isolated

demes enter the tunneling regime [28]: Fig. 2B shows that

sufficiently above this threshold, the metapopulation no longer

crosses the valley faster than the non-subdivided population, as

predicted above. While having isolated demes in the sequential

fixation regime is a necessary condition to obtain significant

speedups by subdivision, the non-subdivided population is not

required to be in the sequential fixation regime (see above, and

Fig. 1C–D). The value of d above which the non-subdivided

population enters the tunneling regime is indicated by a dash-

dotted line in Fig. 2: significant speedups are obtained both below

and above this line. The highest speedups are actually obtained

above it, i.e. when the non-subdivided population is in the

tunneling regime. With the parameter values used, Eq. 8 predicts a
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minimum of tm=tns for d&0:035 (solid line in Fig. 2B), which

agrees very well with the results of our numerical simulations.

(Note that this value of d satisfies d&2
ffiffiffiffiffi
ms
p

, and is such that the

non-subdivided population is in the tunneling regime. These

conditions were used in our derivation of Eq. 8.)

Discussion

Limits on the parameter range where subdivision
maximally accelerates crossing

In the Results section, we have shown that having isolated

demes in the sequential fixation regime is a necessary condition for

subdivision to significantly accelerate crossing. This requirement

limits the interval of the ratio m=(md) over which the highest

speedups by subdivision are obtained. The extent of this interval

can be characterized by the ratio, R, of the upper to lower bound

in Eq. 14. Let us express the bound on R imposed by the

requirement of sequential fixation in isolated demes.

If 2
ffiffiffiffiffi
ms
p %d%1, the threshold value N| below which an

isolated deme is in the sequential fixation regime satisfies

eN|d&d2=(ms) [28]. Let us also assume that Nd&1, and that

s%1 while Ns&1, to be in the domain of validity of Eqs. 15 and

16. Combining the condition NvN| with the expression of R in

Eq. 16 yields

Rv

d

2mD log D
1z

s

d

� �
: ð19Þ

For plateaus, isolated demes are in the sequential fixation

regime if their size N is smaller than N|~1=
ffiffiffiffiffi
ms
p

[28]. In the

regime of validity of Eqs. 17 and 18 (s%1 while Ns&1, and N&1,

D&1), this condition can be combined with Eq. 18, which yields

Rv

s

2mD
: ð20Þ

Both Eq. 19 and Eq. 20 show that increasing the number D of

demes decreases the range where the highest speedup by

subdivision is reached. This is because having more subpopula-

tions makes the spreading of the beneficial mutation slower. In

addition, we find that the bound on R is proportional to 1=m.

Hence, despite this bound, the interval where subdivision most

accelerates plateau crossing can span several orders of magnitude,

given the small values of the actual mutation probabilities m in

nature.

Effect of varying the degree of subdivision of a
metapopulation

An interesting question raised by our results regards the optimal

degree of subdivision. Given a certain total metapopulation size,

into how many demes should it be subdivided in order to obtain

the highest speedup possible? We first attack this question using

our analytical results, and then we present simulation results,

which allow for going beyond the best scenario and its associated

parameter window.

Let us consider a metapopulation of given total size N~ND.

Our analytical results show that increasing subdivision, i.e.

increasing the number D of subpopulations at constant N , leads

to stronger speedups of valley crossing (see Eqs. 4 and 7, with

N~N =D). However, Eqs. 16 and 18, and the previous

paragraph, show that when D is increased, the parameter range

where the speedup by subdivision tends to the best-scenario value

becomes smaller and smaller. Eventually, this parameter range

ceases to exist altogether: this occurs when R becomes of order 1

and below. This sheds light on an interesting trade-off in the

degree of subdivision D, between the magnitude of the optimal

speedup gained by subdivision and the width of the parameter

range over which the actual speedup is close to this optimal value.

This effect can be observed qualitatively in Fig. 3A, where the

valley crossing time tm of a metapopulation with fixed total size is

shown versus the migration-to-mutation rate ratio, m=(md), for

different values of D: when D is increased, the minimum becomes

deeper but less broad.

In addition, Eqs. 15 and 17 show that when D is increased, the

lower bound of the interval where the speedup by subdivision

tends to the best-scenario value decreases, as D log D for plateaus

(Eq. 17) and even more rapidly for deep valleys (Eq. 15).

Qualitatively, this is because spreading of the beneficial mutation

gets longer when D increases. Conversely, the upper bound of this

parameter range is independent of D for deep valleys (Eq. 15), and

grows only logarithmically with D for plateaus (Eq. 17). Hence,

when D is increased, the center of the interval where the actual

speedup is close to the optimal value shifts towards higher

migration rates. This effect, which can be observed in Fig. 3A, is

studied more precisely in Fig. 3B: at fixed migration rate m, the

Figure 2. Effect of subdivision on valley crossing time for
various migration rates and valley depths. A. Heatmap of the
ratio tm=tid of the average valley crossing time tm of a metapopulation
with D~10 and K~50 to that tid of an isolated deme with K~50, as a
function of valley depth d and migration-to-mutation rate ratio m=(md),
in logarithmic scale. All numerical results are averaged over 100
simulation runs, and the heatmap is interpolated. Solid lines: bounds of
the interval in Eq. 14. Dashed line: value of d above which a non-
subdivided population crosses the valley faster than an isolated deme.
Dotted line: value of d above which an isolated deme is in the tunneling
regime. Dash-dotted line: value of d above which the non-subdivided
population is in the tunneling regime. Parameter values: d~0:1,
m~5|10{6 , s~0:3; d and m are varied. B. Similar heatmap for the ratio
tm=tns of the average valley crossing time tm of a metapopulation to
that tns of a non-subdivided population (with K~500). Solid line:
predicted value of d, from Eq. 8, for which the largest speedup by
subdivision is expected.
doi:10.1371/journal.pcbi.1003778.g002
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crossing time tm of a metapopulation exhibits a minimum at an

intermediate value of D. Indeed, the crossing time of the

metapopulation first decreases when D is increased because the

minimum crossing time then decreases. But beyond a certain value

of D, the migration rate that yields the highest speedup becomes

larger than the fixed migration rate m, so tm increases when D is

increased further.

Next, we study the dependence on D of the valley crossing time

tmin minimized over m for each D, again for a metapopulation

with fixed total size N~ND. For values of D small enough for the

interval in Eq. 14 to be broad, we expect tmin to be close to the

optimal scenario value tid=D. But, as discussed above, as D

increases, this interval will become smaller and then vanish. In

such a regime, our analytical results are no longer sufficient to

predict the dependence of tmin on D, but our simulations can

provide additional insight. Fig. 3C shows that, while Rw100 (left

of the dashed line), tmin is close to the best-scenario value. When D

is increased beyond this point, tmin decreases slower than the best-

scenario value. Indeed, the interval in Eq. 14 is no longer wide

enough for the best-scenario limit to be approached. Note also that

when demes become small enough, verifying N~N =D%1=d
(right of the dotted line in Fig. 3C), mutation ‘1’ becomes

effectively neutral in individual demes, as p01 tends to 1=N (see

Eq. 1). For even higher values of D, tmin is observed to saturate

rather than exhibiting a unique minimum. Interestingly, this

occurs for D such that the interval in Eq. 14 fully vanishes (i.e.

when R passes below 1, right of the solid line on Fig. 3C). While

we do not have rigorous proof of the generic existence of this

saturation, we have explored this point for other parameters, and

found similar behavior (data not shown). Importantly, this

indicates that there is a whole class of nearly optimal population

structures.

Extension to weakly beneficial intermediates
Our work has focused on fitness valleys (dw0), such that

mutation ‘1’ is deleterious, and on fitness plateaus (d~0), such that

mutation ‘1’ is neutral. For DdD v max (
ffiffiffiffiffi
ms
p

,1=N), mutation ‘1’ is

effectively neutral, as far as valley crossing is concerned, in a

population with N individuals [28]. (This condition holds both in

the sequential fixation regime and in the tunneling regime.) This

implies that our arguments and our results obtained in the case of

the fitness plateau also hold for weakly beneficial intermediates.

This point is illustrated in Fig. 4A.

Extension to a population coupled to small island
populations

Thus far, we focused on demes of equal size for simplicity, but

demes of different sizes are relevant in practice. As a step toward

more general populations structures, we now consider a popula-

tion connected by migration to S smaller satellite populations of

identical size, assumed to be in the sequential fixation regime. We

only allow migration between the large population and each of the

smaller islands, and the total migration rate is denoted by M. The

small island affected by migration is chosen randomly at each

migration event. It is straightforward to adapt our work to this case

(see Methods, Sec. 4). We obtain an interval of M=(md) over

which the crossing time for the large population is dominated by

the crossing time of the champion island. This is corroborated by

our simulations (see Fig. 4B).

Realistic parameter values
Let us consider the example of Escherichia coli, for which the

mutation probability per base pair per division is m&8:9|10{11

[50]. In order to gain a speedup of crossing by subdivision, we

Figure 3. Varying the degree of subdivision of a metapopulation. A. Valley crossing time tm of a metapopulation with total carrying capacity
DK~2500, versus migration-to-mutation rate ratio m=(md), for four different numbers D of demes. Dots are simulation results, averaged over 1000
runs for each value of m=(md) (500 runs for a few points far from the minima); error bars represent 95% CI. Vertical lines represent the limits of the
interval of m=(md) in Eq. 14 in each case, except for D~125, where this interval does not exist. Black horizontal line: plateau crossing time for a non-
subdivided population with K~2500 for the same parameter values, averaged over 1000 runs; shaded regions: 95% CI. Dashed line: corresponding
theoretical prediction from Ref. [28]. Parameter values: d~0:1, m~8|10{6, s~0:3 and d~6|10{3 (same as in Fig. 1C–D); m is varied. B. Valley
crossing time tm of a metapopulation with total carrying capacity DK~2500, versus the number D of demes, for m~10{5 (i.e. m=(md)~12:5). Dots
are simulation results, averaged over 1000 runs for each value of D; error bars represent 95% CI. Parameter values: same as in A. C. Valley crossing
time tmin, minimized over m for each value of D, of a metapopulation with total carrying capacity DK~2500, versus the number D of demes. For
each value of D, the valley crossing time of the metapopulation was computed for several values of m, different by factors of 100:25 or 100:5 in the
vicinity of the minimum (see A): tmin corresponds to the smallest value obtained in this process. Results obtained for the actual metapopulation (blue)
are compared to the best-scenario limit (red) where tmin~tid=D, calculated using the value of tid obtained from our simulations. Dots are simulation
results, averaged over 1000 runs for each value of D; error bars represent 95% CI. Dashed line: value of D such that R~100. Dotted line: value of D
above which the deleterious mutation is effectively neutral in the isolated demes. Solid line: value of D such that R~1. Parameter values: same as in
A and B.
doi:10.1371/journal.pcbi.1003778.g003
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require demes to be in the sequential fixation regime. For plateaus,

this condition reads Nv1=
ffiffiffiffiffi
ms
p

. Let us consider deme sizes such

that this condition is satisfied.

First, let us choose N~5|104, which is within the smallest

range of sizes used in current evolution experiments. For instance,

it is the number of bacteria transferred at each dilution step for

small populations in [27]. For this value of N, all plateaus with

sv4:5 are in the sequential fixation regime (from the condition

Nv1=
ffiffiffiffiffi
ms
p

). Let us also consider D~100, since 96-well plates are

often used in these experiments [27,51]. This yields a total

population size of 5|106 individuals, which is in the tunneling

regime for all plateaus with sw4:5|10{4. For s~10{2, isolated

demes are in the sequential fixation regime for 0ƒdv*2:2|10{4.

(Subdivision cannot significantly accelerate crossing for deeper

valleys since isolated demes are then in tunneling, but those valleys

take longer to cross than shallow ones and are thus probably less

often crossed in practice.) The ratio R of the bounds of the interval

in Eq. 14 satisfies Rw325 throughout this range of valleys, with

R&103 for the plateau and Rw104 for the deepest valleys in the

range. Thus, actual speedups will approach the best-scenario one,

and significant speedups will exist in a wide parameter window.

Eq. 8 predicts that the highest speedup is obtained for

d&3:2|10{5, and Eq. 9 then yields a speedup factor by

subdivision of tns=tm&tns=tc&2:9|102. (Using instead the full

expression of tc obtained from Eq. 23 (see Methods, Sec. 2) yields

2:7|102, i.e. a correction of 7%.) Moreover, for all valleys with

dƒ3:2|10{5, the best-scenario speedup ranges from 18 to

2:7|102. Thus, subdivision significantly accelerates crossing for

this entire class of valleys.

It should be noted that the timescales obtained in this example

are long compared to experimental ones. For instance, for the

plateau, tc corresponds to 1:3|108 divisions while tns is 2:4|109

divisions. However, tc can become smaller if the number of

subpopulations D is increased, as discussed in our previous section.

Besides, we have chosen to focus on standard Escherichia coli for

simplicity. Organisms with a higher mutation rate, e.g. viruses

such as HIV, or mutator strains, would have much shorter

timescales, but smaller subpopulations would then be required for

demes to be in the sequential fixation regime.

Our example thus far focused on a small but realistic deme size,

N~5|104. Experimentally more frequent values of N are in the

range 5|105 – 107 [27,51]. Increasing N at fixed m decreases the

range of s for which demes are in the sequential fixation regime.

For a plateau, this condition reads sv1=(mN2). For N~5|105,

this yields sv4:5|10{2, and for N~5|106, this yields

sv4:5|10{4. Hence, the range of plateaus (and similarly, of

valleys) for which subdivision accelerates crossing becomes more

restricted when N is increased. Nevertheless, if these increasingly

stringent conditions on s are satisfied, significant speedups by

subdivision are still expected. Indeed, Eq. 9 shows that the smallest

value of the ratio tc=tns is proportional to N2s, so if one increases

N while decreasing s as 1=N2, the maximal speedup by

subdivision will remain unchanged.

In this work, we have considered the crossing of one particular

valley or plateau corresponding to a specific pair of two mutations.

Given the complexity and high dimensionality of actual fitness

landscapes, there may be a large number of parallel valleys or

plateaus, so that one of these could be crossed quite frequently

even though the crossing time for a single valley or plateau

remains large. Our work shows that, under specific conditions,

subdivision can significantly accelerate crossing for whole classes of

valleys and plateaus. Furthermore, in a generic, high-dimensional

fitness landscape that contains both valleys and/or plateaus and

uphill paths, subdivision can provide an additional effect: it

‘‘shields’’ some demes in the metapopulation from adaptation via

the uphill paths, leaving them time to explore valley-crossing paths

that may be better in the longer term. While this effect is outside

the scope of the present paper, it could lead to additional

advantages of subdivision in evolution on rugged fitness land-

scapes.

Figure 4. Extension to effectively neutral intermediates and to
a large population connected to smaller islands. A. Valley
crossing time tm of a metapopulation composed of D~10 demes with
K~130, versus migration-to-mutation rate ratio m=(md), in logarithmic
scale, for three values of d in the effectively neutral regime. Dots are
simulation results, averaged over 100 runs for each value of m; error
bars represent 95% CI. Black vertical lines represent the limits of the
interval of m=(md) in Eq. 14. Black horizontal line: plateau crossing time
for an isolated deme with K~130 for the same parameter values,
averaged over 100 runs; shaded regions: 95% CI. Dashed line:
corresponding theoretical prediction from Ref. [28]. Note that the
plateau crossing time of the non-subdivided population with K~1300
is indistinguishable from that of the isolated deme here (as both are in
the sequential fixation regime). Parameter values: d~0:1, m~5|10{7 ,
s~0:5; m is varied. B. Valley crossing time tl of a large population with
K~500 connected to S smaller islands with K ’~50, versus migration-
to-mutation rate ratio M=(md), in logarithmic scale. Dots represent
simulation results averaged over 100 runs for each value of M , and
error bars are 95% CI. Vertical lines represent the limits of the interval of
M=(md) in Eq. 49. Blue (resp. red) line: valley crossing time for an
isolated population with K~50 (resp. K~500) for the same parameter
values, averaged over 100 runs; shaded regions: 95% CI. Dashed blue
(resp. red) lines: corresponding theoretical predictions from Ref. [28].
For S~1, the observed minimum tl satisfies tl&tii , where tii is the
average valley crossing time of an isolated island. For S~10, the
observed minimum satisfies tl&tii=10. Parameter values: d~0:1,
m~4|10{6 , s~0:25 and d~0:1; M is varied.
doi:10.1371/journal.pcbi.1003778.g004
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Conclusion
Our study of a generic and minimal model of population

subdivision with migration demonstrates that subdividing a

population into demes connected by migration can significantly

accelerate the crossing of fitness plateaus and valleys, without the

need for additional ingredients. We have derived quantitative

conditions on the various parameters for subdivision to accelerate

crossing, and for the resulting speedup to be maximal. In

particular, isolated demes have to be in the sequential fixation

regime for a significant speedup to occur. This condition is quite

strong, but provided that it is met, significant speedups can be

obtained in a wide range of migration rates, with the fastest deme

driving the crossing of the whole metapopulation in the best

scenario. We have derived the interval of migration rates for which

this best scenario is reached. In addition, we have shown that

increasing the degree of subdivision of a population enables higher

speedups to be reached, but that this effect can saturate.

Our quantitative assessment of the conditions under which

subdivision significantly speeds up valley or plateau crossing can

aid in optimally designing future experiments, enabling one to

choose the sizes and the number of demes, as well as the migration

rates, such that subdivision can accelerate valley and plateau

crossing.

Further directions include investigating the evolution of a

metapopulation with a distribution of deme sizes on a more

general rugged landscape, as well as assessing the impact of specific

geographic structure. Our work could also be extended to sexual

populations, where recombination plays an important role in

valley or plateau crossing [52]. The interplay between recombi-

nation and subdivision, which respectively alleviate and exacerbate

clonal interference, would be interesting to study.

Methods

1 Simulation methods
Our simulations are based on a Gillespie algorithm [48,49] that

we coded in the C language. Here we will describe our algorithm

for the case of a metapopulation of D demes of identical size,

which is the primary situation discussed in our work. In our

simulations, each deme has a fixed carrying capacity K–we discuss

this choice further in this section.

1.1 Algorithm. A number of different events occur in our

simulations, each with an independent rate:

N Each individual divides at rate fg(1{Ni=K), where fg is the

fitness associated with the genotype g [ f0,1,2g of the

individual, and Ni is the current total number of individuals

in the deme i [ ½1,D� to which the individual belongs. This

corresponds to logistic growth.

N If a dividing cell has gv2, upon division, its offspring (i.e., one

of the two individuals resulting from the division) mutates with

probability m, to have genotype gz1 instead of g.

N Each individual dies at rate d . Hence, at steady-state,

Ni&K(1{d=�ffi), where �ffi is the average fitness of deme i. In

practice, we choose d~0:1, and fitnesses of order one, thus

Ni&0:9K .

N Migration occurs at total rate m
PD

i~1 Ni. Two different demes

are chosen at random, an individual is chosen at random from

each of these two demes, and the two individuals are

exchanged. There is no geographic structure in our model,

i.e. exchange between any two demes is equally likely.

In practice, the number of individuals with each genotype in

each deme is stored, as well as the corresponding division rate.

This data fully describes the state of the metapopulation, and

allows determination of the rates of all events. For each event in

the simulation, the following steps are performed:

N A timestep dt is drawn from an exponential distribution with

rate equal to the total rate Rt of events (i.e., the sum of all

rates), and time is increased from its previous value, t, to tzdt.

In other words, the next event occurs at time tzdt.

N The event that occurs at tzdt is chosen randomly, in such a

way that the probability of an event with rate r is equal to

r=Rt: either a cell divides, or a cell dies, or a migration event

occurs.

N The event is performed, and the relevant data is updated.

Since we store the number of individuals with each genotype in

each deme, only one or two of these numbers need to be

updated at each step. In addition, the division rates of the

affected deme i must be updated upon division and death

because Ni is modified. Note, however, that this represents

only three numbers at most (one for each genotype).

The advantage of the Gillespie algorithm is that it is exact, and

does not involve any artificial discretization of time.

1.2 Working at fixed carrying capacity. In our simulations,

demes have a fixed carrying capacity, and the number of

individuals per deme fluctuates weakly around its equilibrium

value. This approach, also used in e.g. [23], has the advantage of

realism. Alternatively, we could impose a constant number of

individuals per deme.

(i) First, we could choose a dividing individual in the whole

metapopulation with probability proportional to its fitness,

and simultaneously suppress another individual, chosen at

random in the same deme. However, in this case, individuals

in demes of higher fitness would exhibit shorter lifespans,

which is not realistic and may introduce a bias.

(ii) A second possibility would be to choose a dividing individual

(according to fitness) in each of the demes, and to

simultaneously suppress another individual, chosen at

random, in each deme. However, in this case, unless

migration events are far less frequent than these collective

division-death events (i.e., these D division-death events), the

time interval between them becomes artificially discretized.

This introduces biases unless the total migration rate mDN is

much smaller than Nd , i.e. unless m%d=D.

Consequently, while imposing a constant number of individuals

is a good simulation approach for a non-subdivided population

(see e.g. [28]), it tends to introduce biases in the study of

metapopulations. While we chose to perform simulations with

fixed carrying capacities in order to avoid any of these biases, we

checked that, for small enough migration rates, our results are

completely consistent with simulation scheme (ii) described above.

This consistency check also demonstrates that it is legitimate to

compare our simulation results obtained with fixed carrying

capacities to our analytical work carried out with constant

population size per deme.

2 Crossing time of the champion deme
In this section, we give more details on the calculation of the

average valley or plateau crossing time tc by the champion deme

amongst D independent ones. We show in the Results section that,

in the best scenario, the crossing time of the whole metapopulation

is determined by this time.
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tc is the average shortest crossing time of D independent demes.

This minimum crossing time, which we denote by tc, is also called

the smallest (or first) order statistic of the deme crossing time

amongst a sample of size D [53].

Let us denote by p(t) the probability density function of valley

or plateau crossing time for a single deme, and let us introduce

P(t)~

ð?
t

p(t’)dt’ (it satisfies P(t)~1{C(t) where C(t) is the

cumulative distribution function of valley or plateau crossing by a

single deme). The probability that tc is larger than t is equal to the

probability that the crossing times of each of the D independent

demes are all larger than t : P(tc§t)~ P(t)½ �D. By differentiating

this expression, one obtains the probability density function pc(tc)
of the crossing time tc by the champion deme (see e.g. [53]):

pc(tc)~D P(tc)½ �D{1
p(tc) : ð21Þ

We now express p(t) explicitly. Since demes are assumed to be

in the sequential fixation regime, valley or plateau crossing

involves two successive steps. The first step, fixation of a ‘1’-

mutant, occurs with rate r01, and the second step, fixation of a ‘2’-

mutant, occurs with rate r12 (see the Results section for expressions

of these rates). The total crossing time is thus a sum of two

independent exponential random variables, with probability

density function given by a two-parameter hypoexponential

distribution [53]:

p(t)~
r01r12

r12{r01

e{r01t{e{r12tð Þ : ð22Þ

Combining Eqs. 21 and 22, we obtain

pc(tc)~D
r12e{r01tc{r01e{r12tc

r12{r01

� �D{1

p(tc) , ð23Þ

with p(tc) given by Eq. 22. tc can then be determined for any

value of the parameters by computing the average value of tc over

this distribution.

Since mutation ‘1’ is deleterious or neutral while mutation ‘2’ is

beneficial, the first step of valley crossing is much longer than the

second one over a broad range of parameter values. In this case,

we can approximate p(t) with a simple exponential distribution,

p(t)~r01e{r01t : ð24Þ

Eq. 21 then yields

pc(tc)~Dr01e{Dr01tc , ð25Þ

i.e. tc is distributed exponentially with rate Dr01. In this case, we

simply have tc&1=(Dr01), which can be written as tc&tid=D,

where tid&1=r01 is the average crossing time for an isolated deme.

Hence, in this case, on which our analytical discussion focuses, the

champion deme crosses the valley D times faster on average than

an isolated deme.

For this approximation to be valid, the second step of valley

crossing must be negligible even for the champion deme, i.e.,

Dp01%p12. For very large D, the value of tc will not be as small as

1=(Dr01), since the second step will no longer be negligible (see

[52] for a discussion of similar issues). The crossover to this regime

can be determined by computing the average of the distribution in

Eq. 23 and comparing it to 1=(Dr01).

3 Number of migration events for extinction or spreading
in a metapopulation

In our Results section, we have derived an interval of the ratio

of migration rate to mutation rate over which subdivision most

reduces valley or plateau crossing time (see Eq. 14). The upper

bound involves ne, the average number of migration events

required for the ‘1’-mutants to be wiped out by migration, starting

from a state where one deme has fixed genotype ‘1’, while all other

demes have genotype ‘0’. Similarly, the lower bound involves ns,

the average number of migration events required for the ‘2’-

mutants to spread by migration to the whole metapopulation,

starting from a state where one deme has fixed genotype ‘2’, while

all other demes have genotype ‘0’. In our Results section, we have

provided intuitive derivations of the simple expressions of ns and

ne, valid for Ns&1 and s%1, Nd&1 and d%1 (see Eq. 15).

However, it is important to derive more general expressions,

especially since subdivision generically most accelerates valley

crossing in the intermediate regime where Nd&1 (see Results, Eq.

8).

Here, we derive general analytical expressions for ne and ns,

both for fitness plateaus and for fitness valleys. These more general

expressions are those used for numerical calculations of the bounds

in our examples. Throughout this section, we consider a

metapopulation of D demes composed of N individuals each,

and we assume that individual demes are in the sequential fixation

regime (see Results).

3.1 A finite Markov chain. In order to determine ns and ne,

we study the evolution of the number i [ ½0,D� of demes that have

fixed the mutant genotype (‘1’ for the calculation of ne; ‘2’ for that

of ns), while other demes have genotype ‘0’. Given that the value of

i just before a migration step fully determines the probabilities of

the outcomes of this migration step, and given that i~0 and i~D
are absorbing states, the number i evolves according to a finite

Markov chain, each step being a migration event. We next express

the transition matrix of this Markov chain.

The only migration events that can affect i are those that

exchange individuals from two demes with different genotypes. Let

us call these migration events ‘‘relevant’’. The probability pr
i of a

migration event being relevant corresponds to the probability that

this migration affects one of the i mutant populations and one of

the D{i ‘0’ populations: pr
i ~2i(D{i)=½D(D{1)�. We only focus

on the final outcome of a migration event, after fixation or

extinction of each of the two migrants’ lineages has occurred. Let p
denote the probability that the mutant migrant fixes in the ‘0’

deme, and p’ the probability that the ‘0’ migrant fixes in the

mutant deme. As a result of one such relevant migration event:

N i increases by one with probability p(1{p’), if the migrant

mutant fixes in the ‘0’ deme while ‘0’ migrant does not fix in

the mutant deme.

N i decreases by one with probability p’(1{p), in the opposite

case.

N Otherwise, i does not change. This happens either if both

migrants fix (with probability pp’) or if no migrant fixes (with

probability (1{p)(1{p’)).

These probabilities, multiplied by the probability pr
i that a

migration event is relevant, yield the transition matrix of our finite
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Markov chain, which is tri-diagonal (or continuant) since each

migration step can either leave i constant, or increase or decrease

it by one:

Pi?iz1~
2i(D{i)

D(D{1)
p(1{p’) , ð26Þ

Pi?i{1~
2i(D{i)

D(D{1)
p’(1{p) , ð27Þ

Pi?i~1{Pi?iz1{Pi?i{1 , ð28Þ

for i[½1,D{1�, and P0?0~PD?D~1. We have denoted by Pj?k

the probability that i varies from j to k as the final outcome of one

migration event.

Here, we do not account for independent mutations arising and

fixing in other demes during the process of spreading (or

extinction) of the mutant’s lineage in the metapopulation. Indeed,

our aim is to compare the timescales of migration and mutation

processes, so we treat them separately. Note that, in practice, this

hypothesis is reasonable if mutations that fix are sufficiently rarer

than migration events. We also consider that the time between two

successive migration events is large enough for fixation to occur in

the demes affected by migration before the next migration event

occurs, which is true in the low-migration rate regime that we

study in our work (2m%d, where 2m is the migration rate per

individual, while d is the death and division rate per individual).

ns and ne can be directly expressed as the average number of

steps of the Markov chain necessary to go from the initial state

i~1 to absorption in a particular absorbing state, either i~D or

i~0. Let us present general expressions of these average numbers

of steps, before using them to obtain explicit expressions of ns and

ne.

3.2 Some results regarding finite Markov chains with tri-

diagonal probability matrices. We are interested in the

average number of steps na until the system reaches each of the

absorbing states a [ f0,Dg, starting from the state i~1:

na~
XD{1

j~1

sj,a , ð29Þ

where sj,a is the average number of steps that the system spends in

the state i~j before absorption, given that it starts in the state i~1
and finally absorbs in state i~a. It can be expressed as [25]

sj,a~
pj,a

p1,a
sj , ð30Þ

where sj is the average number of steps the system spends in state

i~j before absorption in either of the two absorbing states, given

that it started in state i~1, and pj,a is the probability that the

system finally absorbs in state i~a if it starts in state i~j.

Using the explicit expressions given in [25] for sj and pj,a in the

case of a tri-diagonal probability matrix, we obtain:

n0~
XD{1

j~1

PD{1
k~j rk

� �2

PD{1
k~0 rk

� � PD{1
k~1 rk

� �
rjPj?jz1

, ð31Þ

nD~
XD{1

j~1

Pj{1
k~0 rk

� � PD{1
k~j rk

� �
PD{1

k~0 rk

� �
rjPj?jz1

, ð32Þ

where we have introduced

rk~P
k

i~1

Pi?i{1

Pi?iz1
: ð33Þ

3.3 Explicit expression of ne. ne, in fact, corresponds to n0,

where p is the probability that a ‘1’-mutant fixes in a deme of ‘0’

individuals (i.e. p~p01) and p’ is the probability that a ‘0’-

individual fixes in a deme of ‘1’-mutants (i.e. p’~p10). Hence, it

can be expressed explicitly from Eqs. 31, 26, and 27. Since the

expressions of p and p’ depend whether mutation ‘1’ is neutral or

deleterious, we obtain different expressions for the fitness plateau

and for the fitness valley.

Fitness plateau. For a fitness plateau (i.e. a neutral

intermediate ‘1’), p~p’~1=N, where N is the number of

individuals per deme. Hence,

Pi?iz1~Pi?i{1~
2i(D{i)(N{1)

D(D{1)N2
, ð34Þ

which implies that rk~1 for all k (see Eq. 33). Thus, Eq. 31 yields

ne~
N2D

2(N{1)

XD

j~2

1

j
&

N

2
D log D , ð35Þ

where the last expression holds for N&1 and D&1.

Fitness valley. Eqs. 33 and 26, 27 yield rk~rk, with

r~
(1{p)p’
(1{p’)p

, ð36Þ

and Eq. 31 gives:

ne~
D(D{1)

2(r{rD)(1{rD)(1{p’)p

XD{1

j~1

(rj{rD)2

rj j(D{j)
: ð37Þ

In these expressions, p~p01 is the probability of fixation of a

deleterious ‘1’-mutant, with fitness 1{d, in a deme where all other

individuals have genotype ‘0’ and fitness 1. It can be obtained from

Eq. 1, as well as the probability p’~p10 of the opposite process.

3.4 Explicit expression of ns. ns corresponds to nD, where

p~p02 is the probability that a ‘2’-mutant (with fitness 1zs) fixes

in a deme of ‘0’ individuals (with fitness 1), and p’~p20 is the

probability that a ‘0’-individual fixes in a deme of ‘2’-mutants.

Hence, it can be expressed explicitly from Eqs. 32, 26, and 27,
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using Eq. 1 to express the fixation probabilities. For ns, there is no

difference between the valley and the plateau, since genotype ‘1’ is

not involved.

As above, Eqs. 26, 27 and 33 yield rk~rk, with r defined in Eq.

36. Thus, Eq. 32 gives

ns~
D(D{1)

2(1{r)(1{rD)(1{p’)p

XD{1

j~1

(1{rj)(1{rD{j)

j(D{j)
: ð38Þ

3.5 Simplified expressions for deep valleys and for

plateaus. In our Results section, we have shown that the

benefit of subdivision is highest when m=(md) is situated between a

lower bound,

L~nsp01 , ð39Þ

and an upper bound,

U~
nep12

D
, ð40Þ

(see Eq. 14), where p12 denotes the probability of fixation of a

single mutant with genotype ‘2’ in a background of ‘1’-mutants.

Here we present simplified expressions for ns and ne, and hence of

L and U , in particular parameter regimes.

Throughout this section, we focus on the regime where Ns&1
but s%1, such that mutation ‘2’ is substantially, but not

overwhelmingly, beneficial [28]. We then have p20&se{Ns%1
and p02&s (see Eq. 1). To leading (i.e. zeroth) order in p20, we

obtain from Eq. 38 that

ns~
D{1

s

XD{1

j~1

1

j
&

D log D

s
, ð41Þ

where the last expression holds for D&1. This expression of ns is

identical to Eq. 13, which was demonstrated more intuitively in

the Results section by directly assuming Ns&1 and s%1.

We now consider the case of a plateau (d~0) and the case of a

valley such that Nd&1 but d%1. We demonstrate that the latter

case is consistent with the simplified derivations in our Results

section.

Fitness plateau. For a fitness plateau, combining Eqs. 35 and

40, the upper bound U reads

U&
Ns

2
log D , ð42Þ

where we have used p12~p02&s, since mutation ‘1’ is neutral, and

assumed N&1 and D&1.

Additionally, Eqs. 41 and 39 can be combined to write the

lower bound L as

L&
D

Ns
log D : ð43Þ

again to lowest order in p20. Here, we have used p01~1=N, since

in the case of the plateau, mutation ‘1’ is neutral. This expression

too holds for N&1 and D&1.

Combining Eqs. 42 and 43 yields Eq. 17.

Fitness valley. Next we focus on valleys such that d%1 but

Nd&1. (Note that, in the opposite limit Nd%1, mutation ‘1’ is

effectively neutral, and the above discussion regarding the fitness

plateau applies.) Then, p01&de{Nd%1 (see Eq. 1). To lowest (i.e.

zeroth) order in p01, Eq. 37 becomes

ne&
D

2p10
&

D

2d
, ð44Þ

where we have used the approximation p10&d, which holds for

d%1 and Nd&1. This expression of ne coincides with Eq. 11,

which is obtained in the Results section through a more intuitive

argument that directly assumes d%1 and Nd&1. Hence, from Eq.

40, the upper bound U is

U&
p12

2d
&

1

2
1z

s

d

� �
, ð45Þ

where we used the conditions d%1, Nd&1, s%1 and Ns&1 to

simplify the expression of p12.

Meanwhile, from Eq. 39 and 41, the lower bound L takes the

form

L~
p01

p02
D log D&

de{Nd

s
D log D , ð46Þ

where, again, we used the conditions d%1, Nd&1, s%1 and

Ns&1 to simplify the expressions of p01 and p02.

Combining Eqs. 46 and 45 yields Eq. 15.

4 A population connected by migration to smaller
population islands

Let us consider a population of N individuals connected by

migration to S smaller population islands with NvN individuals

each. These islands of identical size are assumed to be in the

sequential fixation regime. For the sake of simplicity, we consider

that migration only occurs between the large population and the

islands: a migration step is a random exchange of two individuals

between the large population and one of the islands (chosen at

random at each migration event), and the total migration rate is

denoted by M. Here, we focus on the valley or plateau crossing

time of the large population. We demonstrate that the evolution of

a large population can be driven by that of satellite islands.

In the optimal case, the crossing time of the large population is

determined by that of the champion island, i.e., that which crosses

the fitness valley or plateau fastest. We now determine the

conditions under which this optimum is achieved, focusing on

migration rates much smaller than division/death rates,

M%min (dNS,dN ), such that fixation or extinction of a mutant

lineage in either the large population or an island is not

significantly perturbed by migration. Again, migration should be

rare enough for islands to remain effectively shielded from

migration events while they have fixed the intermediate mutation,

until the final beneficial mutation arises. Second, migration should

also be frequent enough for the spreading time of the final

beneficial mutation from the champion island to the large

population to be negligible with respect to the crossing time of

the champion island. These two criteria again provide upper and

lower bounds on M=(md).

The average time t12~1=(Nmdp12) (with p12 from Eq. 1)

required for an island of ‘1’-mutants to fix the beneficial mutation

‘2’ must be smaller than the average time, te, for an island of ‘1’-

mutants to be wiped out by migration from the large population,

which still exhibits genotype ‘0’. The rate of migration events

between the island of ‘1’-mutants and the large population is
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M=S. Hence, te~S=(Mp10), where p10 is the probability of

fixation of the lineage of a single migrant with genotype ‘0’ in an

island where all other individuals are ‘1’-mutants: for valleys, it is

given by Eq. 1, while for plateaus, it is equal to 1=N. The first

condition, t12vte, thus yields

M

md
v

NSp12

p10
: ð47Þ

The second condition is that the average spreading time, ts, for

the final beneficial mutation to fix in a large population after it has

fixed in the champion island, must be smaller than the average

valley or plateau crossing time, tc, of the champion island. Similar

to te previously, we obtain ts~S=(Mpl
02), where

pl
02~(1{e{s)=(1{e{N s) is the probability of fixation of a

migrant with genotype ‘2’ in the large population, which is

assumed to exhibit genotype ‘0’ before migration (see Eq. 1). tc is

the average of the minimum crossing time among S independent

islands. We again focus, for simplicity, on the limit where the first

step of valley or plateau crossing, which occurs at rate r01, is much

longer than the second. Then, we simply have tc&tii=S (see

Results). In this expression, tii&r{1
01 ~1=(Nmdp01) (with p01

obtained from Eq. 1) is the average crossing time for an isolated

island. Hence, the champion island crosses the valley S times faster

on average than a single isolated island. The second condition,

tsvtc, finally yields

S2Np01

pl
02

v

M

md
: ð48Þ

Together, Eqs. 47 and 48 yield the interval of M=md over which

we expect subdivision to maximally accelerate crossing:

S2Np01

pl
02

%
M

md
%

NSp12

p10
: ð49Þ

In this range, we expect the valley or plateau crossing time tl of

the large population to be dominated by the crossing time of the

champion island, so that tl=tii&1=S. This prediction is confirmed

by our simulations (see Fig. 4B).
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3. Franke J, Klözer A, de Visser JAGM, Krug J (2011) Evolutionary accessibility of

mutational pathways. PLoS Comput Biol 7: e1002134.

4. Szendro IG, Schenk MF, Franke J, Krug J, de Visser JAGM (2013) Quantitative

analyses of empirical fitness landscapes. J Stat Mech Theor Exp: P01005.

5. Whitlock MC, Phillips PC, Moore FBG, Tonsor SJ (1995) Multiple fitness peaks

and epistasis. Annual Review of Ecology and Systematics 26: 601–629.

6. Schrag SJ, Perrot V, Levin BR (1997) Adaptation to the fitness cost of antibiotic

resistance in E. coli. Proc R Soc Lond B 264: 1287–1291.

7. Beerenwinkel N, Pachter L, B S, Elena SF, Lenski RE (2007) Analysis of epistatic

interactions and fitness landscapes using a new geometric approach. BMC

Evolutionary Biology 7: 60.

8. Trindade S, Sousa A, Xavier K, Dionisio F, Ferreira M, et al. (2009) Positive

epistasis drives the acquisition of multidrug resistance. PLoS Genetics 5: e1000578.

9. Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to

reverse resistance? Nat Rev Microbiol 8: 260–271.

10. Bloom JD, Gong LI, Baltimore D (2010) Permissive secondary mutations enable

the evolution of influenza oseltamivir resistance. Science 328: 1272–1275.

11. Kryazhimskiy S, Dushoff J, Bazykin G, Plotkin J (2011) Prevalence of epistasis in

the evolution of influenza A surface proteins. PLoS Genetics 7: e1001301.

12. Breen M, Kemena C, Vlasov P, Notredame C, Kondrashov F (2012) Epistasis as

the primary factor in molecular evolution. Nature 490: 535–538.

13. Gong LI, Suchard MA, Bloom JD (2013) Stability-mediated epistasis constrains

the evolution of an influenza protein. eLife 2: e00631.

14. Covert AW, Lenski RE, Wilke CO, Ofria C (2013) Experiments on the role of

deleterious mutations as stepping stones in adaptive evolution. Proc Natl Acad

Sci USA 110: E3171–E3178.

15. Østman B, Adami C (2014) Predicting Evolution and Visualizing High-

Dimensional Fitness Landscapes. In: Richter H, Engelbrecht A, editors, Recent

Advances in the Theory and Application of Fitness Landscapes, Springer,

volume 6 of Emergence, Complexity and Computation. pp. 509–526.

16. Korona R, Nakatsu CH, Forney LJ, Lenski RE (1994) Evidence for multiple

adaptive peaks from populations of bacteria evolving in a structured habitat.

Proc Natl Acad Sci USA 91: 9037–9041.

17. Hallatschek O, Hersen P, Ramanathan S, Nelson DR (2007) Genetic drift at

expanding frontiers promotes gene segregation. Proc Natl Acad Sci USA 104:

19926–19930.

18. Waclaw B, Allen RJ, Evans MR (2010) Dynamical phase transition in a model

for evolution with migration. Phys Rev Lett 105: 268101.

19. Martens E, Hallatschek O (2011) Interfering waves of adaptation promote

spatial mixing. Genetics 189: 1045–1060.

20. Martens E, Kostadinov R, Maley C, Hallatschek O (2011) Spatial structure
increases the waiting time for cancer. New J Phys 189: 115014.

21. Otwinowski J, Boettcher S (2011) Accumulation of beneficial mutations in one

dimension. Phys Rev E 84: 011925.

22. Zhang Q, Lambert G, Liao D, Kim H, Robin K, et al. (2011) Acceleration of

emergence of bacterial antibiotic resistance in connected microenvironments.

Science 333: 1764–1767.

23. Greulich P, Waclaw B, Allen RJ (2012) Mutational pathway determines whether

drug gradients accelerate evolution of drug-resistant cells. Phys Rev Lett 109: 088101.

24. Hermsen R, Deris JB, Hwa T (2012) On the rapidity of antibiotic resistance
evolution facilitated by a concentration gradient. Proc Natl Acad Sci USA 109:

10775–10780.

25. Ewens WJ (1979) Mathematical Population Genetics. Springer-Verlag.

26. Weinreich DM, Chao L (2005) Rapid evolutionary escape in large populations
from local peaks on the Wrightian fitness landscape. Evolution 59: 1175–1182.

27. Rozen DE, Habets MG, Handel A, de Visser JAGM (2008) Heterogeneous

adaptive trajectories of small populations on complex fitness landscapes. PLoS
ONE 3: e1715.

28. Weissman DB, Desai MM, Fisher DS, Feldman MW (2009) The rate at

which asexual populations cross fitness valleys. Theor Pop Biol 75: 286–300.

29. Wright S (1931) Evolution in Mendelian populations. Genetics 16: 97–159.

30. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection

in evolution. Proc 6th Int Congress of Genetics 1: 356–366.

31. Wright S (1940) Breeding Structure of Populations in Relation to Speciation.
The American Naturalist 74: 232–248.

32. Wright S (1982) The shifting balance theory and macroevolution. Ann Rev

Genet 16: 1–19.

33. Lande R (1985) The fixation of chromosomal rearrangements in a subdivided
population with local extinction and colonization. Heredity 54: 323–332.

34. Slatkin M (1989) Population structure and evolutionary progress. Genome 31:

196–202.

35. Wade MJ, Goodnight CJ (1991) Wright shifting balance theory - an
experimental study. Science 253: 1015–1018.

36. Barton NH, Rouhani S (1993) Adaptation and the shifting balance. Genetics

Research 61: 57–74.

37. Coyne JA, Barton NH, Turelli M (1997) A critique of Sewall Wright’s shifting

balance theory of evolution. Evolution 51: 643–671.

38. Gavrilets S (1997) Evolution and speciation on holey adaptive landscapes.
Trends in Ecology & Evolution 12: 307–312.

39. Wade MJ, Goodnight CJ (1998) Perspective: The theories of Fisher and Wright

in the context of metapopulations: When nature does many small experiments.
Evolution 52: 1537–1553.

Population Subdivision and Rugged Landscapes

PLOS Computational Biology | www.ploscompbiol.org 14 August 2014 | Volume 10 | Issue 8 | e1003778



40. Coyne J, Barton N, Turelli M (2000) Is Wright’s shifting balance process

important in evolution? Evolution 54: 306–317.

41. Crow JF (2008) Mid-Century Controversies in Population Genetics. Annual

Review of Genetics 42: 1–16.

42. Wade MJ (2013) Phase III of Wright’s shifting balance process and the variance

among demes in migration rate. Evolution 67: 1591–1597.

43. Desai MM (2013) Statistical questions in experimental evolution. J Stat Mech

Theor Exp: P01003.

44. Kerr B (2013) QCB Seminar at Princeton University, and private communication.

45. Kryazhimskiy S, Rice DP, Desai MM (2011) Population subdivision and

adaptation in asexual populations of Saccharomyces cerevisiae. Evolution 66:

1931–1941.

46. van Marle G, Gill MJ, Kolodka D, McManus L, Grant T, et al. (2007)

Compartmentalization of the gut viral reservoir in HIV-1 infected patients.

Retrovirology 4: 87.

47. Schnell G, Price RW, R S, Spudich S (2010) Compartmentalization and clonal

amplification of HIV-1 variants in the cerebrospinal fluid during primary
infection. J Virol 84: 2395.

48. Gillespie DT (1976) A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. J Comput Phys 22: 403–434.
49. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions.

J Phys Chem 81: 2340–2361.
50. Wielgoss S, Barrick JE, Tenaillon O, Cruveiller S, Chane-Woon-Ming B, et al.

(2011) Mutation rate dynamics in a bacterial population reflect tension between

adaptation and genetic load. G3 1: 183–186.
51. Kerr B, Neuhauser C, Bohannan BJM, Dean AM (2006) Local migration

promotes competitive restraint in a host-pathogen ’tragedy of the commons’.
Nature 442: 75–78.

52. Weissman DB, Feldman MW, Fisher DS (2010) The rate of fitness-valley
crossing in sexual populations. Genetics 186: 1389–1410.

53. Bolch G, Greiner S, de Meer H, Trivedi KS (2006) Queuing networks and

Markov chains (2nd edition). Wiley.

Population Subdivision and Rugged Landscapes

PLOS Computational Biology | www.ploscompbiol.org 15 August 2014 | Volume 10 | Issue 8 | e1003778


