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Abstract

The cells of a multicellular organism are derived from a single zygote and genetically identical. Yet,
they are phenotypically very different. This difference is the result of a process commonly called cell
differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central
and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges
that are frequently confused with methodological difficulties. How to define a cell type? What stability
or change means in the context of cell differentiation and how to deal with the ubiquitous molecular
variations seen in the living cells? What are the driving forces of the change? We propose to reframe
the problem of cell differentiation in a systemic way by incorporating different theoretical approaches.
The new conceptual framework is able to capture the insights made at different levels of cellular
organization and considered previously as contradictory. It also provides a formal strategy for further
experimental studies.
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1.  Introduction
Biology is an empirical science; nothing makes sense in the eyes of a biologist unless it is derived from
experimental observations. A typical research project in biology usually follows a naive inductive logic
and the role of the underlying theory is usually underestimated. Concepts are usually taken for granted
and rarely questioned directly. As a consequence, biology has a tendency to see methodological or
technical problems even when the difficulty is conceptual. History of science taught us that paradigm
shifts and breakthroughs in a field usually require a theoretical re-foundation or conceptual reframing of
the major issues. Concepts in biology, as well as in any other scientific discipline, must be revised
periodically, upgraded, or replaced if necessary. The last years witnessed emerging discussions on some of
the fundamental concepts in cell biology such as “cell identity” or “cell fate.” These discussions were
made necessary, among others, by the rapid evolution of techniques with single-cell resolution. Perhaps
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this is the reason why very often they are “hidden” behind methodological issues. In addition to their high
resolution, these methods are very efficient in collecting astronomic amounts of morphological,
physiological, or molecular data. Contrary to the expectation of many, accumulation of data alone did not
provide us with the understanding of why and how cells become phenotypically different (i.e.,
differentiate) and what are the driving forces of this process. There is a growing feeling that the
difficulties to address cell differentiation result from the inappropriate conceptual framing of the problem.
Where these difficulties come from? What are the possible ways to resolve them? The present reflection
aims to show that it is possible to define a new theoretical approach and to rethink cell differentiation on
the basis of our present knowledge.

2.  The Quest for Classification
Traditionally, cell differentiation is defined as the phenotypic transformation of the cells from one type
into another. Therefore, the first challenge is the definition of the concept of “cell type.” Textbooks and
reviews usually claim that there are about 200 different cell types in the human organism. They are
classified according to their morphological similarity, tissue location, function or patterns of gene
expression, etc. This is easy to do when very different cells are compared; there is no difficulty to assign
neurons, lymphocytes, or epithelial cells for example to different categories. But how to classify closely
related cells such as those separated only by a few cell divisions? Such cells usually resemble to each
other, yet they may display a broad spectrum of gene expression levels, physiological or morphological
traits, etc. How to decide if they belong to the same or to a different category? The following quote taken
from a recent paper illustrates the difficulties: “… should these subcategories be declared distinct cell
types? What differences, be they functional, regulatory, or morphological, are sufficient to define an
organism’s cellular taxonomy?” [1]. The same problem is sometimes formulated as an issue of “cell
identity” and cell differentiation as a process of change of identity [2]. Others are debating whether
various cell types such as stem cells represent a state or entity [3, 4]. “Identity” or “entity” are concepts
borrowed from philosophical ontology. The debates on them are as old as our systematic thinking about
the world and can be tracked back to Plato and Aristotle. The cell biological re-formulation of the
fundamental ontological question is: do cell types exist as independent entities? If so, what are the
essential distinguishing features of cell types? Unfortunately, the issue of cell identity is usually treated in
a simple intuitive way. Although experimental biology is not expected to provide a solution for
fundamental philosophical issues, but understanding the origin and true significance of the concepts
directly imported from philosophy would stimulate their constructive conceptual framing of the cell type
issue.

The intensive quest for a better classification has been triggered by the rapid development of single-cell
resolution techniques, hence the illusion of a technological difficulty [5]. Earlier, biochemical or
molecular methods used to characterize gene expression, protein levels, or other features needed
hundreds, thousands, or even more cells and were able to provide us with population averages only.
Single-cell resolution techniques are able to extract similar information from a large number of individual
cells. For the first time, in addition to the average we have also a reliable measure of the variability in the
population. It is not surprising that the number of recognized cell types increases steadily with the
resolution of these techniques. In a recent study for example, using single-cell RNA sequencing 17
different categories of CD34+ hematopoietic cells were identified on the basis of their gene expression
patterns versus only two categories when a less sensitive cytometry analysis was used [6]. There are
numerous similar examples [1, 7, 8]. In general, highly sensitive single-cell resolution techniques show
that even very closely related cells are different to some extent with respect to their gene expression
patterns. Although two different populations of cells are easy to discriminate on the basis of the average
expression level of some distinctive marker genes, it is usually difficult to assign an individual cell picked
up randomly to one of these defined cell types on the basis of the single-cell gene expression profile.
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Although counterintuitive at a first glance, “cell type” appears as a concept that describes groups rather
than individual cells. Then, how to set the limit between “irrelevant” and “important” differences between
two cells? As we could learn from philosophy, there is no simple solution to this problem and perhaps the
best way is to get rid definitively of these controversial concepts. The existing pragmatic solutions
measure the extent of the differences without discriminating what is relevant or irrelevant. The most
frequently employed strategy is based on the collection of a large number of parameters on individual
cells using single-cell RT-PCR, RNA sequencing, mass cytometry, or high-throughput image analysis of
the cell morphology [1, 6, 7, 9–14]. The data obtained are analyzed using multiparametric classification
algorithms that group cells in categories on the basis of their phenotypic “similarity.” In this context,
“similarity” between the cells is calculated as a function of the distance between the cells in a
multidimensional space defined by the measured parameters. The cell phenotype is represented as a
location in a multidimensional parameter space. If the measured parameters are the gene expression
levels, as it is frequently the case, the number of dimensions is equal to the number of genes in the
genome, and their expression levels are the coordinates that determine the exact position. Statistical
analysis of the distances between these positions representing the cell phenotypes gives an estimate of the
probability (p value) that the groups identified by the classification algorithm can be obtained by chance.
If the probability for this is sufficiently low, one can accept that the cells assigned to different phenotypic
groups are indeed different. The advantage of these methods is that they provide an accurate measure of
the phenotypic differences between the cells on the basis of clearly defined criteria (mRNA level, protein
abundance, etc.) that can be used to classify the cells. This is an important methodological step, yet it does
not give answer to the original question. Assigning a cell to a given cell type remains a decision of the
observer, who sets the list of parameters to be considered, the threshold p-value, sample size, etc. This
makes the classification relative, highly dependent on the experimental context, choice of the statistical
methods, and, importantly, on the subjective opinion of the investigator. Clustering algorithms are
incorrectly assumed to provide objective judgment on phenotypic classification and became a standard
procedure for the analysis of single-cell data. Nevertheless, while subjective, the use of the chosen
classification method makes the different experiments quantitatively comparable. Therefore, they open the
way to testing hypotheses on the mechanisms of cell differentiation [15] without clearly defining what a
cell type is.

The single-cell data confirm that every gene expression combination is not equiprobable. Some gene
expression profiles and the corresponding cellular phenotypes are more frequent, hence probably more
stable than others. Genes interact with each other and this can be described as a complex network where
edges represent interactions between the vertices formed by the genes. The network representation of
gene-gene interactions led to the proposition that frequently observed gene expression profiles or the
corresponding cellular phenotypes reveal states of the gene interaction network that are close to an
attractor in the multidimensional parameter space [16, 17]. These attractors emerge as a result of mutually
stabilizing interactions between a set of genes making their co-expression more frequent among the
possible combinations. In the attractor interpretation therefore, a cell phenotype is a state of the gene
interaction network that is more or less close to an attractor and cell differentiation is a process of
transition between the attractors [17, 18]. This representation makes direct reference to the now classical
“epigenetic landscape” metaphor proposed by Conrad Waddington almost 70 years ago [17, 19]. The
attractor concept of cell phenotype circumvents the “continuous versus discrete” dilemma of cell
classification and focuses on the temporal dynamics of the phenotypic change.

3.  Temporal Dynamics, Stability, and Change
Single-cell studies uncovered another important aspect of the cellular phenotypes: the expression of the
genes in a cell and, consequently, the phenotypes are fluctuating continuously. As a result, even cells in a
clonal population exhibit a broad distribution of various traits. Stochasticity of gene expression was
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suggested and experimentally detected long time ago [20, 21], but the phenomenon gained a significant
interest only after the publication of a landmark paper in 2002 [22]. Variation of gene expression is the
direct consequence of the stochasticity of biochemical reactions involving molecules present in small
copy-numbers in the cell. For example, in a typical eukaryotic cell there are only two copies of each gene.
Transcription factors, RNA polymerase molecules, and other components of the gene expression
machinery are also present in very low concentration. Under these conditions, biochemical reactions are
limited by the diffusion of the molecules and occur only when the participating molecules meet by
chance. In the case of gene expression involving many different partners this leads to strong fluctuations
at a time scale of minutes to hours comparable with the life cycle of the cells. These fluctuations,
frequently called “noise,” ubiquitous and are unavoidable because they are caused by the very nature of
the biochemical reactions [23]. Therefore, stochastic fluctuations rather than stability should be
considered the default state of gene expression.

This transforms radically the way we have to consider the problem of gene expression changes during
differentiation. Traditionally, gene expression is supposed to be stable. Changes during differentiation are
supposed to be strictly controlled, inducing regulated transition of the cell between phenotypic states.
Spontaneous gene expression fluctuations have no role in the process, they are just “noise.” However,
measured and characterized experimentally, we know now that the extent of the gene expression “noise”
in individual cells is comparable to the variations supposed to be regulated [24, 25]. Population level
measurements provide us only with average values of the gene expression levels; they show population
level tendencies and hide the individual variations. Yet, not populations, but individual cells differentiate.
How to reconcile then the unstable nature of almost every characteristic of individual cells with their
obvious capacity to maintain a stable phenotype? How to explain that these phenotypes can change in an
orderly way? Until now the phenotype and the underlying gene expression pattern were supposed to be
stable and the explanandum was the “change.” In the new conceptual frame, stability becomes the
explanandum. The question to be addressed now is how a naturally fluctuating living cell can be
maintained in stability. This is just the opposite of the traditional deterministic view, which has dominated
biology until now.

Obviously, change and stability are a pair of complementary concepts that also raise the question of
“continuous versus discrete.” A slow “change” can be seen as “stability” depending on the timescale of
the observer. Averaging over a sufficiently long interval of time can filter smaller fluctuations and reveal
the tendency of an individual cell to conserve or change its phenotype, gene expression levels, protein
abundances, etc. The key question is what is a “sufficiently long” time interval? A pragmatic approach to
this question is to take the characteristic timescale of the random fluctuations as a starting point. Purely
stochastic gene expression changes occur at a characteristic timescale of minutes to hours. If the timescale
of the fluctuations is longer than the cell’s lifecycle, the phenotype is usually considered stable because
the daughter cells remain phenotypically close to the mother cell [26]. Slow fluctuations can therefore be
seen as to reflect a kind of "memory", because that makesthe actual phenotype state of the cell remains
remaining close to the previous one. From this point of view, one extreme is “no change” (full stability),
where the past state is identical to the present one. This is only a theoretical possibility. It is opposed to
the other extreme, also theoretical, represented by random fluctuations without memory, where no
prediction of the present state from the past is possible. Real cells are never fully stable, nor they are fully
ergodic. Since the whole problem is further complicated by the fact that the cells divide and usually
transmit their phenotype to the daughter cells, the candidate mechanisms for slowing down natural
fluctuations and stabilizing cellular phenotypes are also expected to remain active during and after cell
divisions.
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4.  Energy for Stability
We have learned from physics that maintaining order and stability in an open system is principally a
matter of energy investment. Indeed, theoretical models and experimental verification have demonstrated
that the energetic costs of the noise reduction are very high and of the same order of magnitude as the
cell’s capacity to produce energy [27]. Consequently, the cell has no capacity to suppress molecular
fluctuations such as gene expression noise and their consequences; at best it can reduce them to some
extent. The putative mechanisms must be functionally dependent on and limited by the energy-producing
cellular processes.

Gene expression is a “birth and death” process. Birth is a multistep process involving transcription and
translation and all the steps of maturation of the mRNA-s and proteins. “Death” is also a multistep process
involving the degradation of the intermediate or the final gene products. The actual level of the gene
product in the cell is determined by the rate of the synthesis and degradation [28]. Simultaneous high
synthesis and degradation rates can produce similar levels as low synthesis/degradation rates. Obviously,
fluctuations of the gene product concentration can also be caused by the fluctuations in both the rates of
synthesis and degradation. All these processes require ATP or some other form of energy-carrying
substrates. Some steps are known to contribute more to the fluctuation/stabilization process than others.

Mechanisms that dissipate chemical energy generated by the metabolism to modulate gene expression
fluctuations are now well known. Molecular mechanisms known as “epigenetic modifications” of the
chromatin are excellent candidates for the role of the “stabilizer” of phenotype through influencing the
fluctuations of the “birth” rate. Chromatin is a macromolecular structure formed by the genomic DNA
associated to proteins, essentially histones. When wrapped in the chromatin, DNA is not accessible for
transcription. Transcription is only possible if the chromatin dissociates from the DNA. This is a typical
stability problem. Each chromatin component carries several covalent modifications, such as acetylation,
methylation, phosphorylation, poly-ADP-ribosylation, etc. that determine the overall stability of the
structure. The biochemical reactions that introduce or remove these modifications are catalyzed by
dedicated enzymes. The reactions form a cooperative network that brings together either a stable
repressive chromatin structure (heterochromatin), which makes the DNA inaccessible to the
transcriptional machinery, or an open structure (euchromatin) that allows transcription. Thanks to the
cooperative nature of the reactions and despite the reversibility and very short half-life of each individual
modification, both the structures can stably be maintained for a long period of time. This is a dynamic,
steady-state stability resulting from the equilibrium of the permanent action of the modifying and the
reverse reactions and the resulting rapid dissociation-association of the corresponding chromatin proteins
[29, 30]. As a result, the chromatin around a gene is either open, allowing transcription or repressed,
making transcription impossible [31]. The structure is constantly adjusted depending on the dynamic
equilibrium of the “on” and “off” reactions. It has been shown that the chromatin behaves as a dynamic
bistable system with hysteresis [32]. The transition between the active and repressed states of a gene is
switch-like. It depends on the competition of the heterochromatin- or euchromatin-generating reaction
networks and on the time spent in the previous state. A heterochromatin structure formed long time ago is
more difficult to reverse than a recently generated.

Whether a gene becomes silenced or accessible for transcription is in fine determined by the dynamic
equilibrium between the processes bringing together the permissive and repressive chromatin and on the
pre-existing state of the chromatin. When accessible, transcription factors can selectively bind to the DNA
in a sequence-dependent way and further bias the equilibrium toward the open state usually at the sites of
transcription initiation. In this way, transcription factors contribute to the stabilization of the gene
expression networks as proposed by the attractor concept of cell phenotypes. However, they cannot
specifically activate a repressed gene without a prior transition of the chromatin to an at least partially
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open state, because the DNA is simply not accessible for binding. This is an essential point, because it
means that a silenced gene can be re-activated only after or concomitantly with the change of the
chromatin structure. Transcription factors alone are not sufficient to activate a gene; they can only
increase the probability of the transcription initiation of the accessible genes.

Another essential distinguishing feature of the chromatin is the capacity to “record” the previous activity
of the genes due to the hysteretic dynamical properties. In this way, chromatin becomes a major
component of the so-called cellular memory because it can conserve its structure over mitotic and in rare
cases even over meiotic divisions. This property confers the cells the capacity to differentiate in an orderly
way instead of switching irregularly between the possible phenotypes.

In summary, chromatin is a highly dynamic key player able to slow down the stochastic fluctuations of the
transcription, essentially by its reversible repression. The way the chromatin structure is brought together
by the epigenetic modification confers to it a memory function. When repressed by the heterochromatin, a
gene cannot be transcribed. There is no mRNA production, hence no fluctuations. When accessible for
transcription, the RNA synthesis is subject to stochastic effects resulting in a bursting production of
mRNA molecules and generating stochastic fluctuations in their number. These fluctuations can be
amplified or buffered by the consecutive steps of translation and degradation of the gene products and in
this way they contribute to the overall fluctuations of the cellular phenotype.

5.  Energy for Change
Stability of a dynamic system requires energy that compensates for the continuous stochastic fluctuations.
However, changing a dynamic equilibrium into another, a gene expression profile into another is also
energy dependent. Activating repressed genes and repressing active ones is achieved by the cell through
changing the chromatin around these genes. The transition between the repressive and permissive
configurations depends essentially on the epigenetic modifications. The dynamic nature of these
modifications implies that both the maintenance of the chromatin structure and the transition between the
different forms are energy-dissipating processes. Indeed, the substrates used for epigenetic modification
are all small molecular intermediates of the core energy metabolic pathways (for comprehensive reviews,
see ref. 33. I apologize for not citing original papers). For example, acetylation of the histones and many
other nuclear proteins is achieved using acetyl-CoA as substrate. Acetyl-CoA is probably one of the most
important hubs in the metabolic network of the cell. It is directly generated from pyruvate, the end
product of the glycolysis. Acetyl-CoA is either converted into citrate in the first step of the Kebs-cycle or
used as a starting point for the biosynthesis of lipids and indirectly of almost any other types of
macromolecules in the cell. The levels of Acetyl-CoA fluctuate widely depending on the metabolic flux
and directly influence the level of acetylation of the chromatin components in the nucleus. The same is
true for all other epigenetic modifications. Methylation is dependent on S-adenosyl-methyonin, a methyl
donor synthesized from methionine, an essential amino acid and ATP. Demethylation reactions use a-
ketoglutarate, a key Krebs cycle intermediate, poly-ADP ribosylation is dependent on NAD+ as a
substrate, phosphorylation requires ATP, etc. The direct substrate level metabolic link between energy
production and chromatin structure is more than obvious. In general, the rate of enzymatic reactions is
essentially dependent on the substrate concentration. The intracellular concentration of the key metabolic
substrates is indeed a major determinant of the epigenetic reaction rates [34].

Energy production depends on a network of red-ox reactions. The concentration of the intermediate
metabolites and final high-energy-carrying molecules, in turn, is determined by the flux and activity of the
whole metabolic network, which is itself dependent on the nature and availability of electron donors and
acceptors. Electron donors are essentially nutriments taken up from the cellular environment and to lesser
extent the cell’s own reserves. The electron transfer between them is a multistep process and involves
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intermediate electron transporters (NAD, NADP, FAD). These electron transporters provide electrons to
all other electron transfer reactions including biosynthesis. In the presence of a sufficient external carbon
source as an electron donor and oxygen, the oxidation into H O and CO  will be dominant and the ATP
production and concentration of reduced electron transporters, as NAD+ and NADP+ will be high. When
oxygen is not available, glycolysis will dominate, biosynthesis will eliminate the oxidation by O  as a
final electron acceptor. The concentration Acetyl-CoA and Krebs-cycle intermediates will be relatively
high. Therefore, the nature of metabolic regimes and the transition between them can modulate the
concentration of key metabolic substrates for epigenetic reactions. This, in turn, increases or decreases the
rate of the corresponding epigenetic reactions and, as a corollary, modulates the frequency and amplitude
of the gene expression fluctuations.

The direct dependence of the stabilizing mechanisms on the energy-producing metabolic flux also implies
that the cellular environment can impact the rapidity and extent of gene expression fluctuations. In fact,
the metabolic flux in the cell is dependent primarily on the external substrates as electron donors. The
most efficient terminal electron acceptor O  is also provided by the cell’s immediate environment. The
oxygen concentration usually varies significantly within the tissues as a function of the physical distance
to the source (blood vessels) and the local demand. In this way, the cellular microenvironment is of
primary importance in determining how a cell can generate energy and impact the transcriptional
fluctuations through the epigenetic modifications. Each cell is exposed by a unique microenvironment that
is essentially composed by other cells. This may explain why cells in the same tissue are so different and
create complementarity and interdependence between neighbors. The cells localized close to the nutrient
and oxygen sources use different metabolic pathways than those cells that are located more distantly and
exposed to a microenvironment composed by the resources not used by their neighbors and by their
secreted metabolites. A tissue or a cell community can be considered analogous to an ecosystem and the
interaction between the cells as a Darwinian selective pressure. It has been proposed that cell
differentiation is a process analogous to Darwinian evolution [35, 36]. Stochastic fluctuations of gene
expression in the cell generate spontaneously phenotypic fluctuations. Interactions between the cells and
their microenvironment act as a selective force that can stabilize some phenotypes only. Each cell
fluctuates until it can express the characteristics that allow using the available resources and maintaining a
metabolic flux that produces the necessary energy in the system of interdependent individual cells placed
in a given environment.

6.  Conclusion
It is important to keep in mind that living cells are out-of-equilibrium open thermodynamic systems that
constantly dissipate energy. The minimal energy flux required to maintain the dynamic equilibrium is a
sine qua non-condition for the living state and expected to be the organizing force of the living matter
[37]. This theoretical conclusion led to the proposal that the true driving force of cell differentiation is the
requirement to continuously dissipate energy produced by the metabolic flux [38, 39]. Chromatin
stabilizing/destabilizing epigenetic mechanisms appear as a major evolved molecular mechanism that
links the environment to the fluctuations of the genome function [38]. These mechanisms transform
metabolic fluctuations into gene expression fluctuations ensuring the generation of new phenotypic
variants until the metabolic adaptation is achieved.

The Darwinian model of cell differentiation conceptualizes the whole process of ontogenesis using the
same concepts of variation/selection as in the theory of evolution. Phenotype variations are generated by
the stochastic fluctuations of the molecular processes that maintain the continuous fluctuations of gene
expression levels [10, 40–42]. The necessity to maintain the permanent energy flux required for the vital
cellular processes represents a strong selective pressure continuously acting on the fluctuating phenotype.
Suboptimal metabolic flux acts by increasing the fluctuations; return to the steady state decreases them.
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The metabolic pressure canalizes the cell phenotype through the direct substrate level link between the
core energy metabolism and the chromatin modifying epigenetic mechanisms. The same epigenetic
mechanisms also ensure the conservation of gene expression profiles after cell divisions.

Redefining the conceptual framework of cell differentiation by considering variation as a central player
leads to a unified theory that explains the emergence of different living forms at different time scales
without making the distinction between an individual as a unit of evolution and its parts as units of
ontogenesis. The two processes are expressions of the same principles [43].
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