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Guillaume Corre2, Angélique Richard3, Olivier Gandrillon3, Daniel Stockholm1,

András Páldi1*
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Abstract

Individual cells take lineage commitment decisions in a way that is not necessarily uniform.

We address this issue by characterising transcriptional changes in cord blood-derived CD34

+ cells at the single-cell level and integrating data with cell division history and morphological

changes determined by time-lapse microscopy. We show that major transcriptional changes

leading to a multilineage-primed gene expression state occur very rapidly during the first cell

cycle. One of the 2 stable lineage-primed patterns emerges gradually in each cell with vari-

able timing. Some cells reach a stable morphology and molecular phenotype by the end of

the first cell cycle and transmit it clonally. Others fluctuate between the 2 phenotypes over

several cell cycles. Our analysis highlights the dynamic nature and variable timing of cell

fate commitment in hematopoietic cells, links the gene expression pattern to cell morphol-

ogy, and identifies a new category of cells with fluctuating phenotypic characteristics, dem-

onstrating the complexity of the fate decision process (which is different from a simple

binary switch between 2 options, as it is usually envisioned).

Author summary

Hematopoietic stem cells are classically defined as a specific category of cells at the top of

the hierarchy that can differentiate all blood cell types following step-by-step the instruc-

tions of a deterministic program. We have analysed this process, and our findings support

a much more dynamic view than previously described. We apply time-lapse microscopy

coupled to single-cell molecular analyses in human hematopoietic stem cells and find that

fate decision is not a unique, programmed event but a process of spontaneous variation

and selective stabilisation reminiscent of trial–error processes. We show that each cell

explores (at its own pace and independently of cell division) many different possibilities

before reaching a stable combination of genes to be expressed. Our results suggest,
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therefore, that multipotency seems to be more like a transitory state than a feature of a

specific cell category.

Introduction

Hematopoietic stem and progenitor cells (HSPCs) give rise to all the cellular components of

blood. The major stages of differentiation and the key genes participating in this process are

now well characterised [1]. According to the classical view, haematopoiesis is a hierarchically

organised process of successive fate commitments, in which differentiation potential is pro-

gressively restricted in an orderly way over cell divisions. There are several variants of the

model [2–6]. In all cases, the first fate decision is a binary choice taken by multipotent progeni-

tors (MPPs), which leads to 2 different committed progenitors (for the purpose of simplicity,

these progenitors are designated here as common myeloid progenitors [CMP] and common

lymphoid progenitors [CLP]). In molecular terms, the choice is believed to be the result of the

strictly regulated activation of master regulator genes and their underlying transcriptional net-

work [7]. However, the strict hierarchical logic of classical models has recently been challenged

by a number of in vivo and in vitro studies [8–10]. Single-cell gene expression studies have

revealed a much higher heterogeneity of cell subtypes than can be detected using a combina-

tion of surface markers [11]. It is not surprising that the number of identifiable cell types

increases with the resolution of the detection method. Although correct cell type classification

is a key step in understanding the cell fate decision issue, it cannot reveal the dynamic features

of the fate commitment process and leaves a number of unanswered questions. Do different

phenotypic forms represent different cell types or different stages of the same process? How

does the transition between the forms occur? How long does it take?

Until recently, fully deterministic explanations were predominant, but recent studies have

suggested other alternatives. Two different possibilities have been put forward. According to

the first, the commitment process starts with the sporadic, independent activation of genes

within the same cell. The simultaneous stochastic expression of regulatory genes specifying dif-

ferent lineages creates a multiprimed intermediate state that enables these cells to choose 1 of

the lineages [12–16]. A coherent lineage-specific expression profile would then emerge from

this metastable state. According to the second, commitment is preceded by transcriptome fluc-

tuations between different lineage-biased states [17–19]. Surprisingly, the time scale of trans-

formations related to the cellular fate decision process remains largely unexplored. The

transcriptome of the same cell can be analysed only once, because the cell is destroyed by RNA

extraction. Therefore, indirect approaches are required to identify trends and patterns in time

series.

We addressed the issue of the dynamics and the time scale of the commitment process by

integrating single-cell quantitative reverse transcription polymerase chain reaction

(qRT-PCR), cell division history, and morphological changes determined by time-lapse analy-

sis. Contrary to the common strategy consisting of isolating defined cell subpopulations with

the help of specific surface markers and characterising their gene expression profiles at the sin-

gle-cell level [20], we used an alternative approach. Individual cells were randomly isolated

from the heterogeneous cord blood CD34+ cell fraction at different time points after cytokine

stimulation, and their gene expression profiles were determined using single-cell qRT-PCR.

The data provided a series of snapshots, showing the actual statistical distribution of single-cell

gene expression patterns across the whole population. The structure of the population at the

successive time points was revealed by unsupervised classification of the expression profiles

Dynamic nature of fate commitment in human hematopoietic cells

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001867 July 27, 2017 2 / 23

collection and analysis, decision to publish, or

preparation of the manuscript. Agence Nationale de

la Recherche www.anr.fr (grant number BSV6 014

02 « Stochagene »). Received by AP and OG. The

funder had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. Genethon www.genethon.fr.

Received by AP and DS. The funder had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: CLP, common lymphoid

progenitor; CMP, common myeloid progenitor;

CTV, CellTrace Violet; HDAC, histone deacetylase;

HSPC, hematopoietic stem and progenitor cell;

MPP, multipotent progenitor; PCA, principal

component analysis; qRT-PCR, quantitative reverse

transcription polymerase chain reaction; t-SNE, t-

distributed stochastic neighbour embedding; VPA,

valproic acid.

https://doi.org/10.1371/journal.pbio.2001867
http://www.anr.fr
http://www.genethon.fr


according to their similarity using multiparametric approaches. The progression of the fate

commitment process was deduced from the evolution of the population structure. At the same

time, using time-lapse microscopy, we tracked randomly isolated individual CD34+ cells and

their progeny for several days after cytokine stimulation. We recorded the division history and

the morphological changes of each cell in the clones. The population structure was deduced

on the basis of the statistical analysis of these observations. The efficiency of the time-lapse

approach in investigating cell fate decisions has recently been shown [21]. To reinforce this

approach, the time-lapse and gene expression data were integrated into a coherent scenario.

This was done by using CD133 protein expression levels to isolate cells with 1 transcription

profile or the other and directly record their dynamic phenotype, thereby providing a direct

link between dynamic phenotype and transcription profile.

Altogether, our results revealed that fate decision is a dynamic, fluctuating process that is

more complex than a simple binary switch between 2 options, as it is usually envisioned.

Results

Single-cell gene expression

The transcriptional profile of individual cord blood CD34+ cells was determined at 0, 24, 48,

and 72 h after the beginning of cytokine stimulation (Fig 1A). Single-cell qRT-PCR was used

to quantify the mRNA levels of 90 different genes. A set of 32 genes was selected for their

known function in the early differentiation of hematopoietic cells and was expected to inform

on the functional state of the cells (see S1 Table). A second set of 54 genes was chosen ran-

domly from a list of genes known to be expressed in the hematopoietic lineage [22,23]. These

genes provided an assessment of the overall transcriptional activity of the genome. Five addi-

tional genes were added to the list for their role in maintaining the pluripotent state in embry-

onic stem cells. A heat map of all data and a violin plot of the expression profile of each gene

at the 4 separate time points are shown in S1 Fig and S2 Fig. The normalized single-cell quanti-

tative gene expression data obtained for the different time points were merged into a single

database and screened for subpopulations by k-means clustering. The number of statistically

distinguishable groups was inferred using gap statistics [24]. The groups were visualised on

heat maps and on a 2D plot using t-distributed stochastic neighbour embedding (t-SNE) [25].

Although every cell had a unique gene expression pattern, this approach enabled us to clearly

identify subgroups of cells in the population on the basis of the statistical similarity of their

gene expression patterns (Fig 1B).

Nonstimulated CD34+ cells isolated from cord blood represented the t = 0 h time point. A

heat map of the single-cell transcriptional profiles of genes contributing significantly to the

identification of subgroups (S1 Fig) showed that this population of cells was heterogeneous.

Several genes reported to play a role in self-renewal, quiescence, and other stem cell functions

(CD71, CD133, CXCR4, GATA2, and FLT3) were expressed sporadically and at variable levels

in a fraction of cells. Genuine pluripotent stem cell genes were also expressed at low levels in a

fraction of cells (NANOG, OCT4, KLF4). Nevertheless, no correlation was found between

these genes (Fig 1D), and the statistical analysis did not reveal distinguishable expression pat-

terns that could define cell types. The only detectable differences were donor-associated and

probably reflected differences related to the processing of individual blood samples. Donor-

specific differences disappeared at later stages.

The gene expression profile 24 h after the onset of cytokine stimulation was found to be

fundamentally different to t = 0 h cells. Almost every cell responded to cytokine stimulation by

increasing transcript levels and generating a unique gene expression pattern (Fig 1C). When

represented on the 2D t-SNE (Fig 1B) and principal component analysis (PCA) plots (S3 Fig),
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the cells formed a single but dispersed cluster, well separated from the t = 0 h cells. In a fraction

of cells, moderate to high transcription of previously nonexpressed hematopoietic regulator

genes was observed in addition to that already seen at t = 0 h. For example, the expression of

GATA1, GATA2, PU1, CD71, FOG1, CD133, or EPOR increased or was more frequent than

at t = 0 h. In some cells, all these genes were expressed simultaneously. Nevertheless, no dis-

tinct subpopulations could be identified at the resolution of our approach. The pairwise corre-

lation coefficients between genes remained low (Fig 1D). It is therefore likely that the patterns

observed at 24 h resulted from essentially uncoordinated up-regulation of gene transcription

and led to a highly heterogeneous cell population. This is a transition state reminiscent of the

reported multilineage primed state with simultaneous expression of lineage-affiliated genes

specifying alternative cell fates [12,15].

The first signs of coordinated differential gene expression appeared at t = 48 h after cytokine

stimulation. At this stage, 2 distinct gene expression patterns emerged from the highly variable

background of earlier stages. The 2 clusters are clearly distinguishable on the t-SNE plot (Fig

1B) and identified by gap statistics. They are also easily seen on the heat map representing

gene expression levels (Fig 1C). Cluster #2 comprised cells with simultaneous expression of

genes characteristic of CMPs such as GATA1 and EPOR [7]. The expression profile of the cells

in cluster #1 was characterised by the strong expression of genes reported for multipotent cells

(CD133, GFI1, KLF4, or FLT3) and the lack of expression of GATA1 and EPOR. Although

this pattern is reminiscent of a self-renewing, multipotent profile, it is difficult to determine

the exact identity of these cells at the level of resolution used in our study [26]. Typical genes

for pluripotent stem cells like NANOG and OCT4 were expressed at moderate levels in many

cells from both clusters (Fig 1C, S1 Fig and S2 Fig). Randomly selected genes were also good

predictors for the 2 groups of cells. Only a small fraction of cells could not be classified in 1 of

the 2 main clusters at t = 48 h (Fig 1B). The tendency observed at t = 48 h was further rein-

forced by t = 72 h. The cells in cluster #2 with CMP-like profiles represented more than half of

all cells (Fig 1B and 1C). We observed a strong but transient increase in the number of highly

correlated genes in this group (Fig 1D). Such an increase in the overall gene-to-gene correla-

tion is a typical hallmark of imminent state transition in these cells [27–29]. Indirectly, this

suggested that the cluster #1 profile was more in continuity with the previous profile observed

at t = 24 h and that the cluster #2 profile at t = 48 h represented a transition to a new pattern.

Taken together, these single-cell gene expression observations revealed that the cell fate

decision process in cytokine-stimulated CD34+ cord blood cells occurred during the first 2 d.

Initially, each cell responds to cytokine stimulation with an uncoordinated change in gene

expression, which is followed by the emergence of 2 distinct gene expression patterns reminis-

cent of the 2 known major types of hematopoietic progenitor cells. Although indications of

Fig 1. Transcriptional profile of cord blood-derived CD34+ cells at t = 0 h, t = 24 h, t = 48 h, and t = 72 h after the beginning of the experiment. (A)

CD34+ cells were isolated from human cord blood and cultured in serum-free medium with early acting cytokines. Single-cell quantitative reverse transcription

polymerase chain reaction (qRT-PCR) was used to analyse single-cell transcription at 0 h, 24 h, 48 h and 72 h. At the same time, individual clones were

continuously monitored using time-lapse microscopy. (B) t-distributed stochastic neighbour embedding (t-SNE) map of single-cell transcription data. The 4

panels show analysis of the same data set, with each point representing a single cell highlighted in different colours depending on the given time point. The 2

clusters identified by gap statistics at t = 48 h and t = 72 h are surrounded by an ellipse and numbered #1 and #2 for multipotent and common myeloid

progenitor (CMP)-like cells. Note the rapid evolution of the expression profiles. (Underlying data can be found in S1 Data.) (C) A heat map representation of

the expression levels of a subset of genes that strongly contributed to the differentiation of the different groups (as detected by principal component analysis

[PCA]; see S2 Fig) and cluster analysis of expression profiles at the different time points show the rapid evolution of gene expression. The list of the genes

used (shown on the right) includes well-known genes acting during hematopoietic differentiation but also many randomly selected genes. The colour code for

expression levels is indicated below. (Underlying data can be found in S1 Data.) (D) Pairwise correlations between the genes analysed using single-cell

quantitative reverse transcription polymerase chain reaction (qRT-PCR). Only the gene pairs with a Pearson correlation coefficient higher than 0.8 are

indicated for each time point. The 2 clusters identified at t = 48 h and t = 72 h are represented separately. Note the transient increase of the average correlation

in cluster #2 at t = 48 h, indicating a state transition. (Underlying data can be found in S1 Data.)

https://doi.org/10.1371/journal.pbio.2001867.g001
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this second change may appear as early as 24 h after stimulation, the 2 distinct gene expression

patterns are clearly distinguishable at 48 h and consolidated by 72 h. By this stage, almost every

cell seems to have adopted 1 profile or the other.

Time-lapse tracking studies

In order to integrate the gene expression snapshots into a dynamic scenario, we made time-

lapse records of individual CD34+ cells under in vitro conditions identical to those in the sin-

gle-cell gene expression studies. We imaged individual cells in microwells at a rate of 60 frames

per hour for 7 d (Fig 2A). Using a semiautomatic image analysis approach, we established indi-

vidual clonal pedigrees and recorded cell cycle durations and major morphological changes.

As shown in Fig 2B and 2C, the pedigrees of individual clones were highly variable but shared

some general features. Some clones produced only a few cells during the observation period,

while others proliferated faster and produced up to 30–40 siblings. We focused our attention

on the first 3 generations. As reported for cells cultured in early acting cytokines [30], the

first cell cycle was exceptionally long in all clones. The division of the founder cell occurred

between 35 h and 80 h after the start of culturing, with the median cell cycle length being 58 h

(Fig 2). We questioned whether the culturing of isolated cells in microwells, in which direct

contact with the other cells was not possible, influenced cell cycle length. To measure the divi-

sion rate in a population context, the cells cultured together were labelled using CellTrace Vio-

let (CTV). The results (S4 Fig) showed that the cells had similar division profiles regardless of

whether they were cultured individually or in population. The unusually long first cell cycle

was particularly important when interpreting results. It implied that the transition from the

initial to the multilineage primed transcription profile followed by 1 of the 2 types of progeni-

tor-like profiles observed at 24 h and 48 h after CD34+ cell stimulation occurred during the

life of the founder cell, before the first mitosis.

Previous studies have demonstrated that there is a connection between cell morphology

and the differentiation potential of CD34+ cells. Two major morphological forms have been

described in the CD34+ cord blood cell fraction. Polarised cells are capable of active motion

with the help of lamellipodia and possess, on their opposite end, large protrusions called uro-

pods. These cells have been found to retain primitive self-renewing and stem cell functions

[31,32]. The second morphological type is round. These cells have been considered as already

engaged in differentiation [31,32].

Time-lapse records revealed that the 2 cell morphologies were not permanent; most cells

were able to switch between forms several times during the cell cycle. After recovering from

the stress of isolation and manipulation, founder cells acquired polarised morphologies within

a few hours, developing uropods and starting to move actively (see S1–S3 Movies). During the

first cell cycle, cells mostly conserved the polarised form, and switches between the 2 morphol-

ogies were rare. As indicated above, the first cell division occurred (on average) at 58 h, and

the average lengths of subsequent cell cycles were around 20 h to 22 h. The daughter (second

generation) and granddaughter (third generation) cells were able to switch between the 2 mor-

phologies at a much higher frequency compared to the founder cells. In order to quantify these

events, we manually tracked each cell and recorded each switch. Representative profiles are

presented in S5 Fig.

In order to compare quantitatively the dynamic phenotype of cells, we calculated 3 parame-

ters based on their dynamic profiles. The first parameter was calculated as a ratio of the time a

given cell spent in a round shape compared to the time spent in a polarised shape. This param-

eter was close to 0 for stable polarised cells and 1 for stable round cells. Intermediate values

correspond to the fraction of time cells spent in round shape. The second parameter was the
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Fig 2. Time-lapse tracking of individual clones. (A) These frames, extracted from a representative time-lapse record, show a microwell containing a single

founder cell, which divides to produce a clone. Each individual cell was tracked, and their morphological characteristics were recorded. (B) Two representative

lineage pedigrees obtained from the time-lapse record. The strong difference in clone size observed at the end of the record is established gradually after the

third cell division. (C) Box plot representation of cell cycle lengths obtained from the time-lapse records of every clone. Note the long first cell cycle.

Subsequent cell cycles have comparable lengths, with a slight tendency to become shorter. (Underlying data can be found in S2 Data.)

https://doi.org/10.1371/journal.pbio.2001867.g002
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frequency of morphological switches during the cell cycle. This parameter expressed the cell’s

ability to maintain a stable morphology. The third parameter was the cell cycle length. When

cells were represented as individual points in the space determined by the 3 parameters, we

identified 3 major categories (Fig 3A). The first category included cells with mainly polarised

shapes; the second category was composed of cells with predominantly round shapes; the cells

in the third category switched shape frequently, generally fluctuating between both morpholo-

gies (Fig 3A).

When sister cell pairs were examined, it became obvious that many displayed very similar

dynamic phenotypes. In some cases, periods of stable morphology and switching events coin-

cided almost perfectly (S5 Fig). In other cases, the 2 sister cells behaved differently. In the most

extreme cases, 1 sister cell adopted a stable round form and the other a stable polarised form

immediately after division.

We calculated the frequency with which a cell with a given dynamic phenotype was pro-

duced by a mother cell with similar or dissimilar phenotype (Fig 3B). Maternal cells clearly

tended to transmit the dynamic phenotype to daughter cells. We also observed the regularity

with which phenotype changes occurred in daughter cells. Polarised cells were systematically

produced by polarised cells. At lower probabilities, both polarised and fluctuating cells could

produce stable round phenotype cells. Round cells always gave rise to round siblings (Fig 3B).

Following these simple rules, the cumulative outcome of the process was the gradual increase

of round cells in the population. Cells with fluctuating morphologies appeared to be an inter-

mediate form between polarised and round cells. Since 25% of daughter cells conserved this

Fig 3. Quantitative analysis of dynamic phenotypes as determined by time-lapse data. (A) Association

between the morphology, switch frequency, cell cycle length, and the type of cell divisions of second- and third-

generation cells. Each point represents a single cell. Siblings with different dynamic behaviour and morphology

(in green) are usually characterised by high switch frequencies. Siblings with similar dynamic behaviour and

morphologies are shown in blue. The morphology is given as a ratio of time spent in round/polarised shape by a

cell during the cell cycle. Switch frequency is given in number of morphological transformations per hour. Cell

cycle length is in hours. (B) Dynamic phenotype change during the first 2 cell divisions as determined on the

basis of time-lapse records. Three different dynamic phenotypes were identified: stable polarised, frequent

switchers, and stable round. Cells tended to transmit dynamic phenotypes to daughter cells during cell division.

Polarised and frequent switchers produced round cells, and frequent switchers were always produced by

polarised mothers. Phenotypic change is not associated with asymmetric division; it can occur at any time in the

cell cycle. Since round cells always produce round daughters, the whole process is biased and the proportion of

this phenotype increases. (Underlying data can be found in S2 Data.)

https://doi.org/10.1371/journal.pbio.2001867.g003
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phenotype, the fluctuating intermediate cells persisted in the population. On static snapshots,

however, this category remained undetectable: only polarised and round cells were observed.

A polarised form was considered to be a feature of multipotent cells and the round form a

committed myeloid progenitor phenotype [31,32].

Coupling the molecular and cellular scales

The dynamically fluctuating behaviour we have described here for the first time represents a

transition between the 2 states and reflects a ‘hesitant’, incomplete fate-determination process.

Since we detected only 2 major transcription profiles but observed 3 different dynamic behav-

iours, it is possible that ‘hesitant’ cells are not characterised by a clearly distinct transcription

pattern. Morphology fluctuations may be accompanied by fluctuations in the transcript or pro-

tein levels of at least some key genes.

To test this assumption, we took advantage of the observation that the gene coding for the

CD133 cell surface protein was expressed preferentially in 1 of the 2 transcription patterns

detected at 48 h (Fig 1B and 1C). Previous reports have established that CD133 protein is typi-

cally present in cells with polarised forms and accumulates in the uropod [31–33]. We con-

firmed this using image cytometry and immunohistochemistry on fixed cells (S6 Fig). Cells

expressing high levels of CD133 were mostly polarised, while those with low levels of CD133

were round (S6 Fig). This observation explicitly established a direct link between the cell mor-

phology and the transcription patterns detected by single-cell qRT-PCR.

We therefore used the CD133 protein as a proxy for the isolation of a cell fraction enriched

in either polarised or round cells and recorded their dynamic phenotype. The ‘high’, ‘medium’,

and ‘low/negative’ CD133-expressing cell fractions were isolated 48 h after cytokine stimula-

tion, put in culture, and tracked using time-lapse microscopy for an additional 48 h (Fig 4A).

The fraction of the time the cell spent in round or in polarised shape, the switch frequency,

and the division asymmetry of the tracked cells were quantified. The ‘high’ CD133-expressing

cells and their progeny reproduced the 3 types of cells observed previously but in different pro-

portions (Fig 4B). Most of the cells displayed stable polarised morphologies or were frequent

switchers; only a few cells displayed stable round morphologies (Fig 4B). By contrast, the ‘low/

negative’ cells produced either stable round progeny or cells with fluctuating morphologies

(Fig 4B). The ‘medium’ CD133-expressing cells had a higher switch frequency, and both

shapes were represented in a more equilibrated manner (Fig 4B).

These observations confirmed the idea that cells with stable round shapes were derived

from cells with polarised shapes and high CD133 levels following a period in which they had a

fluctuating phenotype. The fluctuations occurred in a bi-stable manner; the cells switched

from 1 morphology to another and back rapidly without stable intermediate states (see S1–S3

Movies). The process of transformation did not correlate with the cell cycle; some cells reached

a stable morphology rapidly, while others fluctuated over several cycles. The process was

accompanied by a gradual decrease in CD133 protein levels in cells. We found no evidence

that asymmetric divisions played a direct role in this process.

Next, we isolated individual cells with high, medium, and low/negative CD133 protein lev-

els using a cell sorter and performed single-cell qRT-PCR analysis using the same gene panel

used previously on the unsorted population. Fig 5A shows the t-SNE representation of the sin-

gle-cell gene expression profiles. The heat map representation of the full set of gene expression

results is shown in S7 Fig together with the PCA analysis. The ‘high’ and ‘low’ CD133 cells dis-

played different transcription profiles similar to clusters #1 and #2, respectively, found in cells

of the unsorted population at t = 48 h (Fig 1). The cell fraction isolated on the basis of interme-

diate CD133 levels contained a large number of cells with intermediate transcription profiles,

Dynamic nature of fate commitment in human hematopoietic cells

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001867 July 27, 2017 9 / 23

https://doi.org/10.1371/journal.pbio.2001867


Fig 4. Isolation and time-lapse analysis of ‘high’, ‘medium’, and ‘low’ CD133-expressing expressing cells.

(A) Cell-sorting strategy to isolate cells on the basis of the CD133 surface protein level. The sorted cells were

cultured individually and tracked by time-lapse microscopy. They produced cells with a polarised, round, or

fluctuating dynamic phenotype (illustrated by the middle panel). Examples of cells with different morphologies are

shown on the right, as detected by confocal microscopy. Red: CD133 protein. Green: actin filaments detected by

phalloidine. Blue: DNA. Note the preferential localisation of the CD133 protein in the uropods of polarised cells.

Actin is concentrated in lammelipodia or evenly distributed in the periphery of round cells. (B) Quantitative

evaluation of cell morphology and switch frequency. Distribution of the ‘roundness’ parameter (upper panel)

indicates a gradual increase of the proportion of round cells between the ‘high’ and ‘low’ fraction. Distribution of the

switch frequency as switch/h of sorted ‘high’, ‘medium’, and ‘low’ CD133 cells is shown in the lower panel. Note

that the switch frequency is the highest in ‘medium’ CD133 cells. (Underlying data can be found in S2 Data.)

https://doi.org/10.1371/journal.pbio.2001867.g004
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again supporting their dynamic transitory phenotype. When expression pattern of individual

genes is examined (for example, CXCR4, CXCR2, DVL2, FOXO3, NANOG, ZNF665, or

TSPYL5 [S8 Fig]), some of them displayed a very different distribution in the ‘medium

CD133’ compared to the ‘high’ and ‘low’ CD133 cells. This further demonstrates that the

‘medium’ CD133 cells are more than simple intermediates between the ‘high’ and ‘low’ cells;

they have their own dynamic transcription profile. One can conjecture that if the cell shape

correlates with the CD133 level that correlates with the transcription profile, then those cells

that change shape must also change transcription profile.

PU1 and GATA1 are well-known transcription factor-coding genes that play an important

role in the specification of granulocytic–monocytic and erythroid–megakaryocitic cells [34]. It

has been proposed that PU1 and GATA1 can cross-inhibit each other’s activity and generate a

bi-stable switch between the 2 lineages [35], but more recent observations challenged this model

[21]. Our analysis showed that ‘high’ CD133 cells express only PU1; ‘medium’ CD133 cells

express PU1 only or coexpress the 2 genes; and ‘low’ CD133 cells express PU1 only, coexpress

the 2 genes, or express GATA1 only (Fig 5B). This observation places the ‘medium’ CD133 cells

as a possible intermediate between the cells expressing only PU1 and cells committed to different

pathways, without providing evidence either for or against a direct competition between them.

Single-cell transcription profile of the multipotent stage

In order to determine which of the observed phenotypes correspond to the multipotent stage, we

took advantage of recent observations demonstrating that the inhibition of histone deacetylase

(HDAC) activity with a pharmacological agent resulted in a substantial increase in their incidence

in the CD34+ cord blood population [13,36,37]. We anticipated that this would increase the pro-

portion of cells with transcription profiles typical of the multipotential phenotype. Since valproic

acid (VPA) was shown to be the most efficient [36], we used this agent to treat CD34+ cord

blood cells stimulated by cytokines as above, before sampling transcription profiles. The increase

of the CD90 marker (as analysed by flow cytometry) confirmed that the VPA effect was already

visible after 24 h and gradually grew stronger during subsequent steps (Fig 6A and S9 Fig). The

expression of CD34 and CD38 markers remained unchanged (S9 Fig). Although we did not ana-

lyse the in vivo potential of these cells, based on previous reports, we considered them enriched

for bona fide multipotent cells. We performed single-cell qRT-PCR at 0 h, 24 h, 48 h, and 72 h

after the start of the experiment, as in control cells. At all 4 time points, cell populations were very

heterogeneous. At each time point, the cells displayed a unique transcription profile (Fig 6B), and

no identifiable transcription patterns appeared during the 72 h of the experiment, despite slight

profile evolutions. Overall, transcription patterns in individual cells were reminiscent of the

uncoordinated multilineage primed profile detected in control cells at 24 h, but the 2 groups clus-

tered separately on t-SNE maps (Fig 6C). Since the cells did not divide during the first 48 h, the

increase observed in the multipotent cell fraction could not result from the selective proliferation

of an initially small subpopulation of cells. Instead, this occurred because cells already present in

the population changed the expression of many genes in response to the VPA.

Discussion

In this study, we aimed to identify the initial stages of fate commitment in the CD34+ cell frac-

tion of human cord blood and determine the typical time scale for these events. Without cytokine

stimulation, CD34+ cells remain quiescent and die after a few days in culture. Early acting cyto-

kines allow these cells to survive, become metabolically active, and enter the cell cycle [38] with-

out showing overt signs of differentiation during the first few days. This creates ideal conditions

for studying early events. Our experimental design combined continuous time-lapse observations
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with snapshots of high-resolution single-cell transcriptome analysis. The data can be integrated

in a dynamic fate-decision process scenario. Fate decision is necessarily accompanied by a change

in the gene expression pattern. This is a multistep process. First, upon stimulation, cells rapidly

reach the multiprimed state, which is characterised by a promiscuous gene expression pattern

and predominantly polarised morphologies. This is an unstable phase, and 2 distinct transcrip-

tion profiles start to emerge before the end of the first cell cycle. The process by which cells relax

from a multiprimed to a more stable state is continuous and of variable length. Some cells reach

stable morphology and a coherent, lineage-affiliated transcription profile by the end of the first

cell cycle, which they then transmit to daughter cells. Other cells divide into unstable daughter

cells with dynamic, ‘hesitant’ behaviour. This behaviour is characterised by fluctuations between

polarised, actively moving amoeboid and round morphologies over several cell cycles, suggesting

that instability can be transmitted mitotically. Although we have no formal evidence that the

Fig 5. Single-cell gene expression in ‘high’, ‘medium’, and ‘low’ CD133 cells. (A) t-stochastic neighbour

embedding (t-SNE) map of single-cell transcriptional data. Each point represents a single cell highlighted in a

different colour for ‘high’, ‘medium’, and ‘low’ CD133 cells. ‘High’ and ‘low’ cells are in separated clusters

corresponding to cluster #1 and #2 in Fig 1B. ‘Medium’ CD133 cells are distributed in and between these 2

clusters, indicating their intermediate character. (B) Scatter plot representation of PU1 and GATA1 expression

in individual cells of the ‘high’, ‘medium’, and ‘low’ CD133 fraction. Note that GATA1 is not expressed in ‘high’

cells. Coexpression of the 2 genes is observed only in some ‘medium’ and ‘low’ cells. (Underlying data can be

found in S1 Data.)

https://doi.org/10.1371/journal.pbio.2001867.g005
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Fig 6. Transcriptional profile of cord blood-derived CD34+ cells treated with valproic acid (VPA) at t = 0 h, t = 24 h, t = 48 h, and t = 72 h after the

beginning of the experiment as compared to untreated, normal control cells. (A) A cytometric analysis of the effect of VPA on cord blood CD34+ cells

shows an increase in the CD90 protein in most cells, while the CD34 and CD38 markers remain essentially unchanged. (B) Heat map representation of the

expression levels of 90 genes as determined by single-cell quantitative reverse transcription polymerase chain reaction (qRT-PCR) in VPA-treated cells at

t = 0 h, t = 24 h, t = 48 h, and t = 72 h. The colour codes for the time points of cells are indicated on the right; the colour codes for expression levels are

indicated below the heat map. Note the high heterogeneity and lack of clear clustering of the expression patterns. (C) t-distributed stochastic neighbour

embedding (t-SNE) plot representation of transcription data obtained for VPA-treated cells compared to untreated normal cells (data for these cells are the

same as in Fig 1). The gene expression data obtained in the 2 experiments were mapped together. Each point represents a single cell, and the cells at t = 0 h,

t = 24 h, t = 48 h, and t = 72 h are highlighted separately in the 4 panels. The colour codes for VPA-treated (+VPA) and VPA-untreated (−VPA) are indicated

below the panels. Clusters #1 and #2, identified at t = 48 h and t = 72 h in −VPA cells (see Fig 1), are indicated on the t = 72 h panel. Note the clear separation
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transcriptome of these cells also fluctuates, 2 observations suggest that this could be the case.

First, we only found 2 established transcription profiles that correspond to polarised and round

morphologies with ‘high’ and ‘low’ CD133 protein levels (Fig 1B). However, we observe 3

dynamic phenotypes, 1 of which is fluctuating. Second, cells isolated on the basis of having

‘medium’ CD133 protein levels represent a transition between the stable polarised and round

morphology. We propose a dynamic scenario in which the initial stochastic multilineage primed

state is followed by a period of relaxation and uncertain ‘hesitant’ phase of variable length with

fluctuating transcriptomes [15,17] before a stable lineage committed state is reached. In addition,

this scenario is also in accordance with the recent proposal that there exists a fraction of low-

primed, undifferentiated cells called ‘CLOUD’-HSPCs in which that can fluctuate without pass-

ing through fixed, discrete states [10].

Increased stochastic variation in gene expression may be responsible for the rapid shift

away from the initial quiescent state and lead to the uncommitted multilineage primed state

[10,12,15,16]. Cell division is not required for this process; it occurs during the first cell cycle

following stimulation. Cells on the path toward the new phenotype represent the committed

state. The critical moment in this process is the transition between the 2 phenotypes, when the

old gene network has broken down but the new network is not yet assembled. We consider

that cells with fluctuating morphologies represent this transition state. The rapidity of the tran-

sition may be dependent on the time required for the new gene expression network to settle

into a stable state. Since phenotypic stability of a cell lineage largely depends on the frequency

of transcription initiation and the stability of the resulting mRNAs and proteins [39,40], the

observed ‘hesitant’ phenotype might be the consequence of stochastic fluctuations due to rapid

mRNA and protein turnover. The consolidation of the chromatin structure appears to be an

essential element in this process, because, as shown in single-cell transcription studies, the

HDAC inhibitor VPA delays the transition and blocks cells in a promiscuous gene expression

pattern typical of a multilineage primed state. Indeed, HDAC inhibitors have been shown to

increase gene expression stochasticity by increasing chromatin acetylation [41].

In summary, in this study, we identified the earliest phases of fate commitment in human

cord blood CD34+ cells and assigned a time scale to this process. We demonstrated that the

rapid initiation of the process occurs within a single cell cycle and is followed by a dynamic

transition state of variable length that may span several cell cycles. Since experimental condi-

tions were constant, the changes observed are likely to reflect cell-intrinsic processes, whereas

the convergence toward a similar endpoint may reflect the constraints imposed by these condi-

tions. From this perspective, fate decision appears to be a process of spontaneous variation/

selective stabilisation reminiscent of trial–error learning, in which each cell explores many dif-

ferent possibilities at its own pace by expressing a large variety of genes before finding a stable

combination corresponding to the actual environment. This is in remarkable agreement with

earlier theoretical predictions and experimental work [42–46]. At least 3 independent theoreti-

cal models predicted the existence of an initial fluctuating phase during differentiation.

According to the first theory, cell differentiation is a variation/selection process analogous to

evolution [42,43]. Variations are created by stochastic fluctuations of gene expression, and

some patterns are selectively stabilised through interactions with the environment and neigh-

bouring cells. Another approach envisions cell phenotype as an attractor state in the parameter

space defined by the gene expression network [47]. Differentiation is seen as a transition from

1 attractor to another and governed by the stochastic dynamics and self-organisation of the

of the +VPA and −VPA cells at every time point except t = 24 h. Note also that +VPA cells do not contribute to clusters #1 and #2, indicating that they do not

acquire expression profiles typical of these cells. (Underlying data can be found in S1 Data.)

https://doi.org/10.1371/journal.pbio.2001867.g006
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gene network. Finally, a dynamic system view of differentiation was independently proposed

by Kaneko [48]. A common theme of these approaches is the prediction that differentiating

cells must necessarily go through a dynamically fluctuating phase with oscillating gene expres-

sion. Several recent studies have reported on the existence of gene expression fluctuations dur-

ing the critical state transitory phase of the differentiation process [15,29,46,49–51]. Our study

goes a step further by demonstrating that the cellular phenotype also fluctuates during the crit-

ical transitory phase.

Materials and methods

Ethics statement

Human umbilical cord blood (UCB) was collected from placentas and/or umbilical cords

obtained from Etablissement Français du Sang (EFS), Saint Louis Hospital, France or from

Centre Hospitalier Sud Francilien, Evry, France in accordance with international ethical prin-

ciples and French national law (bioethics law n˚ 2011–814) under declaration N˚ DC-201-

1655 to the French Ministry of Research and Higher Studies.

Human sample and cell culture

Human CD34+ cells were isolated from the mononuclear fraction of UCB samples using the

autoMACSpro (Miltenyi Biotec, Paris, France) immunomagnetic cell separation system. They

were then cryopreserved in Cryostor (StemCell, Paris, France) and stored in liquid nitrogen or

used directly without freezing.

Cells were cultured at 37˚C in a humidified atmosphere containing 5% CO2 in a 24-well

plate in X-VIVO (Lonza) supplemented with 100 U/ml penicillin, 100 μg/ml streptomycin

(Gibco, Thermo Scientific), 50 ng/ml h-FLT3, 25 ng/ml h-SCF, 25 ng/ml h-TPO, and 10 ng/ml

h-IL3 (Miltenyi Biotec, Paris, France) final concentration. VPA (Sigma Aldrich) was used at a

final concentration of 1.25 mM.

Single-cell qRT-PCR

Single-cell qRT-PCR was carried out using the BioMark HD System (Fluidigm). Deltagenes

assays (Life Technologies) were used at a final concentration of 500 nM for each of the 96

assays. Individual cells were sorted directly into a reverse transcription RT mix solution and

spikes (Life Technologies) in a 96-well plate. RNA was denatured and reverse-transcribed.

Twenty cycles of preamplification of 96 specific cDNA were performed by denaturing the

cDNA at 96˚C for 5 seconds, followed by annealing and extension at 60˚C for 4 min. Unincor-

porated primers were cleaned up by Exonuclease I, and the preamplified products were diluted

5-fold. Amplification was performed with Evagreen supermix with low ROX (Bio-Rad) and

inventoried DeltaGenes assays in 96.96 Dynamic Arrays on a BioMark HD System (Fluidigm).

Cycle threshold (Ct) values were calculated from the system’s software (BioMark Real-Time

PCR Analysis, Fluidigm).

Single-cell data normalisation

Ct values obtained from the BioMark HD System (Fluidigm) were normalised with the help of

2 externally added controls (spike 1 and spike 4, Life Technologies) according to a set of rules

provided below. For each gene, inconsistent readings or ‘Failed’ quality control readings were

removed. Cells with failed or inconsistent detection of spikes were removed. Expression values

were calculated by subtracting the gene Ct value from the geometric average of Ct values from
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spike 1 and spike 4 in the corresponding cell. An arbitrary differential cycle threshold (dCt)

value of −17 was assigned for all the genes with a dCt value less than −17.

Single-cell qRT-PCR data analysis

Analyses of qRT-PCR single-cell data were done with R software (R Core Team [2016]. R: A

language and environment for statistical computing. R Foundation for Statistical Computing,

Vienna, Austria, http://www.R-project.org/) using Heatmap3 [52], factomineR [53], k-means,

and ggplot2 packages [54]. Correlation calculations were performed using custom R scripts. t-

SNE and gap statistics calculations were performed as described by Grun et al. [55]

Confocal microscopy

Images were obtained with a spectral confocal Leica SP8 scanning microscope (Leica Micro-

systems, Germany). 5.104 cells were cultured in a 48-well plate in 200 μL prestimulation

medium. After 72 h, 100 μL of 3% glutaraldehyde was added to the cell-containing well (1%

final) for 15 min. Cells were washed twice with PBS 1X and incubated 2 h with 2 mg/mL

NaBH4 at room temperature. Fcɤ receptors were saturated with Gamma Immune (Sigma

Aldrich) for 5 min at 4˚C (1:2 dilution). The cells were permeabilised with the fix/perm kit

(BD-Biosciences), labeled for 20 min at 4˚C with a 1:10 dilution of the mouse anti-human

CD133-APC antibody (clone Ac133, Miltenyi Biotec), a 1:1,000 dilution of phalloidin–Tetra-

methylrhodamine B isothiocyanate (Sigma Aldrich) and stained with DAPI.

The images were acquired using a 63X PL APO CS2 1.40 NA oil immersion objective (Leica

Microsystems, Germany). DAPI was excited with a 405-nm laser, TRITC with a 552-nm laser,

and APC with a 635-nm laser. Finally, images were processed with a contrast enhancement

algorithm (histogram equalisation) and a home-designed background subtraction algorithm.

Microgrid cell culture

A polydimethylsiloxane (PDMS) microgrid array (Microsurfaces, Australia) of 1,024 micro-

wells (125-μm width, 60-μm depth) was placed in a specialised culture dish divided into 4

parts (Hi-Q4, Ibidi, Germany). Each part of the dish was filled with cell culture medium. A sus-

pension of 5 × 103 cells per case was added at a concentration likely to lead to a high number

of wells with a single cell.

Time-lapse microscopy

The time-lapse microscopy protocol was previously described [56]. Time-lapse acquisitions

were performed with the Biostation IM time-lapse microscope (Nikon Instruments, Europe).

Twenty field positions were recorded covering 4 microwells each. Images were acquired every

minute for 2 d to 7 d using a 20X magnitude phase contrast objective. Only microwells con-

taining a single cell were considered in the analyses.

Image analyses

Images were analysed using ImageJ 1.47g 64-bits software (Rasband, W.S., ImageJ, U.S.

National Institutes of Health, Bethesda, Maryland, USA, http://imagej.nih.gov/ij/, 1997–2014).

Cell tracking was performed manually using the ImageJ TrackMate plugin. The morphologies

of first, second, and third generation cells were analysed semiautomatically with Fiji (ImageJ

1.50e). A cell counter plugin was used to identify the moment when the cell switches from a

round to a polarised morphology.
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Analysis of the time-lapse records

Analyses of time-lapse data were performed using R software. Cell lineage representations,

cycle length, roundness, and switch frequency were calculated with custom R-made scripts.

Euclidean distances of the last 3 parameters (cycle length, roundness, and switch frequency)

between the 2 sister cells were calculated. Cells were classified into 2 groups using the k-means

algorithm: with similar or divergent dynamic phenotypes. Box plot representation combined

with individual points was calculated with the beeswarm package (Aron Eklund [2016]. bees-

warm: The Bee Swarm Plot, an Alternative to Stripchart. R package version 0.2.3. https://

CRAN.R-project.org/package=beeswarm). The ggplot2 package was used to represent the

roundness and switch frequency of cells sorted on CD133 protein.

Proliferation assay

CD34+ cells were labeled with 2.5 μM of CTV (Life technologies) at t = 0 h and analysed using

flow cytometry (LSRII–BD biosciences, France) after 24 h, 48 h, and 72 h with ModFit LT soft-

ware as described previously by Neildez et al. [57]

Image flow cytometry

Image flow cytometry analysis was performed using Image Stream MKII (Amnis, Proteigen,

Merk Millipore). 5.104 cells were cultured in a 48-well plate in 200 μL prestimulation medium.

After 72 h, 100 μL of 3% glutaraldehyde was added to the cell-containing well (1% final) for 15

min. Glutaraldehyde offers good preservation of cell shape. Cells were washed twice with PBS

1X and incubated 2 h with 2 mg/mL NaBH4 at room temperature. Fcɤ receptors were satu-

rated with Gamma Immune (Sigma Aldrich) for 5 min at 4˚C (1:2 dilution). Cells were labeled

for 20 min at 4˚C with a 1:10 dilution of mouse anti-human CD133-APC antibody (clone

AC133, Miltenyi Biotec). Cells were then suspended in PBS and analysed with the image flow

cytometer. Bright Field and APC channels were recorded (Bright Field: 745-nm laser; APC:

642-nm laser) with the 40X magnitude objective. Analyses of image stream data were per-

formed with the IDEAS software (Amnis, Proteigen, Merk Millipore).

Cell sorting

The CD34+CD133high, CD34+CD133medium and CD34+CD133low/neg cells were sorted at t = 48 h.

Prior to labeling, Fc receptors were saturated with Gamma Immune (Sigma Aldrich). The CD34

+ cells were labeled with CD34-PE (Miltenyi Biotec), CD45-APC-H7 (Beckman Coulter) and

CD133-APC (clone AC133, Miltenyi Biotec) antibodies and 7—Aminoactinomycine D (Sigma

Aldrich). Isotype controls were used for the gating strategy. Cells were purified using a MoFlo

Astrios cell sorter (Beckman Coulter, France) and analysed with Kaluza software.

Flow cytometric analysis

The CD34+ cells were labeled using the following cell-surface markers: CD34-PE (Miltenyi

Biotec), CD38-Pacific Blue (Beckman Coulter), and CD90-APC-Cy7 (Beckman Coulter) anti-

bodies and 7-AAD marker (Sigma Aldrich). Isotype controls were used for gating strategies.

Cells were analysed at 72 h after prestimulation by flow cytomety (LSRII–BD biosciences,

France) and analysed with FlowJo (v10.1) software.

Supporting information

S1 Fig. Full set of gene expression data obtained using single-cell qRT-PCR in cord-blood

CD34+ cells cultured in vivo with early-acting cytokines. Extended heat map of the
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transcriptional profiles of cord blood-derived CD34+ cells at t = 0h, t = 24h, t = 48h and

t = 72h after the beginning of the experiment. The color codes for the time points of cells are

indicated on the right, the color code for expression level are indicated below the heat-map.

Note the tendency of cells with the same time-points to cluster. (Underlying data can be found

in S1 Data.).

(TIF)

S2 Fig. Violin plot representation of individual gene expression levels at the four time

points. (Underlying data can be found in S1 Data.).

(TIF)

S3 Fig. Principal component analysis of single-cell expression profiles. A. 2D PCA plot.

Each point represents a single cell and the different time-points are coloured differently. Color

codes are in the box to the right of the plot. B. Contribution of individual genes to principal

component 1 and 2. Only the 40 highest contributions are indicated. (Underlying data can be

found in S1 Data.).

(TIF)

S4 Fig. Analysis of cell division rates. A. The number of cells at t = 24h, t = 48h and t = 72h as

observed by time-lapse microscopy. The cells of different generations are color coded in the his-

togram. Note that none of the cells has divided after 24 hours and only 11 of the 32 cells under-

went one division after 48 hours. At t = 72h, three of the founder cells have not undergone

division. (Underlying data can be found in S2 Data) B. Cell division analysis using Cell Trace

Violet labelling. Cells were labelled at t = 0h (not shown) and analyzed using flow cytometry at

t = 24h, t = 48h and t = 72h. When divided, the average fluorescence intensity of the two daugh-

ter cells is reduced by half compared to the maternal cell. Therefore, the peak on the right repre-

sents the parental generation. The number of the peaks to the left indicates the number of cell

generations in the culture and the size of the peaks is indicative of the number of cells in each

generation. Note that after 24h no cell division is detected and after 72h a fraction of undivided

cells can still be detected. Most of the cells underwent one or two divisions. Overall, the profile

is very similar to that detected by time lapse. (Underlying data can be found in S3 Data.).

(TIF)

S5 Fig. Representations of morphological profiles of cells in three representative clones.

Each horizontal box in the three panels represents the morphology of an individual cell. The cell

morphology–polarized or round–is shown with a horizontal line, the length of which is propor-

tional to the time spent in the corresponding form. Vertical lines show the transitions between

forms. The length of the horizontal lines is proportional to duration of the cell cycle and the time

scale in hours is the same for each cell. The founder cell is numbered Cell_1, the two daughter

cells Cell_11 and Cell_12 and granddaughter cell pairs as Cell_111, Cell_112 and Cell_121,

Cell_122 respectively. In clone number 1 the polarized founder cell gives rise to frequent switcher

daughters and granddaughters. Note the striking similarity of the time profiles for the morpho-

logical switches that can be observed in sister cells. In clone number 2 the polarized founder cell

gives rise to stable polarized siblings. In clone number 3 the founder cell and its progeny are

round. The two daughter cells switch to polarized shape for short periods. Note again the striking

similarity of the sister cells’ switch profiles. (Underlying data can be found in S2 Data.).

(TIF)

S6 Fig. Cell morphology and CD133 localisation. Image-based cytometry analysis shows cor-

relation between the CD133 protein expression level and cell morphology at t = 72h. The mid-

dle plot shows the CD133 protein density detected in glutaraldehyde-fixed cells.
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Representative examples of the morphologies of “high” (upper frame) and “low” (lower frame)

expressing cells are shown on the left and right respectively.

(TIF)

S7 Fig. The full set of the gene expression data obtained on “high,” “medium,” and “low”

CD133 expressing individual cells. A. Heat-map representation of the expression levels of 90

genes as determined by single-cell qRT-PCR. Color codes for the “high”, “medium” and “low”

fractions are indicated on the right, and the color codes for expression levels are indicated

below the heat-map. Note the intermediate expression pattern of the “medium” cells. B. Princi-

pal component analysis of the single-cell gene expression data shown on the panel A.

“Medium” cells are intermediate. (Underlying data can be found in S1 Data.).

(TIF)

S8 Fig. Violin plot representation of individual gene expression levels in the “high,”

“medium,” and “low” CD133 cells. The color code is identical to that on S7 Fig. (Underlying

data can be found in S1 Data.).

(TIF)

S9 Fig. Cytometry analysis of the effects of valproic acid on CD34+ cells. The histogram in

the left panel indicates the proportion of CD34+/CD38- cells in VPA+ and VPA- cell cultures

at different time points. Note that there is no substantial difference between the two. The right

panel indicates the proportion of CD34+/CD90+ cells in the same cultures. Note the increas-

ing proportion of CD34+/CD90+ cells in VPA+ culture. This rapid increase cannot be

explained by the selective proliferation of the CD90+ cells and is the result of the de novo syn-

thesis of the CD90 protein, because as indicated in Fig 2, and S4 Fig, cells do not divide before

72h. (Underlying data can be found in S3 Data.).

(TIF)

S1 Table. List of genes analyzed and primer sequences used for single-cell qRT-PCR ampli-

fication.

(XLSX)

S1 Data. RTqPCR normalized.

(XLSX)

S2 Data. Timelapse.

(XLSX)

S3 Data. Cytometry.

(XLSX)

S1 Movie. Time-lapse video of a cell clone with cells conserving polarized morphologies.

The video has been accelerated to 5 frames per second.

(MOV)

S2 Movie. Time-lapse video of a cell clone with cells conserving round morphologies. The

video has been accelerated to 5 frames per second.

(MOV)

S3 Movie. Time-lapse video of a cell clone with cells changing morphology at high frequency

(dynamic phenotype of frequent switchers). Only a period between 61 and 81 h is shown.

Note that individual snapshots taken at different moments may show a population composed of

only polarized, only round or cells with mixed morphology. The video is the original speed.

(MOV)
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