Supporting Information

The balance between cell cycle arrest and cell proliferation: Control by the extracellular matrix and by contact inhibition

Claude Gérard and Albert Goldbeter

The kinetic equations of the detailed model for the cyclin/Cdk network driving the mammalian cell cycle are described below. Equations [S5] to [S42] are the same as equations [2] to [39] listed in the Supporting Information of our previous publication (Gérard and Goldbeter, 2009) (http://www.pnas.org/content/106/51/21643.long?tab=ds). However, some equations must be slightly modified to take into account the present extensions of the model. Thus, equations [1] and [9] in (Gérard and Goldbeter, 2009), describing the time evolution of AP1 and cyclin D, are replaced, respectively, by the new Eqs. [S1] and [S12], while Eq. [16], describing the time evolution of Skp2, is replaced by the new Eq. [S19]. Moreover, 3 new kinetic equations, Eqs [S2], [S3] and [S4] have been added to account for the time evolution of the active forms of the kinase FAK, Hippo and YAP, respectively.

Table S1 below defines the different variables of the model, while Table S2 gives the definition of the parameters of the model, together with their values used in numerical simulations.

The initial conditions used to reach the stable steady state in the bifurcation diagrams of Figs. 2 and 6 are as follows (concentrations are tentatively expressed in $\mu \mathrm{M}$):
$A P 1=0.57 ; F A K=0.726 ; p R B=23.42 ; p R B c 1=41.9195 ; p R B p=9.429 ; p R B c 2=8.438$; $p R B p p=0.000737 ; E 2 F=17.897 ; E 2 F p=0.1038 ; C d=0.0348 ; M d i=0.01946 ; M d=$ $0.4397 ; M d p 27=0.72198 ; C e=0.00150 ; M e i=0.00529 ; M e=0.0148 ; S k p 2=0.1900$; Mep27 $=0.0162 ; ~ P e i=0.1787 ; ~ P e=1.3759 ; ~ C a=0.0384 ; ~ M a i=0.1353 ; ~ M a=0.0414$; Map27 $=0.0272 ; p 27=0.547 ; p 27 p=0.0306 ;$ Cdh $1 i=0.00439 ;$ Cdhla $=1.0912 ;$ Pai $=$ $0.51979 ; ~ P a=0.3604 ; C b=0.0344 ; M b i=0.039 ; M b=0.0068 ; M b p 27=0.0022 ; C d c 20 i$ $=0.712 ; C d c 20 a=0.0073 ; ~ P b i=0.559 ; ~ P b=0.0943 ;$ Weel $=0.2652 ;$ Weel $p=0.1674$.

Kinetic equations of the model :

1. Cell cycle entry regulated by growth factors (GF), and by the extracellular matrix (ECM) via FAK

$$
\begin{align*}
& \frac{d A P 1}{d t}=\left(v_{\mathrm{SAPI}} \cdot\left(\frac{G F}{K_{\mathrm{AGF}}+G F}\right)+v_{\mathrm{S} 2 A P 1} \cdot\left(\frac{F A K}{K_{\mathrm{AFAK}}+F A K}\right)-k_{\mathrm{DAPI}} \cdot A P 1\right) \cdot e p s \tag{S1}\\
& \frac{d F A K}{d t}=\left(V_{1 \mathrm{FAK}} \cdot(E C M+G F) \cdot\left(\frac{F A K_{\mathrm{T}}-F A K}{K_{1 \mathrm{FAK}}+\left(F A K_{\mathrm{T}}-F A K\right)}\right)-V_{2 \mathrm{FAK}} \cdot\left(\frac{F A K}{K_{2 \mathrm{FAK}}+F A K}\right)\right) \cdot e p s \tag{S2}
\end{align*}
$$

2. Cell cycle entry controlled by cell contact inhibition via Hippo and YAP

3. Antagonistic regulation exerted by $p R B$ and $E 2 F$

$$
\begin{aligned}
& \frac{d p R B}{d t}=\left(v_{s p r b}-k_{p c 1} \cdot p R B \cdot E 2 F+k_{p c 2} \cdot p R b c 1-V_{1} \cdot\left(\frac{p R B}{K_{1}+p R B}\right) \cdot(M d+M d p 27)\right. \\
& \left.+V_{2} \cdot\left(\frac{p R B p}{K_{2}+p R B p}\right)-k_{d p r b} \cdot p R B\right) \cdot e p s
\end{aligned}
$$

$$
\begin{equation*}
\frac{d p R B c 1}{d t}=\left(k_{p c 1} \cdot p R B \cdot E 2 F-k_{p c 2} \cdot p R b c 1\right) \cdot e p s \tag{S6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d p R B p}{d t}=\left(V_{1} \cdot\left(\frac{p R B}{K_{1}+p R B}\right) \cdot(M d+M d p 27)-V_{2} \cdot\left(\frac{p R B p}{K_{2}+p R B p}\right)-V_{3} \cdot\left(\frac{p R B p}{K_{3}+p R B p}\right) \cdot M e\right. \tag{S7}
\end{equation*}
$$

$$
\left.+V_{4} \cdot\left(\frac{p R B p p}{K_{4}+p R B p p}\right)-k_{p c 3} \cdot p R B p \cdot E 2 F+k_{p c 4} \cdot p R B c 2-k_{d p R B p} \cdot p R B p\right) \cdot e p s
$$

$\frac{d p R B c 2}{d t}=\left(k_{p c 3} \cdot p R B p \cdot E 2 F-k_{p c 4} \cdot p R B c 2\right) \cdot e p s$
$\frac{d p R B p p}{d t}=\left(V_{3} \cdot\left(\frac{p R B p}{K_{3}+p R B p}\right) \cdot M e-V_{4} \cdot\left(\frac{p R B p p}{K_{4}+p R B p p}\right)-k_{d p R B p p} \cdot p R B p p\right) \cdot e p s$

$$
\begin{align*}
& \frac{d \text { Hippo }}{d t}=\left(V_{1 \mathrm{HPPO}} \cdot C I \cdot\left(\frac{\text { Hippo }_{\mathrm{T}}-\text { Hippo }^{K_{\text {IHIPPO }}+\left(\text { Hippo }_{\mathrm{T}}-\text { Hippo }\right)}}{d}\right)-V_{2 \mathrm{HIPPO}} \cdot\left(\frac{\text { Hippo }}{K_{2 \mathrm{HIPO}}+\text { Hippo }}\right)\right) \cdot \text { eps } \tag{S3}\\
& \frac{d Y A P}{d t}=\left(V_{1 \mathrm{YAP}} \cdot\left(\frac{Y A P_{\mathrm{T}}-Y A P}{K_{1 \mathrm{YAP}}+\left(Y A P_{\mathrm{T}}-Y A P\right)}\right)-V_{2 \mathrm{YAP}} \cdot(\text { ahip }+ \text { Hippo }) \cdot\left(\frac{Y A P}{K_{2 \mathrm{YAP}}+Y A P}\right)\right) \cdot \text { eps } \tag{S4}
\end{align*}
$$

$\frac{d E 2 F}{d t}=\left(v_{s e 2 f}-k_{p c 1} \cdot p R B \cdot E 2 F+k_{p c 2} \cdot p R b c 1-k_{p c 3} \cdot p R B p \cdot E 2 F+k_{p c 4} \cdot p R B c 2\right.$
$\left.-V_{1 e 2 f} \cdot M a \cdot\left(\frac{E 2 F}{K_{l e 2 f}+E 2 F}\right)+V_{2 e 2 f} \cdot\left(\frac{E 2 F p}{K_{2 e 2 f}+E 2 F p}\right)-k_{d e 2 f} \cdot E 2 F\right) \cdot e p s$
$\frac{d E 2 F p}{d t}=\left(V_{1 e 2 f} \cdot M a \cdot\left(\frac{E 2 F}{K_{1 e 2 f}+E 2 F}\right)-V_{2 e 2 f} \cdot\left(\frac{E 2 F p}{K_{2 e 2 f}+E 2 F p}\right)\right.$
$\left.-k_{\text {de2fp }} \cdot E 2 F p\right) \cdot e p s$

4. Module Cyclin D/Cdk4-6: G1 phase

$$
\begin{align*}
& \frac{d C d}{d t}=\left(k_{c d 1} \cdot A P 1+k_{c d 2} \cdot E 2 F \cdot\left(\frac{K_{i 7}}{K_{i 7}+p R B}\right) \cdot\left(\frac{K_{i 8}}{K_{i 8}+p R B p}\right)+k_{c d 3} \cdot F A K+k_{c d 4} \cdot Y A P\right. \\
& -k_{c o m 1} \cdot C d \cdot\left(C d k 4_{\text {tot }}-(M d i+M d+M d p 27)\right)+k_{d e c o m 1} \cdot M d i \tag{S12}\\
& \left.-V_{d d} \cdot\left(\frac{C d}{K_{d d}+C d}\right)-k_{d d d} \cdot C d\right) \cdot e p s
\end{align*}
$$

$\frac{d M d i}{d t}=\left(k_{\text {com } 1} \cdot C d \cdot\left(C d k 4_{\text {tot }}-(M d i+M d+M d p 27)\right)\right.$
$\left.-k_{\text {decom } 1} \cdot M d i+V_{m 2 d} \cdot\left(\frac{M d}{K_{2 d}+M d}\right)-V_{m 1 d} \cdot\left(\frac{M d i}{K_{1 d}+M d i}\right)\right) \cdot e p s$
$\frac{d M d}{d t}=\left(V_{m 1 d} \cdot\left(\frac{M d i}{K_{1 d}+M d i}\right)-V_{m 2 d} \cdot\left(\frac{M d}{K_{2 d}+M d}\right)-k_{c 1} \cdot M d \cdot p 27+k_{c 2} \cdot M d p 27\right) \cdot e p s$
$\frac{d M d p 27}{d t}=\left(k_{c 1} \cdot M d \cdot p 27-k_{c 2} \cdot M d p 27\right) \cdot e p s$

5. Module Cyclin E/Cdk2: G1 phase and G1/S transition

$\frac{d C e}{d t}=\left(k_{c e} \cdot E 2 F \cdot\left(\frac{K_{i 9}}{K_{i 9}+p R B}\right) \cdot\left(\frac{K_{i 10}}{K_{i 10}+p R B p}\right)\right.$
$-k_{\text {com } 2} \cdot C e \cdot\left(C d k 2_{\text {tot }}-(M e i+M e+M e p 27+M a i+M a+M a p 27)\right)$
$\left.+k_{\text {decom } 2} \cdot M e i-V_{d e} \cdot\left(\frac{S k p 2}{K_{d c e s k p 2}+S k p 2}\right) \cdot\left(\frac{C e}{K_{d e}+C e}\right)-k_{d d e} \cdot C e\right) \cdot$ eps

$$
\begin{align*}
& \frac{d M e i}{d t}=\left(k_{\text {com } 2} \cdot C e \cdot\left(C d k 2_{t o t}-(M e i+M e+M e p 27+M a i+M a+M a p 27)\right)\right. \\
& \left.-k_{d e c o m 2} \cdot M e i+V m 2 e \cdot\left(W e e 1+i_{b 1}\right) \cdot\left(\frac{M e}{K_{2 e}+M e}\right)-V_{m 1 e} \cdot P e \cdot\left(\frac{M e i}{K_{1 e}+M e i}\right)\right) \cdot e p s \tag{S17}\\
& \frac{d M e}{d t}=\left(V_{m 1 e} \cdot P e \cdot\left(\frac{M e i}{K_{1 e}+M e i}\right)-V_{m 2 e} \cdot\left(W e e 1+i_{b 1}\right) \cdot\left(\frac{M e}{K_{2 e}+M e}\right)\right. \tag{S18}\\
& \left.-k_{c 3} \cdot M e \cdot p 27+k_{c 4} \cdot M e p 27\right) \cdot e p s \\
& \frac{d S k p 2}{d t}=\left(V_{s s k p 2}+V_{s 2 s k p 2} \cdot F A K-V_{d s k p 2} \cdot\left(\frac{S k p 2}{K_{d s k p 2}+S k p 2}\right) \cdot\left(\frac{C d h 1 a}{K_{c d b 1}+C d h 1 a}\right)-k_{d d s k p 2} \cdot S k p 2\right) \cdot e p s \tag{S19}\\
& \frac{d M e p 27}{d t}=\left(k_{c 3} \cdot M e \cdot p 27-k_{c 4} \cdot M e p 27\right) \cdot e p s \tag{S20}\\
& \frac{d P e i}{d t}=\left(v_{s p e i}+V_{6 e} \cdot\left(\frac{P e}{K_{6 e}+P e}\right)-V_{m 5 e} \cdot\left(M e+a_{e}\right) \cdot\left(\frac{P e i}{K_{5 e}+P e i}\right)-k_{d p e i} \cdot P e i\right) \cdot e p s \tag{S21}\\
& \frac{d P e}{d t}=\left(V_{m 5 e} \cdot\left(M e+a_{e}\right) \cdot\left(\frac{P e i}{K_{5 e}+P e i}\right)-V_{6 e} \cdot\left(\frac{P e}{K_{6 e}+P e}\right)-k_{d p e} \cdot P e\right) \cdot e p s \tag{S22}
\end{align*}
$$

6. Module Cyclin A/Cdk2: S phase and S/G2 transition

$$
\begin{align*}
& \frac{d C a}{d t}=\left(k_{c a} \cdot E 2 F \cdot\left(\frac{K_{i 11}}{K_{i 11}+p R B}\right) \cdot\left(\frac{K_{i 12}}{K_{i 12}+p R B p}\right)\right. \\
& -k_{\text {com } 3} \cdot C a \cdot\left(C d k 2_{\text {tot }}-(M e i+M e+M e p 27+M a i+M a+M a p 27)\right) \tag{S23}
\end{align*}
$$

$\left.+k_{\text {decom } 3} \cdot M a i-V_{d a} \cdot\left(\frac{C a}{K_{d a}+C a}\right) \cdot\left(\frac{C d c 20 a}{K_{a c d d 20}+C d c 20 a}\right)-k_{d d a} \cdot C a\right) \cdot$ eps

$$
\frac{d M a i}{d t}=\left(k_{c o m 3} \cdot C a \cdot\left(C d k 2_{t o t}-(M e i+M e+M e p 27+M a i+M a+M a p 27)\right)\right.
$$

$$
\begin{equation*}
\left.-k_{\text {decom } 3} \cdot M a i+V_{m 2 a} \cdot\left(W e e 1+i_{b 2}\right) \cdot\left(\frac{M a}{K_{2 a}+M a}\right)-V_{m 1 a} \cdot P a \cdot\left(\frac{M a i}{K_{1 a}+M a i}\right)\right) \cdot e p s \tag{S24}
\end{equation*}
$$

$$
\begin{align*}
& \frac{d M a}{d t}=\left(V_{m 1 a} \cdot P a \cdot\left(\frac{M a i}{K_{1 a}+M a i}\right)-V_{m 2 a} \cdot\left(W e e 1+i_{b 2}\right) \cdot\left(\frac{M a}{K_{2 a}+M a}\right)\right. \tag{S25}\\
& \left.-k_{c 5} \cdot M a \cdot p 27+k_{c 6} \cdot M a p 27\right) \cdot e p s \\
& \frac{d M a p 27}{d t}=\left(k_{c 5} \cdot M a \cdot p 27-k_{c 6} \cdot M a p 27\right) \cdot e p s \tag{S26}\\
& \frac{d p 27}{d t}=\left(v_{s 1 p 27}+v_{s 2 p 27} \cdot E 2 F \cdot\left(\frac{K_{i 13}}{K_{i 13}+p R B}\right) \cdot\left(\frac{K_{i 14}}{K_{i 14}+p R B p}\right)-k_{c 1} \cdot M d \cdot p 27+k_{c 2} \cdot M d p 27\right. \\
& -k_{c 3} \cdot M e \cdot p 27+k_{c 4} \cdot M e p 27-k_{c 5} \cdot M a \cdot p 27+k_{c 6} \cdot M a p 27-k_{c 7} \cdot M b \cdot p 27 \tag{S27}\\
& \left.+k_{c 8} \cdot M b p 27-V_{1 p 27} \cdot M e \cdot\left(\frac{p 27}{K_{1 p 27}+p 27}\right)+V_{2 p 27} \cdot\left(\frac{p 27 p}{K_{2 p 27}+p 27 p}\right)-k_{d d p 27} \cdot p 27\right) \cdot e p s \\
& \frac{d p 27 p}{d t}=\left(V_{1 p 27} \cdot M e \cdot\left(\frac{p 27}{K_{1 p 27}+p 27}\right)-V_{2 p 27} \cdot\left(\frac{p 27 p}{K_{2 p 27}+p 27 p}\right)\right. \tag{S28}\\
& \left.-V_{d p 27 p} \cdot\left(\frac{S k p 2}{K_{d p 27 s p 2}+S k p 2}\right) \cdot\left(\frac{p 27 p}{K_{d p 27 p}+p 27 p}\right)-k_{d d p 27 p} \cdot p 27 p\right) \cdot e p s \tag{נ0}\\
& \frac{d C d h 1 i}{d t}=\left(V_{2 c d h 1} \cdot\left(\frac{C d h 1 a}{K_{2 c d h 1}+C d h 1 a}\right) \cdot(M a+M b)-V_{1 c d h 1} \cdot\left(\frac{C d h 1 i}{K_{1 c d h 1}+C d h 1 i}\right)\right. \tag{S29}\\
& \left.-k_{d c d h 1 i} \cdot C d h 1 i\right) \cdot e p s \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\frac{d C d h 1 a}{d t}=\left(v_{s c d h 1 a}+V_{1 c d h 1} \cdot\left(\frac{C d h 1 i}{K_{1 c d h 1}+C d h 1 i}\right)-V_{2 c d h 1} \cdot\left(\frac{C d h 1 a}{K_{2 c d h 1}+C d h 1 a}\right) \cdot(M a+M b)\right. \tag{S30}
\end{equation*}
$$

$$
\left.-k_{d c d h 1 a} \cdot C d h 1 a\right) \cdot e p s
$$

$$
\frac{d P a i}{d t}=\left(v_{\text {spai }}+V_{6 a} \cdot\left(\frac{P a}{K_{6 a}+P a}\right)-V_{m 5 a} \cdot\left(M a+a_{a}\right) \cdot\left(\frac{P a i}{K_{5 a}+P a i}\right)-k_{d p a i} \cdot P a i\right) \cdot e p s
$$

$$
\frac{d P a}{d t}=\left(V_{m 5 a} \cdot\left(M a+a_{a}\right) \cdot\left(\frac{P a i}{K_{5 a}+P a i}\right)-V_{6 a} \cdot\left(\frac{P a}{K_{6 a}+P a}\right)-k_{d p a} \cdot P a\right) \cdot e p s
$$

$$
\begin{aligned}
& \frac{d C b}{d t}=\left(v_{c b}-k_{c o m 4} \cdot C b \cdot\left(C d k 1_{t o t}-(M b i+M b+M b p 27)\right)+k_{\text {decom } 4} \cdot M b i\right. \\
& \left.-V_{d b} \cdot\left(\frac{C b}{K_{d b}+C b}\right) \cdot\left(\left(\frac{C d c 20 a}{K_{d b c c c 20}+C d c 20 a}\right)+\left(\frac{C d h 1 a}{K_{d b c d h 1}+C d h 1 a}\right)\right)-k_{d d b} \cdot C b\right) \cdot e p s \\
& \frac{d M b i}{d t}=\left(k_{c o m 4} \cdot C b \cdot\left(C d k 1_{\text {tot }}-(M b i+M b+M b p 27)\right)-k_{\text {decom } 4} \cdot M b i\right. \\
& \left.+V_{m 2 b} \cdot\left(W e e 1+i_{b 3}\right) \cdot\left(\frac{M b}{K_{2 b}+M b}\right)-V_{m 1 b} \cdot P b \cdot\left(\frac{M b i}{K_{1 b}+M b i}\right)\right) \cdot e p s \\
& \frac{d M b}{d t}=\left(V_{m 1 b} \cdot P b \cdot\left(\frac{M b i}{K_{1 b}+M b i}\right)-V_{m 2 b} \cdot\left(W e e 1+i_{b 3}\right) \cdot\left(\frac{M b}{K_{2 b}+M b}\right)\right. \\
& \left.-k_{c 7} \cdot M b \cdot p 27+k_{c 8} \cdot M b p 27\right) \cdot e p s
\end{aligned}
$$

$$
\frac{d M b p 27}{d t}=\left(k_{c 7} \cdot M b \cdot p 27-k_{c 8} \cdot M b p 27\right) \cdot e p s
$$

$$
\frac{d C d c 20 i}{d t}=\left(v_{s c d c 20 i}-V_{m 3 b} \cdot M b \cdot\left(\frac{C d c 20 i}{K_{3 b}+C d c 20 i}\right)+V_{m 4 b} \cdot\left(\frac{C d c 20 a}{K_{4 b}+C d c 20 a}\right)\right.
$$

$$
\left.-k_{d c d c 20 i} \cdot C d c 20 i\right) \cdot e p s
$$

$$
\frac{d C d c 20 a}{d t}=\left(V_{m 3 b} \cdot M b \cdot\left(\frac{C d c 20 i}{K_{3 b}+C d c 20 i}\right)-V_{m 4 b} \cdot\left(\frac{C d c 20 a}{K_{4 b}+C d c 20 a}\right)\right.
$$

$$
\left.-k_{d c c c 20 a} \cdot C d c 20 a\right) \cdot e p s
$$

$$
\begin{equation*}
\frac{d P b i}{d t}=\left(v_{s p b i}+V_{6 b} \cdot\left(\frac{P b}{K_{6 b}+P b}\right)-V_{m 5 b} \cdot\left(M b+a_{b}\right) \cdot\left(\frac{P b i}{K_{5 b}+P b i}\right)-k_{d p b i} \cdot P b i\right) \cdot e p s \tag{S39}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d P b}{d t}=\left(V_{m 5 b} \cdot\left(M b+a_{b}\right) \cdot\left(\frac{P b i}{K_{5 b}+P b i}\right)-V_{6 b} \cdot\left(\frac{P b}{K_{6 b}+P b}\right)-k_{d p b} \cdot P b\right) \cdot e p s \tag{S40}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d W e e 1}{d t}=\left(v_{\text {sweel }}-V_{m 7 b} \cdot\left(M b+i_{b}\right) \cdot\left(\frac{W e e 1}{K_{7 b}+\text { Wee1 }}\right)+V_{m 8 b} \cdot\left(\frac{\text { Wee1 } p}{K_{8 b}+\text { Wee1p } p}\right)-k_{d w e e 1} \cdot \text { Wee1 }\right) \cdot e p s \tag{S41}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d W e e 1 p}{d t}=\left(V_{m 7 b} \cdot\left(M b+i_{b}\right) \cdot\left(\frac{\text { Wee1 }}{K_{7 b}+\text { Wee1 }}\right)-V_{m 8 b} \cdot\left(\frac{\text { Wee } 1 p}{K_{8 b}+\text { Wee1 } p}\right)\right. \tag{S42}
\end{equation*}
$$

$$
\left.-k_{d w e e 1 p} \cdot W e e 1 p\right) \cdot e p s
$$

The original model (see Ref. [11]) contained 5 additional equations to describe the DNA replication checkpoint, which, for reasons of simplicity, was not retained in the present numerical analysis. For a complete list of the original equations of the model for the Cdk network, see supporting information in [11] at the address: http://www.pnas.org/content/suppl/2009/12/09/0903827106.DCSupplemental/0903827106SI.

