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Two very stable states: probability of exiting ~O(10~-10°) per cell per generation
Stable even with a single copy of the genome left




Genome of phage A
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“Standard model” of A

Ptashne, A Genetic Switch: Phage Lambda Revisited
Ptashne & Gann, Genes and Signals

/\
@

Cl

*Simple bistable switch (A represses B; B represses A)
*Two states:

1. Lytic (Cl low, high)

2. Lysogenic (CI high, low)
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Kourilsky's experiment
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average phage input
(API: ratio of total phage to total bacteria)

P. Kourilsky: Molec. gen, Genet. 122, 183-195 (1973); Biochimie 56, 1517-1523 (1974).



Kourilsky's experiment
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MOI: Multiplicity of Infection

= number of phage DNA in one bacterium
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Kourilsky's experiment
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Poissonian assumption:

MOI: Multiplicity of Infection

= number of phage DNA in one bacterium

Pps(a Z p(m) x g(m, a)

Prob. of getting MOI m
if APl is a q(m a, e_a Each phage randomly & independently
m! finds a bacterium to infect



Kourilsky's experiment

Number of phage
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M. Aviund, I. B. Dodd, S. Semsey, K. Sneppen, S. Krishna
Why do phage play dice? J. Virology 83, 11416 (2009).
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Detailed models of lambda: Deterministic models: McAdams & Shapiro (1995) Science 269, p 650.;
Stochastic models: Arkin et al. (1998) Genetics 149, p 1633.



An alternate approach

Choose the building blocks

2

Build a class of dynamical systems

Subject them to some functional task

2

What range of behaviour is possible?
How would one construct a given behaviour?

Are there many ways of doing so?



1-protein motifs /->
e.g. self-activator .

2-protein motifs

. . e.g. mutual repressors or

mutual activators

(2

3-protein motifs .
®



Initially all

Time passes:
proteins are
produced

phage proteins

are at zero

3 min
Phage
genomes
replicate

State 1

) State 2

Task: find motifs that
are bistable and can
count genomes.




Motifs Parameter sets

. Protein stabilities
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Network = A Repression, activatio
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*Is state 1 sufficiently distinct from state 27

*Are states 1 and 2 stable when N is brought down to 1?
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There are many ways to make a
bistable circuit that can also
count.

Motifs without positive
feedback don’t work

1 protein motifs don’t
work

2 protein mutual
activators don’t work

2 protein mutual
repressors do work

Avlund, Dodd, Sneppen, Krishna (2009) J. Mol. Biol. 394, 681
Avlund, Krishna, Semsey, Dodd, Sneppen (2010) PLoS ONE 5(12): e15037
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Stochastic
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Why are three protein motifs more robust
than two protein motifs?

/\,
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Tasks: Short half-lives  Long half-lives

1. Do N=1 and N=2 go to two \/ X

distinct states?

2. Are the two states stable? X \/



Why are three protein motifs more robust
than two protein motifs?
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Maintaining
the decision
Longer half-lives

provide more stability Maki ng the decision
Short half-lives help



Why are three protein motifs more robust
than two protein motifs?

Making the
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Two proteins with
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a long half-life



Why are three protein motifs more robust
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Summary

Data:

.Some idea of the basic gene circuits of phage lambda, 186

.Some data on parameter ranges

.Some data on noise and fluctuations (measurements on phage lambda)
-Kourilsky experiment

Approach:
.Differential equations modeling the dynamics of small genetic networks
.Exhaustively numerical sweep of possible circuit topologies & parameters

Insights:

.What doesn’t work in the deterministic case

-What doesn’t work with noise

.The idea that making a decision and maintaining a decision may need
to be separated, especially in the presence of noise

.The connection with the half-life of proteins



probability of lysogeny

Kourilsky's experiment
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M. Aviund, I. B. Dodd, S. Semsey, K. Sneppen, S. Krishna
Why do phage play dice? J. Virology 83, 11416 (2009).



Probability of lysogeny

Kourilsky's experiment
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Multiple infections?
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What is the most competitive strategy if lysogeny %
Is allowed to be different for different MOI?



Multiple infections?
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What is the most competitive strategy if lysogeny %
Is allowed to be different for different MOI?

100 —

Lysogeny %

Strongly constrained to
be very close to zero

NiE

Not as strongly constrained
70-100%

Strongly constrained to
be very close to 100%
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Kourilsky's experiment

P. Kourilsky: Molec. gen, Genet. 122, 183-195 (1973); Biochimie 56, 1517-1523 (1974).
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Why do phage play dice? J. Virology 83, 11416 (2009).
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Spiky, asymmetric, slow
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B) scenario 1 scenario 2 scenario 3
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Model
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ii_f = VoG — VoeQ — ¢(1)0Q,

aGg

- = YG—V50oG +voeQ — ¢ ()G,

- = VGQ(1 —q) — Vocq — yq(1—q),

oc—uy(l—q)a—y(@—q)a,

To produce Fig 3B, 5A and 5B, we make the following choices (within scenario 3c):

Yy =1.665hr™! 0 =03996 hir !, u = 1,vyc = v[1 — 0.99%60(q — K)], K = a*/(0.75% + a*),

v = (0.165 — 0.125K) hr™1, vgo = 16.65 hr~!, where 0(x) is the step-function, which is zero for
x < 0 and unity for x > 0 (approximated as above). Figure 4 panels are made using the same
equations, but varying the values of ¢ and y.



Some thoughts on the

(this kind of)

role of{theory In biology

1. Big data vs small data
(models can be useful even when there is little experimental information)

2. The tension between making models specific vs general
(One approach that appeals to me: study a class of dynamical system made from well known building blocks
and ask what is the range of behaviour that it is capable of)

3. The point of this kind of modelling is not to be “correct” or “wrong”, but to raise
interesting questions

4. Back and forth between experiments and theory

5. Finding equations vs finding solutions to equations — or, what kind of “laws” are

we looking for in biology?

(Discussions of “physics” approaches tend to emphasise the discovery of fundamental equations in the
history of physics and forget that at least an equally important part of the history of physics has been the
exploration of solutions of these equations)



Population/Ecosystem level

What are good lysis-lysogeny strategies for a phage when, say,
it is competing with other phage species for a bacterial host?

How are the population (and evolutionary) dynamics of phage-
bacteria ecosystems influenced by different bacterial defences
" against phage?

Cellular level
°o o uv, :
Food o © Why is only a narrow 5-15% lysogeny percentage
A observed in laboratory phage infections?

What conditions make a phage-infected bacterium go
preferentially lytic, or lysogenic?

What aspects of the bacterial cell state bias the decision?

Subcellular level

MULTIPLE
ONA DAMAGE (NUTRITION INFECTIONS

aaaaa

How is the lysis-lysogeny decision regulated?

C@/CE\L@D What produces bistability?
—. What makes the network robust to noise?
.. ®j LYTIC

FtsH y— LOW TEMPERATURE

i How does the phage network integrate information about the
environment (e.g. does it use bacterial quorum sensing)?

LYSOGENIC




T4 Phage

Ref: http://www.absoluteastronomy.com
/topics/Bacteriophage

Ref: http://viromag.wordpress.com/2009/03/13/
bacteriophages-viruses-of-bacteria/

Copyright: CIMC —
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Image courtesy Aileen L. https://classconnection.s3.amazonaws.com/20/flashcards/2047020/png/lytic_phase1365650202676.png
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The major types of defense systems
In bacterial and archaeal genomes

CRISP_R Restriction-Modification

(adaptive (innate immunity)

immunity)

A

T A
=——R-M Toxin-
e AD antitoxin
e CRISPR systems
------- all defense Abortive

mee slands Infection

0.00001 0.0001 0.001 0.01 0.1 1
fraction of genome in defense systems

Makarova K S et al. (2013) Nucl. Acids Res. 41, 4360



Restriction-Modification systems in bacteria
a ubiquitous (but weak) defence against phage

T

W“Z‘ 0.1-1% of
4% N s genome
XY

=g A way to label “self”
& like innate immunity in mammals

4-6 base pairs

Methylated
recognition site

v

Recognition site

Image from: Vasu & Nagaraja (2013) Microbiol. Mol. Biol. Rev. 77, 53-72



Restriction-Modification systems in bacteria
a ubiquitous (but weak) defence against phage

N 0.1-1% of
I\QV’AJ genome

=g A way to label “self”
& like innate immunity in mammals

4-6 base pairs

Methylated
recognition site

v

Recognition site

A weakness: phage DNA may get “mistakenly” labelled before it gets chopped

up
Notice: once a pHAG&°s¢aped SEaRE ARt $U 8 Btfspring escape!



