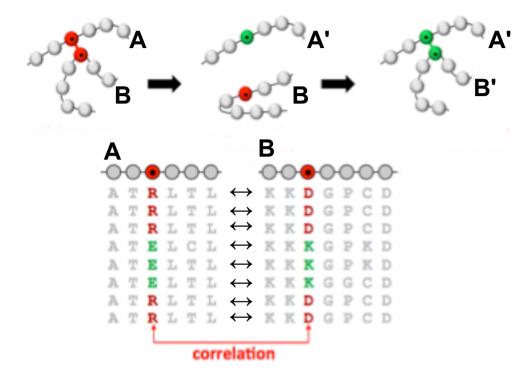
Physical and evolutionary constraints at the population scale

Anne-Florence Bitbol

ICTS Program on "Living Matter" - Bangalore, India April 2018

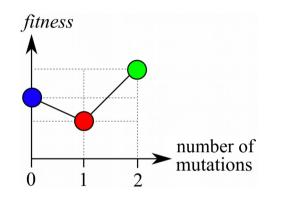
Introduction

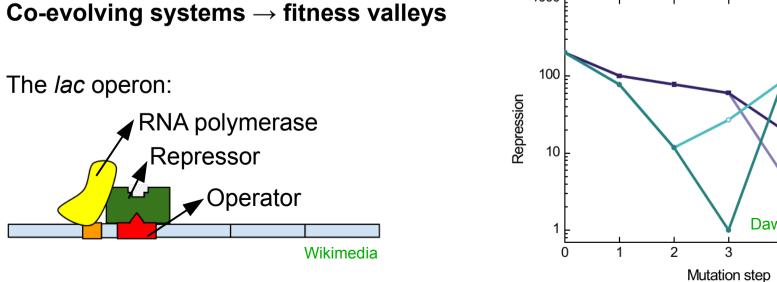
• Evolutionary coupling and rugged fitness landscapes

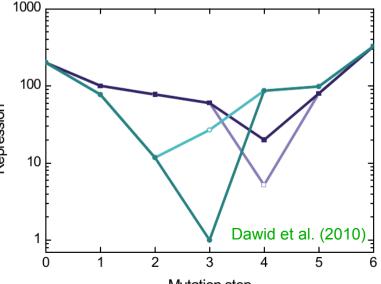


Cf. previous talk (molecular scale)

Typical associated fitness landscape:

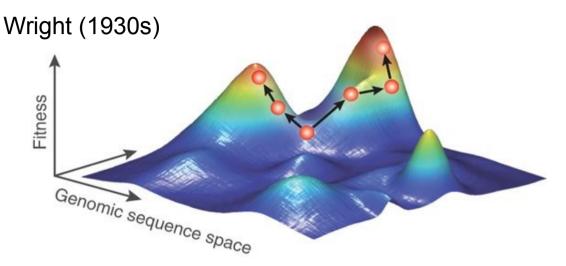




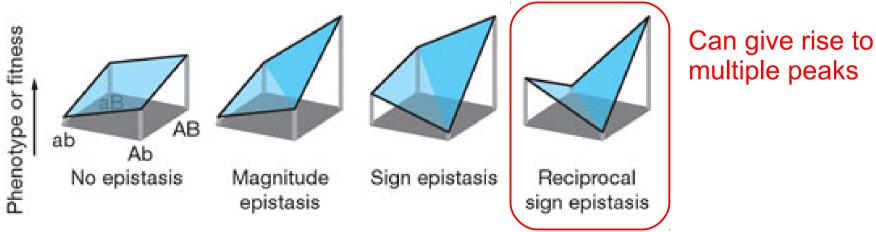


Introduction

Fitness landscape



Origin of fitness valleys: epistasis



multiple peaks

Poelwijk, Kiviet, Weinreich and Tans (2007)

I. Population subdivision and evolution on rugged fitness landscapes

II. Evolution of antimicrobial resistance

Population subdivision and evolution on rugged fitness landscapes

Anne-Florence Bitbol and David J. Schwab

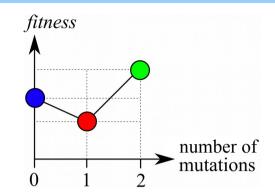
Theoretical Biophysics Group

PIs: Ned Wingreen, William Bialek and Curtis Callan

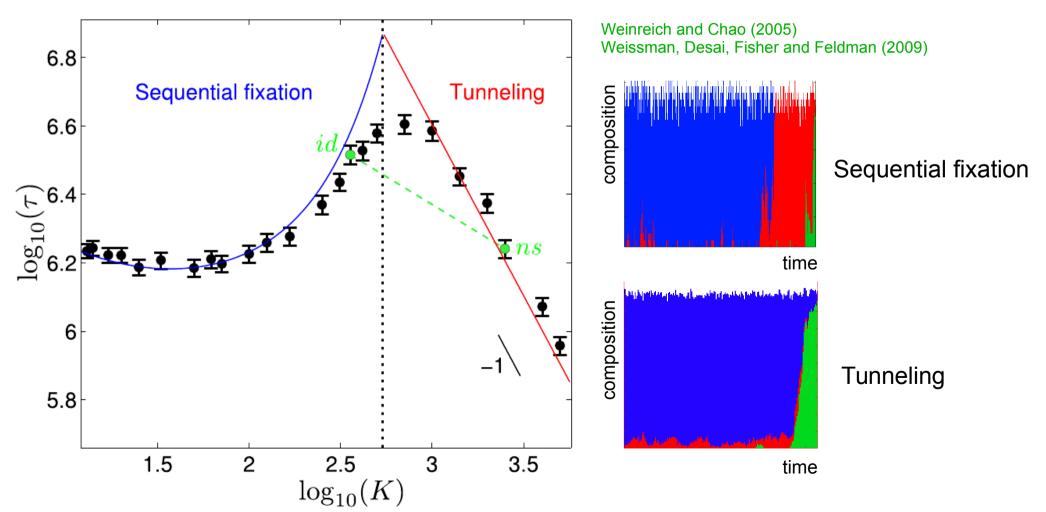
Introduction

Effect of population size on fitness valley crossing

Smaller population \rightarrow stochasticity is more important Deleterious / neutral mutations can drift to fixation

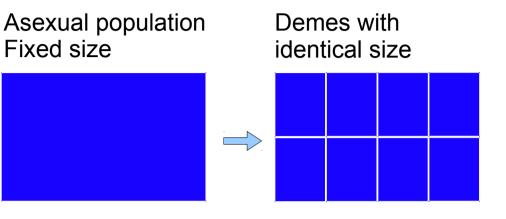


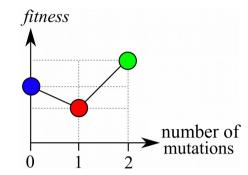
Valley crossing time vs. population size: two regimes



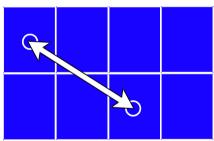
Model & Question

Population subdivision: a minimal model





Migration



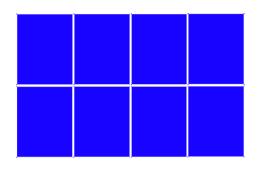
→ Can subdivision with migration (alone) accelerate fitness valley crossing?

N.B.: Wright's shifting balance theory (1930s)

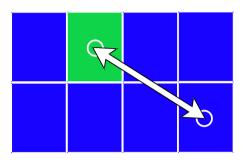
Here: Minimal geographic structure No extinction / founding No environment heterogeneity Constant migration rate Single fitness valley

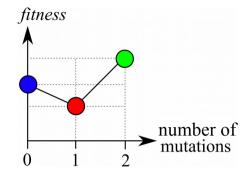
Best scenario

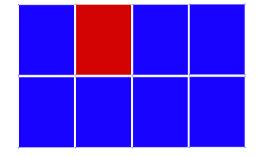
1. Valley crossing by the champion deme



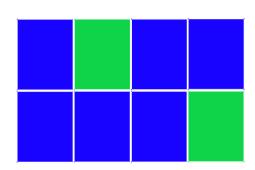
2. Spreading by migration

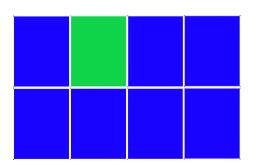


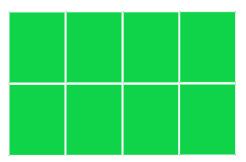




← if demes are
in the sequential
fixation regime





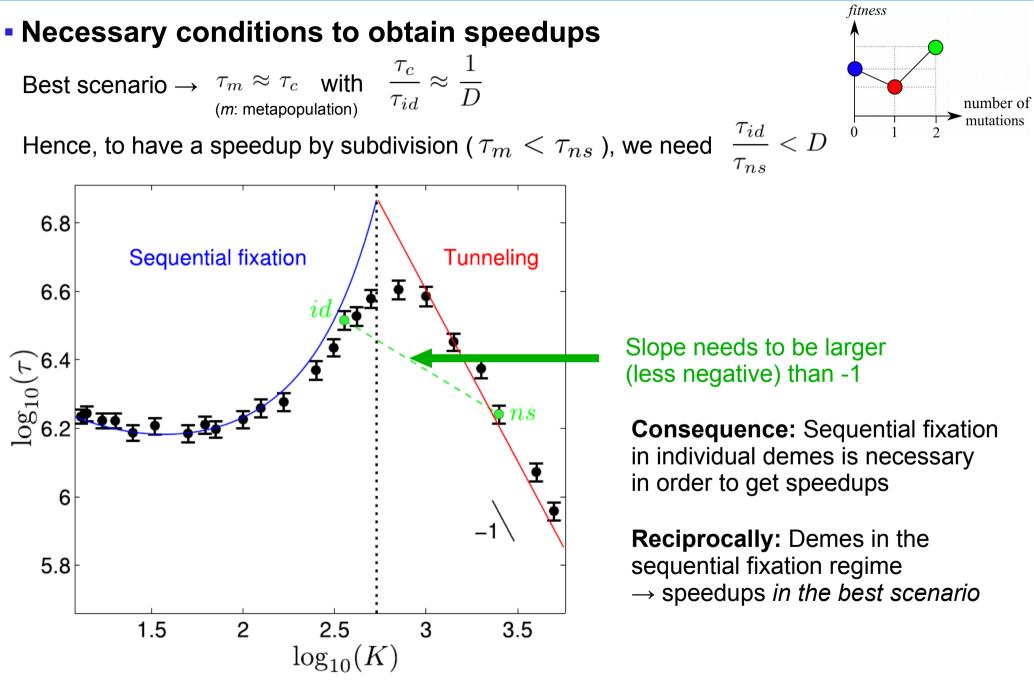


At best: valley crossing time dominated by that of the *champion* (fastest) deme

 \rightarrow Speedup in this best scenario?

 \rightarrow Conditions?

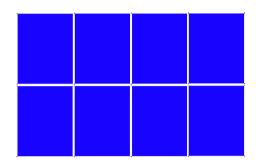
Best scenario



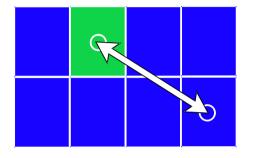
 \rightarrow Conditions under which the best scenario is attained?

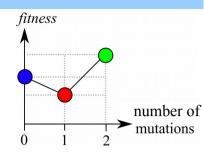
Conditions

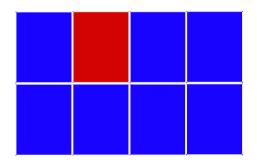
Condition 1



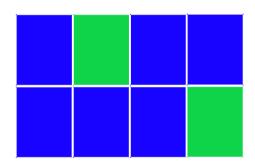
Condition 2



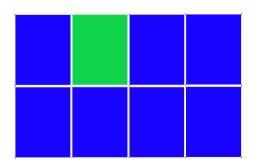


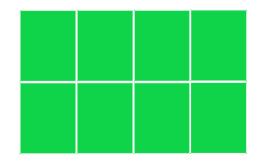


The champion deme must be shielded from migration while in the deleterious state



Spreading of the beneficial mutation must be faster than valley crossing by the champion deme

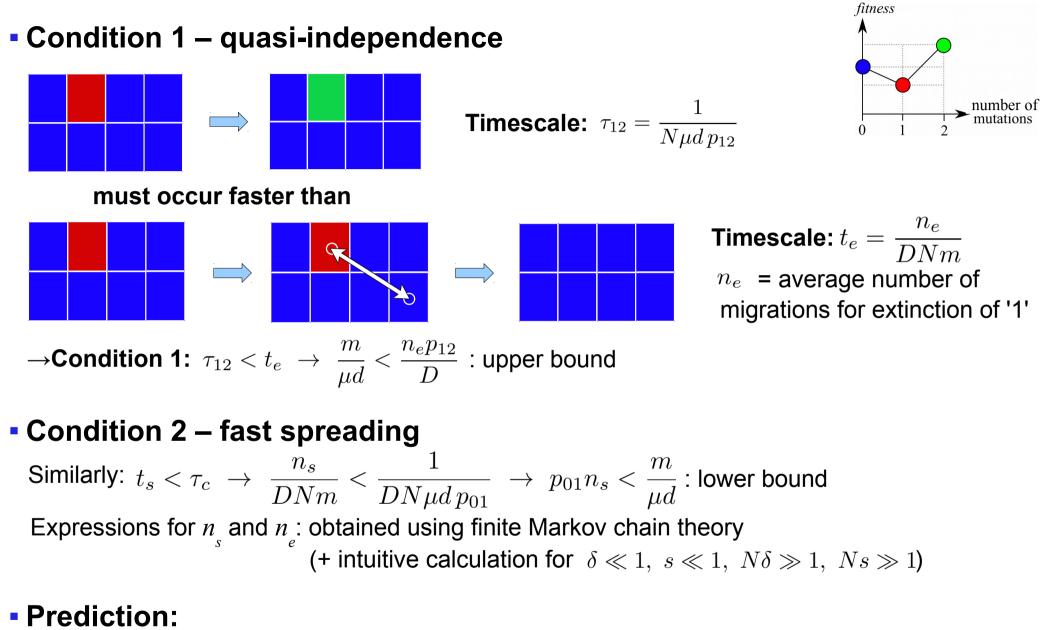




 \rightarrow Upper bound on the migration rate

→ Lower bound on the migration rate

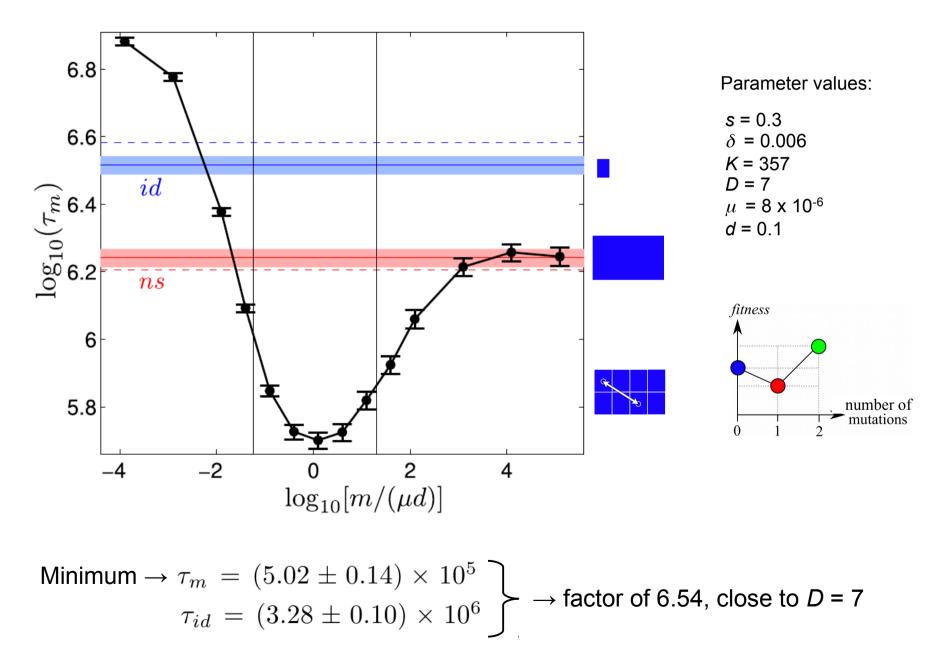
Expression of the conditions



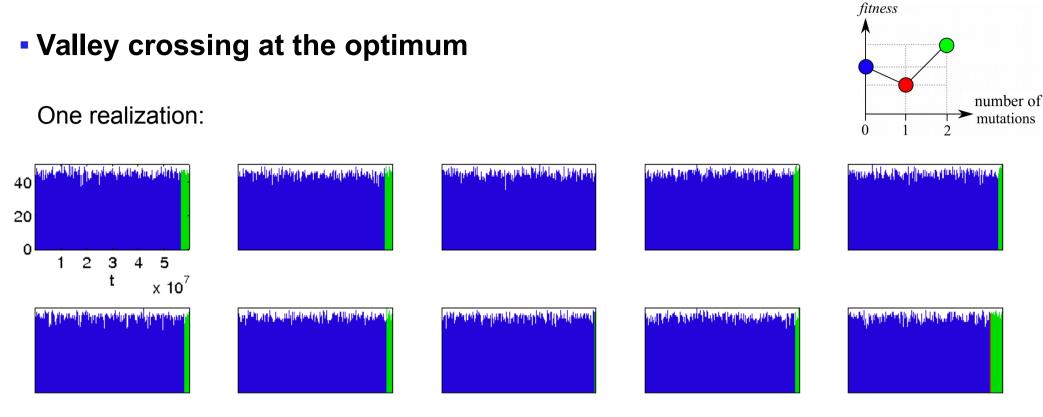
 $\left(n_s p_{01} \ll \frac{m}{\mu d} \ll \frac{n_e p_{12}}{D}\right) \rightarrow \text{optimal scenario, and} \quad \frac{\tau_m}{\tau_{id}} \approx \frac{1}{D}$

Test: stochastic simulation

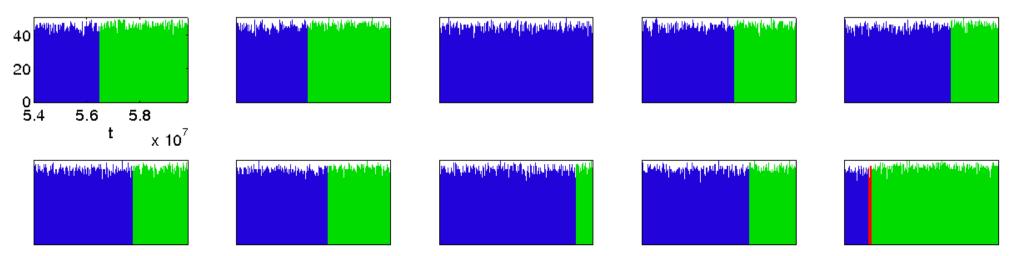
• Simulation (Gillespie algorithm) \rightarrow crossing time vs. migration rate



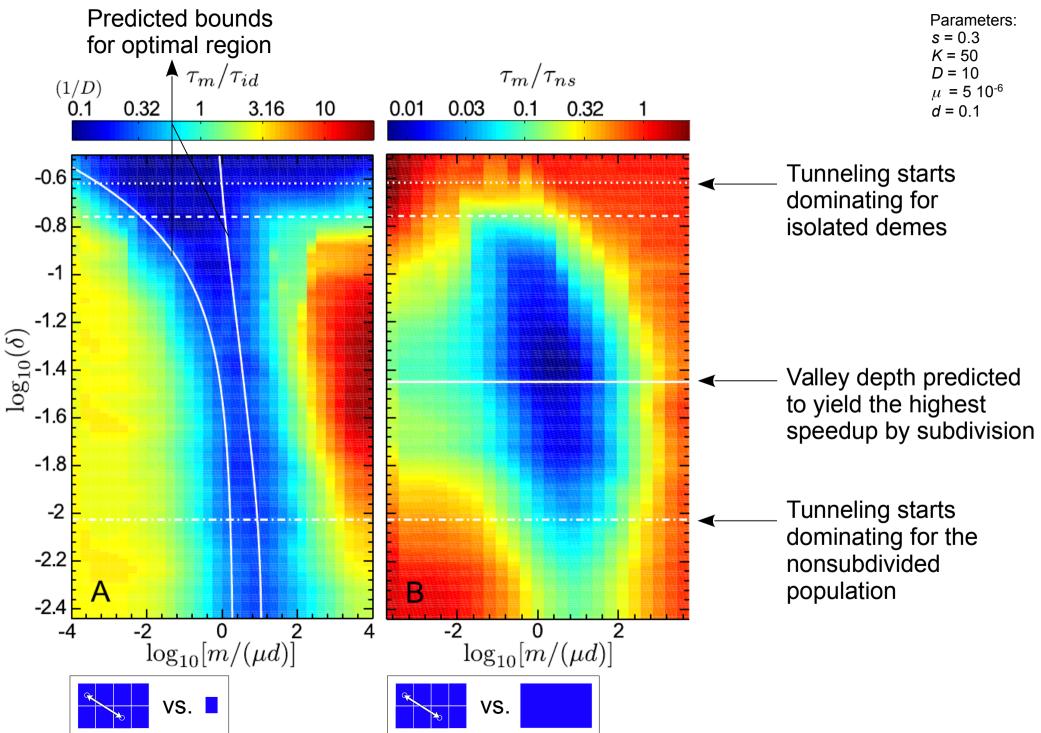
Test: stochastic simulation



End of the process:



Heatmaps



Highest speedup & trade-off

Highest possible speedup by subdivision

Optimal case \rightarrow speedup gained by subdividing a population: $\frac{\tau_m}{\tau_{ns}} = \frac{\tau_c}{\tau_{ns}}$

Assume:

- isolated deme in the sequential fixation regime

- nonsubdivided population in the tunneling regime

$$2\sqrt{\mu s} \ll \delta \ll 1 \quad \rightarrow \quad \frac{\tau_m}{\tau_{ns}} = \mu s \frac{e^{N\delta} - 1}{\delta^2}$$

At fixed *N*, this ratio is minimal for $\delta \approx \frac{1.594}{N}$ (\rightarrow importance of general calculations) Its minimal value is $\frac{\tau_m}{\tau_{ns}} \approx 1.544 N^2 \mu s$ Heatmaps \rightarrow optimal valley depth: $\delta \approx 0.035 \approx 10^{-1.45}$

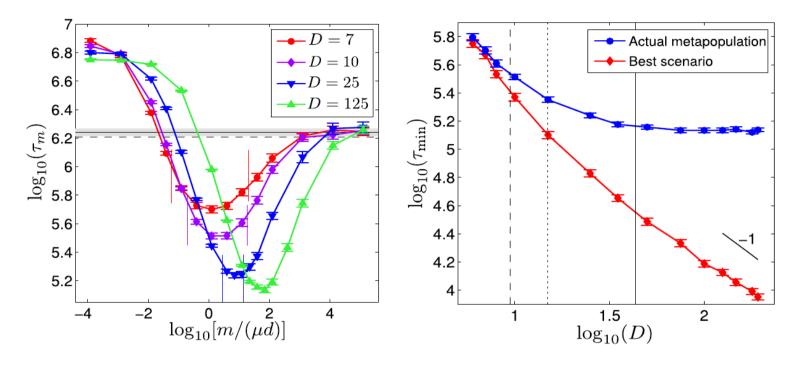
• A trade-off in the choice of D

Fixed
$$\mathcal{N} = ND \rightarrow$$
 highest speedup: $\frac{\tau_m}{\tau_{ns}} \approx 1.544 \frac{\mathcal{N}^2 \mu s}{D^2}$
Increase $D \rightarrow$ gain more speedup

But $\frac{\delta e^{-N\delta}}{s} D \log D \ll \frac{m}{\mu d} \ll \frac{1}{2} \left(1 + \frac{s}{\delta}\right)$ Increase $D \rightarrow$ narrower optimal parameter range

Generalizing

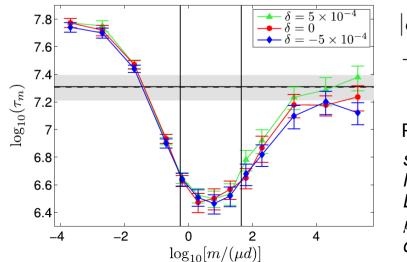
Varying the degree of subdivision



Parameter values:

s = 0.3 $\delta = 0.006$ D K = 2500 $\mu = 8 \times 10^{-6}$ d = 0.1

Effectively neutral intermediates



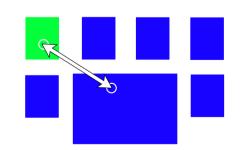
 $|\delta| < \max(\sqrt{\mu s}, 1/N)$

 \rightarrow effectively neutral

Parameter values:

s = 0.5 N = 130 D = 10 $\mu = 5 \times 10^{-7}$ d = 0.1

Mainland-island(s)



Champion island can drive valley crossing

Application

An example

E. coli $\rightarrow \mu \approx 8.9 \times 10^{-11}$ Wielgoss et al. (2011)

Take $N = 5 \times 10^4$ (small but realistic) Rozen et al. (2008) D = 100 (96-well plates)

Plateau \rightarrow sequential fixation below $N_{\times} = 1/\sqrt{\mu s}$

 $s=10^{-2}$ \rightarrow isolated demes in the sequential fixation regime for $0\leq\delta\lesssim2.2\times10^{-4}$

The optimal range of migration rates spans 2 to 4 orders of magnitude depending on δ

Speedup factor from 18 to 2.7×10^2

More generally

For given *N* and *D*, we can predict:

- for which valleys subdivision speeds up crossing
- the highest speedups obtained
- the range of migration rates for which they are reached

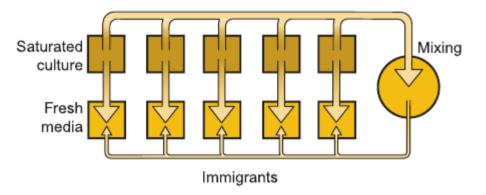
Conclusion

Summary

- Subdivision with migration (alone) can significantly accelerate fitness valley & plateau crossing
- Sufficiently small demes (performing sequential fixation) are necessary

Some related experimental studies

- Kryazhimskiy, Rice & Desai (Evolution 2012) \rightarrow evolution of subdivided populations of yeast



→ no evidence of any advantage of subdivided populations

- Nahum, Godfrey-Smith, Harding, Marcus, CarlsonStevermer & Kerr (PNAS 2015)
 - \rightarrow evolution of subdivided populations of bacteria
 - \rightarrow some advantage of subdivision
- → Importance of understanding quantitatively the conditions under which subdivision is beneficial

Conclusion

Perspectives

- More complex population structures
- Case of sexual populations (recombination)
- Spatial structure (expanding front)
- Effect of population subdivision on the evolution of antibiotic resistance

Acknowledgements

David J. Schwab

Ned S. Wingreen

The Princeton Biophysics Journal Club

Reference

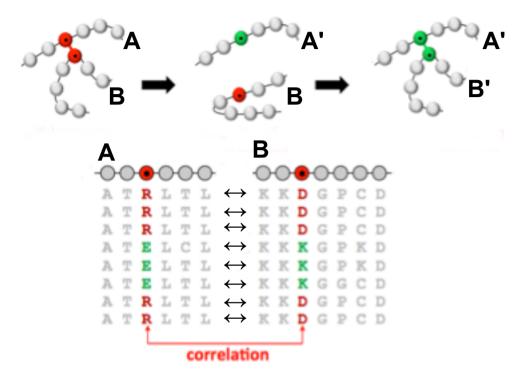
A.-F. Bitbol and D.J. Schwab, *Quantifying the role of population subdivision in evolution on rugged fitness landscapes*, PLOS Computational Biology, 10 (8): 003778 (2014)

Evolution of antimicrobial resistance

Loïc Marrec and Anne-Florence Bitbol

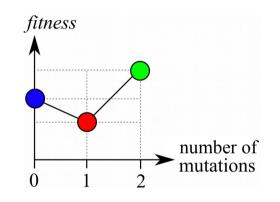
Introduction

Evolutionary coupling and rugged fitness landscapes

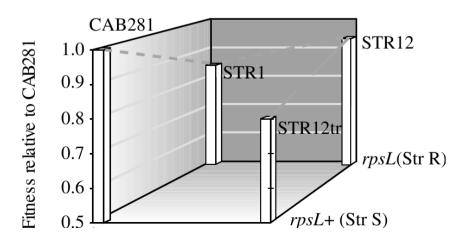


Cf. previous talk (molecular scale)

Typical associated fitness landscape:



Fitness costs in the evolution of antibiotic resistance

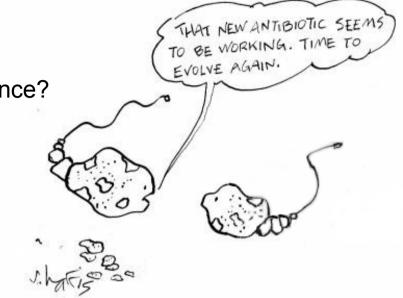


Evolution of streptomycin resistance in *E. coli* Schrag, Perrot and Levin (1997)

Introduction

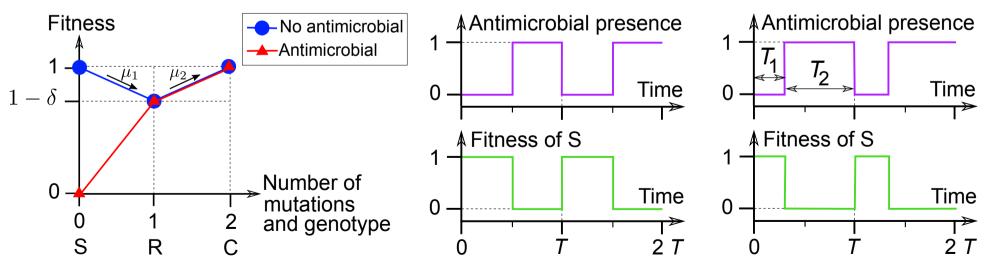
A major public health issue

- What conditions favor / challenge the evolution of resistance?
- How to optimize antimicrobial dosage?
- Impact of antimicrobials in the environment?



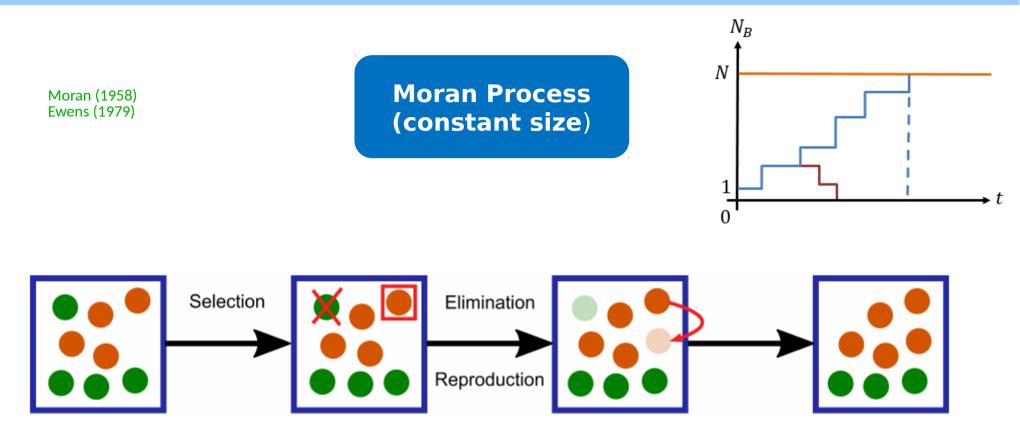
A variable fitness landscape

- Most mutations giving antimicrobial resistance come with a fitness cost
- This cost can be compensated by a second mutation
- \rightarrow fitness valley in the absence of antimicrobial



The fitness landscape depends on whether antimicrobial is present or not \rightarrow Impact of variable antimicrobial concentrations on the evolution of resistance?

Stochastic model

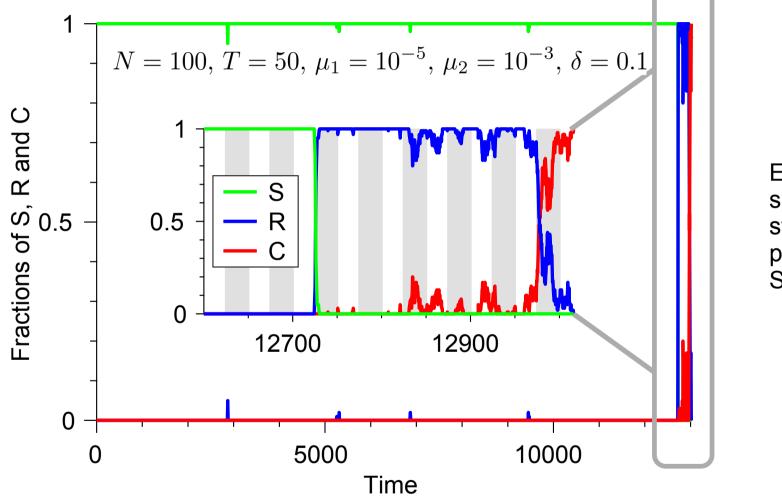


Fixation probabilities; fixation times of each genotype

Absorption probabilities; unconditional and conditional first-passage times (to absorbing states)

Process studied

• Stochastic model (well-mixed population, fixed size \rightarrow Moran process)



Example of a simulation run, starting from a population of S individuals

- Without antimicrobial: valley crossing $\rightarrow 10^7$ generations
- Continuous presence of antimicrobial \rightarrow resistance can't evolve

 \rightarrow A periodic antimicrobial presence greatly accelerates the evolution of resistance

Analytical predictions

Acquisition of resistance

The population can evolve resistance:

- By valley crossing (cf. earlier) Weissman et al (2009)
- Due to "switches" of the environment, i.e. introduction of antimicrobial

What ultimately matters is the fastest process

Focus on the 2nd one (and then compare)

- R mutants can only appear without antimicrobial
- R mutants have a fitness advantage only when antimicrobial is added

\rightarrow Key question: When do R mutants first exist in the presence of antimicrobial?

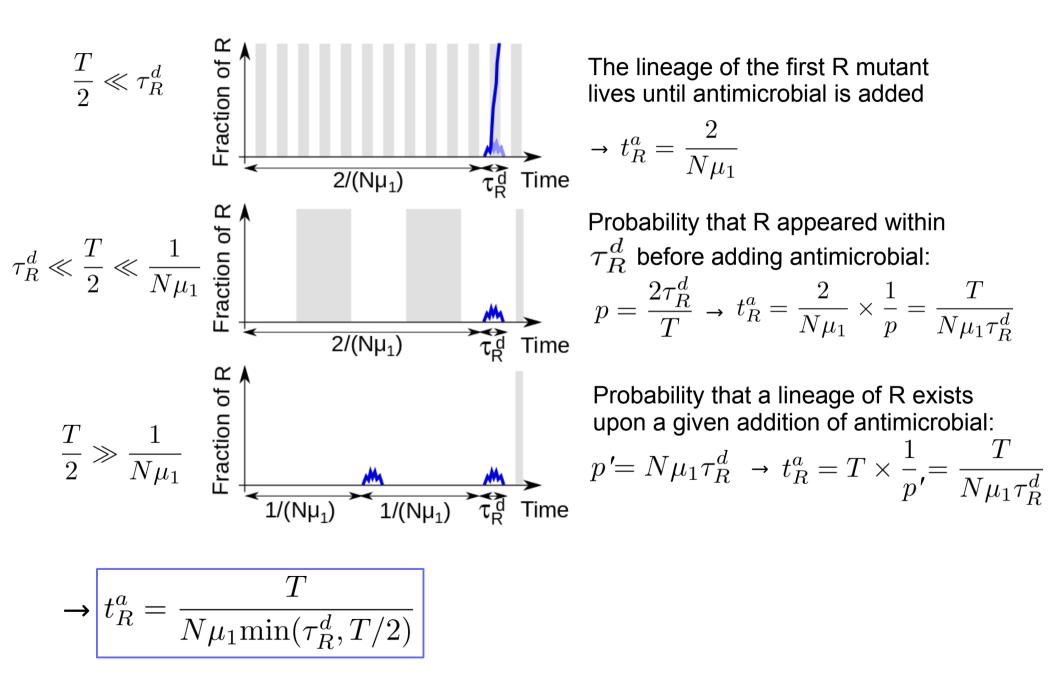
 t_{R}^{a} : average time when R mutants start growing in the presence of antimicrobial

Three key timescales:

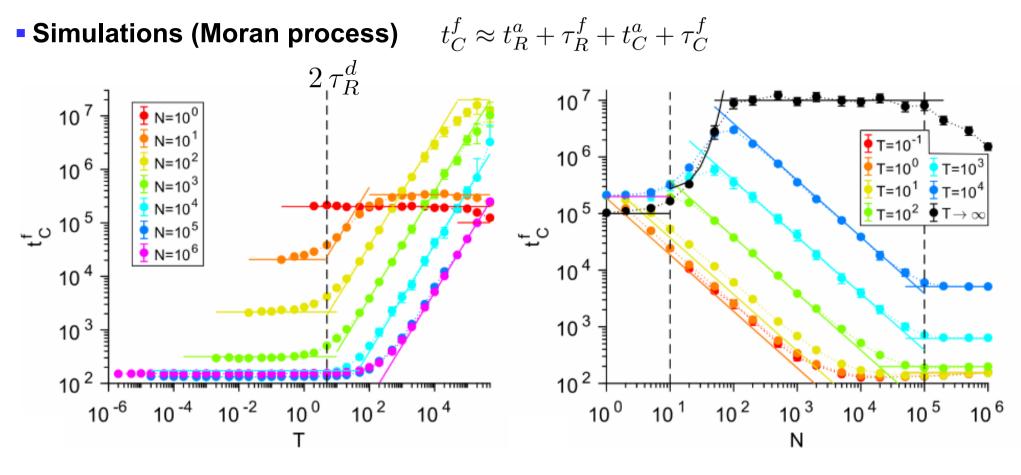
- Average time of appearance of a resistant (R) mutant: $1/(N\mu_1)$ Average time of disappearance of the lineage of a R mutant: τ_R^d
- Period of the alternation of antimicrobial absence and presence: $T \longrightarrow$ environment

Analytical predictions

Time until resistants start growing: different regimes



Results



Solid lines: analytical predictions

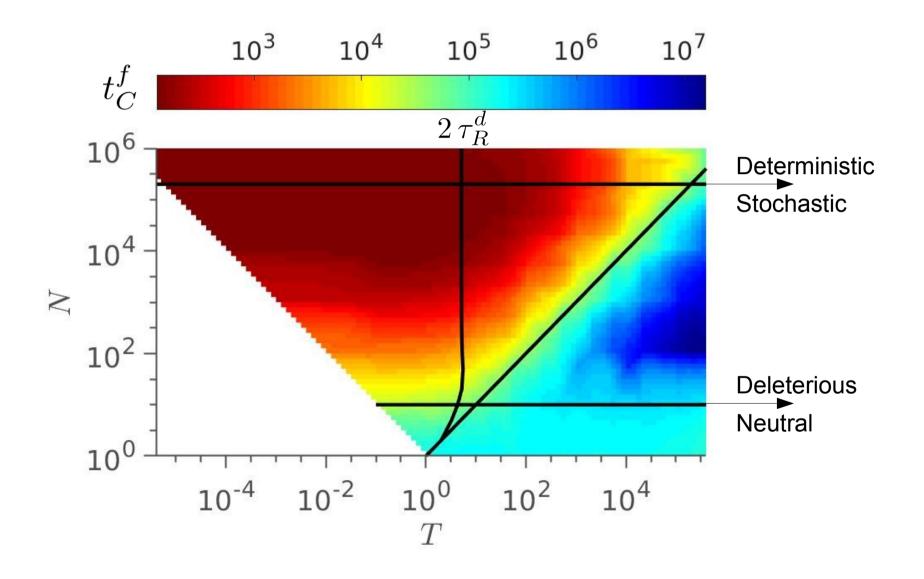
 $\mu_1 = 10^{-5}, \, \mu_2 = 10^{-3}, \, \delta = 0.1$

In summary

- Fast alternations accelerate the evolution of resistance, especially for large populations
- For short enough periods, the first R mutant that appears yields resistance evolution
- What matters is the shortest timescale between the valley-crossing process and the switch-driven process

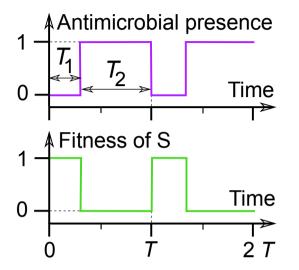
Results

Heatmap

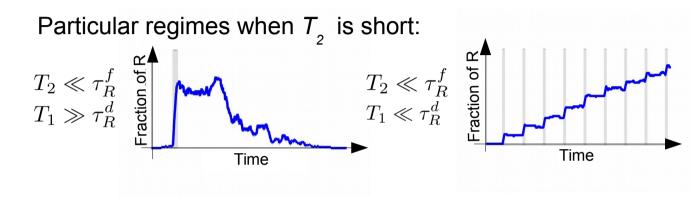


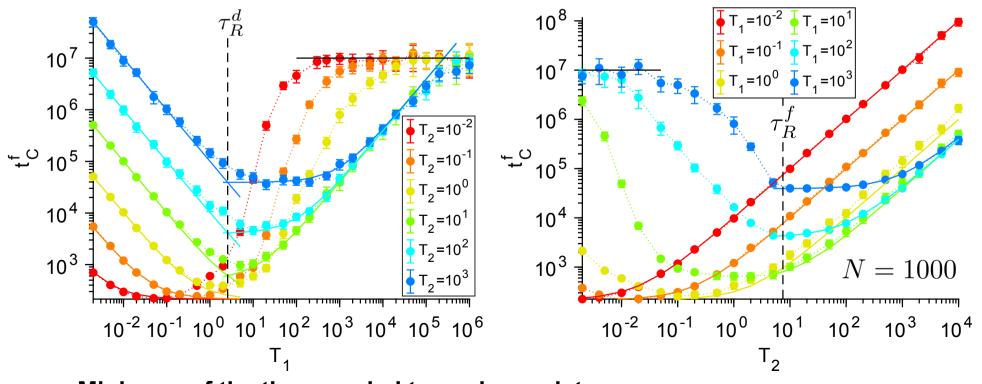
Asymmetric alternations

Prediction and results



$$t_R^a = \frac{T_1 + T_2}{N\mu_1 \min(\tau_R^d, T_1)}$$

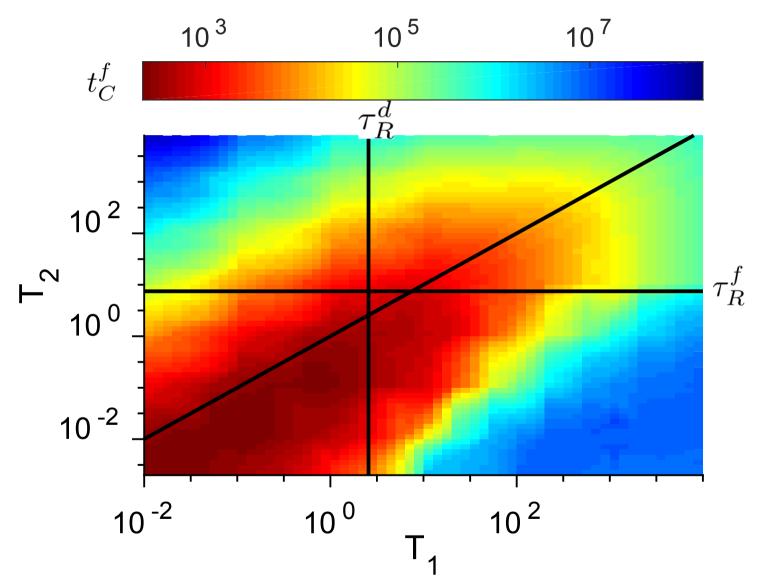




 \rightarrow Minimum of the time needed to evolve resistance

Results

Heatmap



Conclusion

- Results for a homogeneous population with fixed size
 - Fast alternations accelerate the evolution of resistance, especially for large populations
 - Asymmetric alternations \rightarrow minimum of the time needed to evolve resistance

Discussion

- The worst-case scenario ($T_1 \approx T_2$, lasting a few generations or less) is quite realistic:
- consider a drug taken every 8 to 12 hours and bacteria dividing every few hours
- a goal in treatment design is for antimicrobial serum concentration to exceed the MIC for at least 40 to 50% of the time Jacobs (2001)
- Resistance acquisition can then occur in about a day (one S to R mutation; large N)
- Clinically, it is thus important to control for such incursions below the MIC (argument in favor of extended-release antimicrobial formulations)
- The parameters most accelerating resistance can be harnessed in evolution experiments (e.g. in chemostats or morbidostats)

Next steps

- Population with variable size (logistic growth), allowing extinction
- Structured population (realistic organs, patients)

Reference

Preprint: http://biorxiv.org/cgi/content/short/279091v1

Acknowledgements

Loïc Marrec

Claude Loverdo, David J. Schwab, Raphaël Voituriez

Thanks!