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Introduction

= Evolutionary coupling and rugged fitness landscapes
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Introduction

= Fithess landscape
Wright (1930s)

Can give rise to
multiple peaks

Mo epistasis Magnitude Sign epistasis Reciprocal
epistasis \sign epistasis )

Phenotype or fitness

Poelwijk, Kiviet, Weinreich and Tans (2007)



Outline

l. Population subdivision and evolution
on rugged fitness landscapes

Il. Evolution of antimicrobial resistance
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Introduction

= Effect of population size on fithess valley crossing

Smaller population — stochasticity is more important
Deleterious / neutral mutations can drift to fixation

fitness

3 : number of
l é > mutations

= Valley crossing time vs. population size: two regimes

Sequential fixation Tunneling

15 > 25 3 3.5
10%1(,)(K)

Weinreich and Chao (2005)
Weissman, Desai, Fisher and Feldman (2009)
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Model & Question

= Population subdivision: a minimal model

fitness

Asexual population Demes with
Fixed size identical size
number of

i > mutations
0 1 2

Migration
.. — Can subdivision with migration
(alone)
. . accelerate fitness valley crossing?

N.B.: Wright's shifting balance theory (1930s) Here: Minimal geographic structure
No extinction / founding

No environment heterogeneity
Constant migration rate
Single fitness valley



Best scenario

1. Valley crossing by the 2. Spreao_ling by fimess
champion deme migration

number of

i > mutations
0 1 2

| in the sequential

At best: valley crossing time dominated by that of the champion (fastest) deme
— Speedup in this best scenario?
— Conditions?




Best scenario

= Necessary conditions to obtain speedups

Te

Best scenario - ™ ~ 7. with — =~ )

(m: metapopulation)

Hence, to have a speedup by subdivision ( 7,, < T, ), we need

Sequential fixation

Tunneling

15 > 25 3
logl()(K)

3.5

fitness

number of
> mutations

Tid
Tns

Slope needs to be larger
(less negative) than -1

Consequence: Sequential fixation
in individual demes is necessary
in order to get speedups

Reciprocally: Demes in the
sequential fixation regime
— speedups in the best scenario

— Conditions under which the best scenario is attained?



Conditions

fitness

= Condition 1 = Condition2 | 0

The champion deme
must be shielded
from migration
NEEE: . EEN
deleterious state |

— Upper bound on the — Lower bound on the
migration rate migration rate

number of
T : > mutations

Spreading of the
beneficial mutation
must be faster than
valley crossing by the
champion deme




Expression of the conditions

fitness

= Condition 1 — quasi-independence
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NeP12
Condition 1: <t, - —<
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= Condition 2 — fast spreading

N 1 m
< — s < — : lower bound
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Expressions for n and n: obtained using finite Markov chain theory

(+ intuitive calculationfor § < 1, s< 1, N6 > 1, Ns>> 1)

Similarly: ¢, < 7. —
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Test: stochastic simulation

= Simulation (Gillespie algorithm) — crossing time vs. migration rate

Parameter values:

s=0.3
o0 =0.006
K =357
D=7
u=8x10°
d=0.1

fitness

~ number of
“7 mutations

4 2 0 2 4
logygm/(ud)]

Minimum — 7,,, = (5.02 £ 0.14) x 10°

T (3 28 + 0 10) v 106} — factor of 6.54, closeto D=7
id = (0. ,



Test: stochastic simulation

fitness
. . A
= Valley crossing at the optimum ‘\‘/.
number of
One realization: i )mutatlons

End of the process:
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Heatmaps

Predicted bounds Parameters:
for optirral region P
01 032| 1 316 10 001 003 01 032 1 d=0.1
< Tunneling starts

dominating for
isolated demes

~ «—— Valley depth predicted
to yield the highest
speedup by subdivision

Tunneling starts
dominating for the
nonsubdivided
population
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Highest speedup & trade-off
= Highest possible speedup by subdivision

Optimal case — speedup gained by subdividing a population: Tm

Tn S

Assume:
- isolated deme in the sequential fixation regime
- nonsubdivided population in the tunneling regime

eNo _ 1

2 /s € 0 K 1 — m = US————
Trs 62

1.594

At fixed N, this ratio is minimal for 0 ~ N (— importance of general calculations)

. . T‘nl
lts minimal value is ~ 1.544 N? s
Tns

Heatmaps — optimal valley depth: 0 ~ 0.035 ~ 10—145

= A trade-off in the choice of D

Tm N2 ps

Fixed V= ND — highest speedup: ~ 1.544 3

_ T,
Increase D — gain more speedup e

But

de N9 m 1 S
Dlog D < - —(1 —)
S 085 < ud < 2 i )

Increase D — narrower optimal parameter range



Generalizing

= Varying the degree of subdivision

—4 2

= Effectively neutral intermediates

0 2
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— effectively neutral

Parameter values:
s=0.5

N =130

D=10
u=5x107
d=0.1

= Mainland-island(s)

Champion island can
drive valley crossing




Application

= An example
E. coli — H = 8.9x 101 Wielgoss et al. (2011)

Take N =5 x 10% (small but realistic) Rozen et al. (2008)
D = 100 (96-well plates)

Plateau — sequential fixation below N, = 1/,/us

s = 1072 _ isolated demes in the sequential fixation regime
for 0 <§<22x1074

The optimal range of migration rates spans 2 to 4 orders of magnitude depending on 6

Speedup factor from 18 to 2.7 x 102

= More generally

For given N and D, we can predict:

- for which valleys subdivision speeds up crossing

- the highest speedups obtained

- the range of migration rates for which they are reached



= Summary

Conclusion

- Subdivision with migration (alone) can significantly accelerate fithess valley & plateau crossing
- Sufficiently small demes (performing sequential fixation) are necessary

= Some related experimental studies

- Kryazhimskiy, Rice & Desai (Evolution 2012) — evolution of subdivided populations of yeast
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Mixing

Immigrants

- Nahum, Godfrey-Smith, Harding, Marcus, CarlsonStevermer & Kerr (PNAS 2015)
— evolution of subdivided populations of bacteria
— some advantage of subdivision

— no evidence of any
advantage of
subdivided populations

— Importance of understanding quantitatively the conditions under which
subdivision is beneficial



Conclusion

= Perspectives

- More complex population structures

- Case of sexual populations (recombination)

- Spatial structure (expanding front)

- Effect of population subdivision on the evolution of antibiotic resistance

= Acknowledgements
David J. Schwab

Ned S. Wingreen

The Princeton Biophysics Journal Club
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Introduction

= Evolutionary coupling and rugged fitness landscapes
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Typical associated fitness landscape:

fitness

3 : number of
' > mutations

* Fitness costs in the evolution of antibiotic resistance

Fitness relative to CAB281
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Evolution of streptomycin resistance

in E. coli
Schrag, Perrot and Levin (1997)



Introduction

To ee WORKING. TIVE E"’J

= A major public health issue

* What conditions favor / challenge the evolution of resistance?
* How to optimize antimicrobial dosage?
* Impact of antimicrobials in the environment?

= A variable fithess landscape LA p“w m

» Most mutations giving antimicrobial resistance come with a fitness cost
 This cost can be compensated by a second mutation
— fitness valley in the absence of antimicrobial

Fitness ~@-No antimicrobial A Antimicrobial presence A Antimicrobial presence
—A—Antimicrobial T 1 _T
1-@ iy i | 1 T
T S = 0 | Time 0 < > Time
; i ' i ' > ' i ' =
: A Fitness of S : A Fitness of S

| _ Number of . .
0 ! ™ mutations o | Time 4 _{ | Time
0 1 2 and genotype —T T — T
S R C 0 T 2T 0 T 2T

The fitness landscape depends on whether antimicrobial is present or not
— Impact of variable antimicrobial concentrations on the evolution of resistance?



Stochastic model

Moran (1958) Moran Process
Ewens (1979) (constant size)

Selection Elimination

Reproduction

Absorption probabilities;
unconditional and
conditional first-passage
times (to absorbing states)

Fixation probabilities;
fixation times of each
genotype




Process studied

= Stochastic model (well-mixed population, fixed size — Moran process)

1_
1 N=100,T =50, u; =107°, o = 1073, § = 0.1 I
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 Without antimicrobial: valley crossing — 10" generations
» Continuous presence of antimicrobial — resistance can't evolve

— A periodic antimicrobial presence greatly accelerates the evolution of resistance



Analytical predictions

= Acquisition of resistance

The population can evolve resistance:
- By valley crossing (cf. earlier) Wweissman et al (2009)
- Due to “switches” of the environment, i.e. introduction of antimicrobial

What ultimately matters is the fastest process
Focus on the 2™ one (and then compare)

* R mutants can only appear without antimicrobial
* R mutants have a fithess advantage only when antimicrobial is added
— Key question: When do R mutants first exist in the presence of antimicrobial?

tG’R . average time when R mutants start growing in the presence of antimicrobial

Three key timescales:

« Average time of appearance of a resistant (R) mutant: 1/(N 1)
* Average time of disappearance of the lineage of a R mutant: 7¢

} — evolution
» Period of the alternation of antimicrobial absence and presence: 17— environment



Analytical predictions

= Time until resistants start growing: different regimes

- r
1 d ° ) The lineage of the first R mutant
— <7
2 R = lives until antimicrobial is added
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Results

= Simulations (Moran process) té ~ 1tk + frﬁ +to + T(f;

107 3
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Solid lines: analytical predictions 1 =10"", e =10"3, 6 =0.1

= [n summary

 Fast alternations accelerate the evolution of resistance, especially for large populations
* For short enough periods, the first R mutant that appears yields resistance evolution
« What matters is the shortest timescale between the valley-crossing process

and the switch-driven process



Results

= Heatmap
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Asymmetric alternations

= Prediction and results o T, + T
1 _W,ibintlmlcroblal presence N/ulmm(’r%, Tl)
hor
2 .
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— Minimum of the time needed to evolve resistance



Results

= Heatmap




Conclusion

= Results for a homogeneous population with fixed size

 Fast alternations accelerate the evolution of resistance, especially for large populations
* Asymmetric alternations — minimum of the time needed to evolve resistance

= Discussion

» The worst-case scenario ( 17 =~ 15 , lasting a few generations or less) is quite realistic:

- consider a drug taken every 8 to 12 hours and bacteria dividing every few hours

- a goal in treatment design is for antimicrobial serum concentration to exceed the
MIC for at least 40 to 50% of the time  Jacobs (2001)

* Resistance acquisition can then occur in about a day (one S to R mutation; large V)

e Clinically, it is thus important to control for such incursions below the MIC
(argument in favor of extended-release antimicrobial formulations)

* The parameters most accelerating resistance can be harnessed in evolution
experiments (e.g. in chemostats or morbidostats)

= Next steps

» Population with variable size (logistic growth), allowing extinction
« Structured population (realistic — organs, patients) HE =<l H

= Reference
Preprint: http://biorxiv.org/cgi/content/short/279091v1
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