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What is your "favorite" evolutionary force, and why?



Although many processes shape
evolution, natural selection is special
because it creates complex, functioning
organisms. All other processes tend to
degrade what has been built up by natural
selection, simply because these processes
act at random with respect to function.

-Barton et al. , Evolution (textbook)



THEORETICALLY, SELECTION IS THE “EASIEST" EVOLUTIONARY FORCE
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BUT THEN, GENETIC DRIFT COMES ALONG
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BUT THEN, GENETIC DRIFT COMES ALONG
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OR LINKAGE
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OR POPULATION STRUCTURE, OR EPISTASIS, OR [ADD YOUR FAVORITE HERE]

» Keep in mind that selection operates on phenotypic
differences among individuals in a population; it does not act
on a genotype, much less an allele.
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ADAPTATION VS. “AN ADAPTATION

» Adaptation: the process of increasing (mean) fitness of a
population in a given environment

» An adaptation: a trait that increases its carrier’s fitness in a
specific environment, and that has spread bc of of the direct
action of natural selection for its function

- R RSY

From Nachmann et al., PNAS, 2003
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WHAT WE WANT TO KNOW ABOUT ADAPTATION

» How big/small are adaptive steps?

» What are the proportions of beneficial, neutral, and deleterious
mutations?

*
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What do we expect adaptation to be like THEORETICALLY?
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background? (I.e., what is the role of epistasis?)

» What is the role of selection vs. other evolutionary processes in
shaping genomes?

» How can we infer the contribution of selection to molecular
evolution?



TWO MODELS OF ADAPTATION
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FISHER'S GEOMETRIC MODEL

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
-

Phenotype space
Fisher circle

Current
phenotype Selection
coefficient

» More challenging environment

. = > more beneficial mutations
Fisher, 1930

» Philosophy: Large populations, a
single fitness optimum



WRIGHT'S SHIFTING BALANCE
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WRIGHT'S SHIFTING BALANCE
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Which team are you on,

Team Fisher or Team Wright, and why?
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WHAT WE WANT TO KNOW ABOUT ADAPTATION

» How big/small are adaptive steps?

» What are the proportions of beneficial, neutral, and
deleterious mutations?

» How do mutational effects change dependent on the
environment?

» What is the shape of the distribution of fitness eftfects (DFE)?
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ESTIMATES OF MEAN BENEFICIAL EFFECT SIZE FROM POLYMORPHISM DATA

» 5=0.002 (Li and Stephan 2006; Jensen et al. 2008)
» s=0.01 (MacPherson et al. 2008)
» s=0.00001 (Andolfatto 2007)

4y rf, 5 B R
nt \" ‘A:." 0 .
—

» Example for known phenotype: s=0.102 (Linnen et al. 2009)

» Use experimental approaches to get estimates for whole DFE
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AN EXPERIMENTAL APPROACH TO THE DFE: DEEP MUTATIONAL SCANNING

» Systematic high-throughout sampling of hundreds
of chosen mutations (including those that are
strongly deleterious)

» Bulk competitions ensure identical conditions for
all mutants

» Genetic background is precisely controlled
(minimized potential for secondary mutations)

Yeast \v\v\'
Point-mutant

library Analyze mutant abuqdance /]
by deep sequencing Jeff Jensen

Hietpas, Jensen & Bolon, PNAS, 2011




AN EXPERIMENTAL APPROACH TO THE DFE: DEEP MUTATIONAL SCANNING

» Systematic high-throughout sampling of hundreds
of chosen mutations (including those that are
strongly deleterious)

Deep mutational scanning results in a
(almost “evolution-free”) snapshot of the DFE

» Genetic background is precisely controlled
(minimized potential for secondary mutations)

X A A
%% Transform
- Yeast \T\v
Point-mutant \V

library Analyze mutant abun.dance /) &
by deep sequencing Jeff Jensen

Hietpas, Jensen & Bolon, PNAS, 2011

Ryan Hietpas




DEEP MUTATIONAL SCANNING FROM A MODELER’S POINT OF VIEW

» Exponential growth of hundreds
of mutants, each with its own
growth rate/selection coeflicient

» Sequencing corresponds to
multinomial sampling of
mutants independently at each
sampling time

Population size

i Sampling
| points

M2

Time



DEEP MUTATIONAL SCANNING FROM A MODELER’S POINT OF VIEW

» Exponential growth of hundreds
of mutants, each with its own
growth rate/selection coeflicient

» Sequencing corresponds to
multinomial sampling of
mutants independently at each
sampling time

Population size

i Sampling
| points

M2

Time

» <1% fitness differences detectable



For the “Fisherians”: the shape of the DFE across
environments
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FISHER'S GEOMETRIC MODEL

Phenotype space
Fisher circle

Hypotheses:

Current

phenotype Selectior * Relocation of the optimum or the

e current phenotype in a new
environment can increase the distance
to the optimum and hence the potential
for beneficials.

Fisher, 1930

e The distribution of beneficial mutations
is bounded or exponential.



THE SHAPE OF THE DFE IN CHALLENGING ENVIRONMENTS



The data set

¢ 9 aa region from Hsp90 (aa positions
582-590) in Saccharomyces cerevisiae

® O environments:

Data obtained by Ryan Hietpas @ UMassMed



The data set

¢ 9 aa region from Hsp90 (aa positions
582-590) in Saccharomyces cerevisiae

® O environments:

30°C | 30°C+0.5M NaC
36°C |[36°C+0.5M NaC
25°C | 25°C+0.5M NaC

Data obtained by Ryan Hietpas @ UMassMed



The data set

¢ 9 aa region from Hsp90 (aa positions
582-590) in Saccharomyces cerevisiae

® O environments:

30°C | 30°C+0.5M NaC
36°C |[36°C+0.5M NaC
25°C | 25°C+0.5M NaC

Relative growth of wi:

1 0,45
0,83 0,33
0,63 0,3

Data obtained by Ryan Hietpas @ UMassMed



The data set

¢ 9 aa region from Hsp90 (aa positions
582-590) in Saccharomyces cerevisiae

® O environments:

30°C | 30°C+0.5M NaC
36°C |[36°C+0.5M NaC
25°C | 25°C+0.5M NaC

¢ Fitness data for every possible
codon at each aa position
(i.e. the same 560 mutations per
environment)

Data obtained by Ryan Hietpas @ UMassMed



The shape of the full DFE

Standard condition (30°C)
1

deleterious (—0.5<s<-0.005)
wt-like (-0.005<s<0.005)

Frequency of occurence

EMPIRIC selection coefficient

Hietpas, Bank et al. 2013
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The shape of the full DFE

Frequency of occurence

Frequency of occurence

Standard condition (30°C)
1

deleterious (—0.5<s<—-0.005)
wt-like (—0.005<s<0.005)

205 o 0d
EMPIRIC selection coefficient

Bimodal DFE, few beneficials - close to optimum

Elevated salinity (30°C + 0.5M NaCl)

0 0.1
EMPIRIC selection coefficient

Increased number of beneficials, increased variance - far from optimum

Hietpas, Bank et al. 2013



COSTS OF ADAPTATION
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THE SHAPE OF THE BENEFICIAL TAIL OF THE DFE
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Pareto distribution to
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» Kappa parameter
determines tail shape
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From Beisel et al., Genetics, 2007



HOW PREDICTABLE IS ADAPTIVE EVOLUTION?

» Fit Generalized
Pareto distribution to
beneficial tail

deleterious (-0.5<s<-0.005)
wi—like (-0.005<s<0.005)

Standard condition (30°C)

» Kappa parameter
determines tail shape

Frequency of occurence
o
-t

EMPIRIC selection coefficient

Wi Wi Wi
 Bounded DFE, ;
limited potential for B //
adaptation S i 2
k<0 K=0 K>0
. _ Weibull Gumbel Fréchet
« Consistent with FGM (truncated) (exponential) (heavy tailed)

with close optimum

From Beisel et al., Genetics, 2007




HOW PREDICTABLE IS ADAPTIVE EVOLUTION?

» Fit Generalized

Pareto distribution to 8 strongly deleterious (s=-0.5) Standard condition (30°C)
) . § deleterious (-0.5<s<—0.005)
beneﬁc1al tail g wt-like (—0.005<5<0.005)
g 0.1
» Kappa parameter :
determines tail shape §
-0.5 v 0.1
EMPIRIC selection coefficient
W, W, Wi
+ Unbounded DFE, ' ;
but low prob. of ﬂ//
large-effect E i ;
mutations 20 ) 'T‘
Weibull Gumbel Fréchet
(truncated) (exponential) (heavy tailed)

« Consistent with FGM
with far optimum
From Beisel et al., Genetics, 2007




HOW PREDICTABLE IS ADAPTIVE EVOLUTION?

» Fit Generalized

Pareto distribution to 8 strongly deleterious (s=-0.5) Standard condition (30°C)
. . & deleterious (-0.5<s<-0.005) —
beneﬁc1al tall g wt-like (-0.005<s<0.005) l
“g 0.1
» Kappa parameter :
determines tail shape §

EMPIRIC selection coefficient

Wi Wi Wi
- Unbounded DFE, ;
highly unpredictable ﬂ//
mutational effects E i ;
k<0 k=0 k>0
Weibull Gumbel Fréchet
* Not captured by (truncated) (exponential) (heavy tailed)

FGM

From Beisel et al., Genetics, 2007
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Tail shape parameter in challenging environments

An application to resistance evolution

Influenza H1N1 mutation-accumulation experiment



Tail shape parameter in challenging environments

An application to resistance evolution

Influenza H1N1 mutation-accumulation experiment

Approach: Serial passaging of influenza H1N1, assayed by time-sampled
sequencing and inference via Approximate Bayesian Computation
(WFABGC; Foll*, Shim* & Jensen, MER, 2014)

Environments:

MDCK (dog kidney cells) - 'standard' environment,
MDCK + oseltamivir (Tamiflu) - severe environmental challenge



Tail shape parameter in challenging environments

Influenza H1N1 mutation accumulation experiment
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Tail shape parameter in challenging environments

Influenza H1N1 mutation accumulation experiment
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environmental challenge the number
and size of beneficial mutations
increases, and costs of adaptation
are observed - in agreement with
predictions from Fisher’s geometric
model when the optimum is
displaced.




SUMMARY - TEAM FISHER

* In response to a novel
environmental challenge the number
and size of beneficial mutations
increases, and costs of adaptation
are observed - in agreement with
predictions from Fisher’s geometric
model when the optimum is
displaced. W

e Following severe environmental
challenges, the step size of adaptive

mutations might be highly k>0

. Fréchet
unpredictable. (heavy tailed)

A — —




But what about epistasis?

(Spoiler: this is the part for the “Wrightians”)



WRIGHT'S SHIFTING BALANCE
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WHAT IS EPISTASIS?

Definition from Nature Reviews Genetics Glossary:

Epistatic interaction: any non-additive interaction between two
or more mutations at different loci, such that their combined
effect on a phenotype deviates from the sum of their individual
effects.
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Classical genetics:

“brown" locus Bb

(Source: Google image search)
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(Source: Google image search)



WHAT IS EPISTASIS?

“brown" locus Bb

B 5ol | This guy should have
B O

=l a brown nose!

(Source: Google image search)



WHAT IS EPISTASIS?

Quantitative Genetics:

Interaction of genetic variants such that the net phenotypic
effect of carrying more than one variant is different than would
be expected by simply combining the effects of each individual
variant.
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Phenotype: fitness

Selection coefficient
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Phenotype: fitness

positive epistasis

*A NoO epistasis

negative epistasis

Selection coefficient
i
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Romero & Harnold, 2009
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» Ruggedness of fitness landscape is a determinant of
predictability/repeatability of evolution
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Repeatable Non-repeatable
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WHY SHOULD WE CARE?

> epistasis creates non-random associations between loci
(linkage disequilibrium; LD)

» Ruggedness of fitness landscape is a determinant of
predictability/repeatability of evolution

» accumulation of epistatic alleles is basis of the most widely
accepted model for allopatric speciation

Predictable and Predictable and Non-Predictable
Repeatable Non-repeatable

Romero & Harnold, 2009



WHERE DO WE EXPECT TO SEE EPISTASIS?

» Within proteins
» Between genomic regions involved in biological pathways

> Between species



WHERE DO WE EXPECT TO SEE EPISTASIS?

» Within proteins
» Between genomic regions involved in biological pathways

> Between species

Where do you expect to see the most epistasis,

and why?



AN INTRAGENIC EPISTATIC LANDSCAPE



DATA SET

» 9 aa region from Hsp90 (aa positions 582-590) in Saccharomyces cerevisiae

Data obtained by Ryan Hietpas @ UMassMed



Data set

/ anchors, each with
3x 180 1-step mutations ~140 2nd steps,
~20 1-step controls

W1

a a
D a+b
C C

Anchor fithess between 97.5% and 100% of wt

Data obtained by Ryan Hietpas @ UMassMed



Questions

- What is the general pattern of
epistasis?

e How does “a step away” change
the distribution of fithess effects”?

e \What is the shape of the local
fitness landscape?

—b

Observed growth rate

:
Expected growth rate



Questions

e \What is the general pattern of
epistasis?

- How does “a step away”
change the distribution of
fithess effects?

e \What is the shape of the local
fitness landscape?

The distribution of fithess effects (DFE)

Frequency

strongly
deleterious

Fitness (growth rate)

wt-like



Questions

e \What is the general pattern of
epistasis?

e How does “a step away” change
the distribution of fithess effects”?

- What is the shape of the local
fithess landscape?




The pattern of epistasis for 1015 2-step mutations

o Wi-like ~ # | |not significant (52.4%)

© :

S + . \

é) * positive epistasis (0.7 %)
[, "'

0 if «—
< Strongly i

§ deleterious # negative epistasis (46.9%)

Expected growth rate



FISHER'S GEOMETRIC MODEL

Phenotype space
Fisher circle

Hypothesis:

Current
phenotype Selection
coefficient

Fisher, 1930



FISHER'S GEOMETRIC MODEL

Phenotype space
Fisher circle

Hypothesis:

Current

phenotype Selection * Relocation of the phenotype can
coefficient . . .
increase the distance to the optimum

Fisher. 1930 and hence the potential for beneficials.



Shape of the DFE one step away

12
10 A — wl
—— 583N
8
> 584F
;é’) 6 584S
-
4 585L
— 586G
. — 587G
0.6 0.7 8 0.9 1.0 1.1 588F

Estimated growth rate

¢ No higher potential for beneficial mutations one step away from
the wild type
¢ /nd step much more likely to be deleterious



Shape of the

DFE one step away

12
10 /\ — Wi
583N
8
> 584F
% 6 584S
Qo
4 585L
— 586G
. — 587G
0.6 0.7 0.8 0.9 1.0 1.9 588F

Estimated growth rate

¢ No higher potential for beneficial mutations one step away from

the wild type

¢ /nd step much more likely to be deleterious

Robustness”? - Concave fithess landscape?




Characterizing the shape of the epistatic landscape
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Characterizing the shape of the epistatic landscape
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Characterizing the shape of the epistatic landscape
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Characterizing the shape of the epistatic landscape

Fitness w

Phenotypic effect X



Characterizing the shape of the epistatic landscape

1.0

(.5 - e
5 00 _ - T |
i =_
o
> —-0.5
@)
-

10 — =

10| 4 B _ a

= = — T
—15_3-5
583N 584F 584S 585L 586G 587G 588F

Data set

Model 1
1 Model 2
Multiplicative

Bank, Hietpas, Jensen & Bolon, MBE, 2015



Characterizing the shape of the epistatic landscape

1.0 F——
f’f. 1 Model 1
Model 2
o . Multiplicative
k- = =
B =
583N 584F 584S 585L 586G 587G 588F

Data set

Models of concave fitness landscapes can explain the
observed pattern of ubiquitous negative epistasis.

Bank, Hietpas, Jensen & Bolon, MBE, 2015



SUMMARY

e Intragenic epistasis is frequent.
Changing the genetic background (i.e.,
dislocating the population from its
current state) does not result in a higher
potential for beneficial mutations.




SUMMARY

e Intragenic epistasis is frequent.
Changing the genetic background (i.e.,
dislocating the population from its
current state) does not result in a higher
potential for beneficial mutations.

* Models of concave fitness landscape
motivated by biophysical properties can
explain the observed pattern of epistasis
in the standard environment,
supporting the idea of mutational —
robustness. — —

Fitness




EPISTASIS BETWEEN SPECIES



THE DOBZHANSKY-MULLER MODEL

Time
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o 2 Xiphophorus maculatus X. helleri
Tu/Tu; R/R X -/-; tlr
F1 hybrid X. helleri
Tu/-; R/r X -/-; tlr
benign
melanoma

Orr & Presgraves, Bioessays, 2000

-/-; R/r -/~ r/r Tu/-; R/r Tu/-; r/r

no melanoma benign fatal malignant
melanoma melanoma
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Xiphophorus maculatus X. helleri
Tu/Tu; R/R X -/-; tlr
F1 hybrid X. helleri
Tu/-; R/r X -/-; rlr
benign
. melanoma

Orr & Presgraves, Bioessays, 2000

-/-; R/r -/-: rlr Tu/-; R/r Tu/-; r/r

no melanoma benign fatal malignant
melanoma melanoma

» sexual selection on tumor gene

Scarpino et al., MBE, 2013
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Xiphophorus maculatus X. helleri
Tu/Tu; R/R X -/-; rlr

Orr & Presgraves, Bioessays, 2000

/

F1 hybrid X. helleri

Tu/-; R/r X -/~ rlr
benign

melanoma

'

-/-; R/r

v

-/~ rlr Tu/-; R/r Tu/-; r/r

no melanoma benign fatal malignant

» sexual selection on tumor gene

* interaction with promoter of repressor gene

melanoma melanoma

Scarpino et al., MBE, 2013



00000000000000000000000000000000000000000000000000

Orr & Presgraves, Bioessays, 2000

» sexual selection on tumor gene

000000000000000000000000000000000000000000000000000000

Xiphophorus maculatus X. helleri
Tu/Tu; R/R X -/-; rlr

/

F1 hybrid X. helleri

Tu/-; R/r X -/~ rlr
benign

melanoma

v

-/-; R/r -/-: rlr Tu/-; R/r Tu/-; r/r

no melanoma benign fatal malignant
melanoma melanoma

* interaction with promoter of repressor gene

* ongoing gene flow

Scarpino et al., MBE, 2013



Il trans eQTL hotspot

Bl sterility QTL - - - interaction eQTL:
- - 3 R & 17 - 49

/. marker locations, genotype covariates b oot B g 50 - 100
e @ 0N oy 101 - 250
: % e 251 - 500

2 " : p~ s 501 - 1000
% 4
o N

>1000

Turner et al., PlosGen, 2014



Il trans eQTL hotspot

Bl sterility QTL - - - interaction eQTL:
- - 3 R & 17 - 49

/. marker locations, genotype covariates b oot B g 50 - 100
e @ 0N oy 101 - 250
: % e 251 - 500

2 " : p~ s 501 - 1000
% 4
o N

>1000

In fact these were
both "pathway"
examples too...

Turner et al., PlosGen, 2014



TAKE A LOOK AT THE WHOLE FITNESS LANDSCAPE



A FAMOUS EXAMPLE

» Diminishing-returns epistasis

Khan et al. 2011

» Accessible but epistatic, single-peaked



WHY FITNESS LANDSCAPES ARE APPEALING

Neutral
divergence

frda

Fitness
peak

Adaptive walk

Fitness

v

Phenotype

» fitness landscapes yield information on the
predictability and repeatability of evolution



WHY FITNESS LANDSCAPES ARE APPEALING

Neutral
divergence

frda

Fitness
peak

Adaptive walk

Fitness

v

Phenotype

» fitness landscapes yield information on the
predictability and repeatability of evolution

> it becomes increasingly simple to measure
empirical fitness landscapes

» accumulating data on gene networks and
pathways



Local fitness landscape of the green
fluorescent protein

Comprehensive experimental fitness landscape
and evolutionary network for small RNA

Genotype to Phenotype Mapping and the Fitness
Landscape of the E. coli lac Promoter

Biophysical principles predict fitness landscapes of
drug resistance

Mutational and fitness landscapes of an RNA virus
revealed through population sequencing

In-vivo mutation rates and fithess landscape of HIV-1

The fitness landscape of a tRNA gene




WHY FITNESS LANDSCAPES ARE DIFFICULT

Neutral
divergence

frda

Fitness
peak

Adaptive walk

Fitness

v

Phenotype

» fitness landscapes yield information on the
predictability and repeatability of evolution

> it becomes increasingly simple to measure
empirical fitness landscapes

» accumulating data on gene networks and
pathways

But:



WHY FITNESS LANDSCAPES ARE DIFFICULT

Neutral

divergence » fitness landscapes yield information on the

predictability and repeatability of evolution
> it becomes increasingly simple to measure

empirical fitness landscapes

Fitnekss » accumulating data on gene networks and
pea

pathways

But:
Adaptive walk

> enormous complexity

» unclear whether there is predictive
potential when combining theory and data

Fitness

Phenotype




WHY FITNESS LANDSCAPES ARE DIFFICULT

Neutral
divergence

Sda

Fitness
peak

Adaptive walk

Fitness

Phenotype

» fitness landscapes yield information on the
predictability and repeatability of evolution

> it becomes increasingly simple to measure
empirical fitness landscapes

» accumulating data on gene networks and
pathways

But:
> enormous complexity

» unclear whether there is predictive
potential when combining theory and data

E.g.: Can we predict costs of anti-
microbial resistance across environments?



THE EXPERIMENTAL APPROACH: DEEP MUTATIONAL SCANNING

» Systematic high-throughout sampling of hundreds
of chosen mutations (including those that are
strongly deleterious)

» Bulk competitions ensure identical conditions for
all mutants

» Genetic background is precisely controlled
(minimized potential for secondary mutations)

Yeast \v\v\'
Point-mutant

library Analyze mutant abuqdance /]
by deep sequencing Jeff Jensen

Hietpas, Jensen & Bolon, PNAS, 2011




WHAT WE DID SO FAR

Engineered mutations from a 9 aa region from Hsp90
(aa positions 582-590) in Saccharomyces cerevisiae
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WHAT WE DID SO FAR

Engineered mutations from a 9 aa region from Hsp90
(aa positions 582-590) in Saccharomyces cerevisiae

Compare DFEs across 4 environments - high costs of
adaptation

Distribution of Fitness Effects (DFE) across environments

i 03 Elevated salinity
2L (30°C+S)
)]
§01
e
o e e -
B Standard condition
3.0.2 o
& (30°0)
)
0.1
-
[

o
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WHAT WE DID SO FAR

Engineered mutations from a 9 aa region from Hsp90
(aa positions 582-590) in Saccharomyces cerevisiae

Compare DFEs across 4 environments - high costs of
adaptation

MCMC method to estimate selection coefficients, and
DFEs across 6 environments - heavy-tailed DFE for
most challenging environment

Frequency/
probability density

Selection coefficient
wi w; Wi
K<0 K=0 k>0
Weibull Gumbel Fréchet
(truncated) (exponential) (heavy tailed)

From Beisel et él., Genetics, 2007 |
R — e ——
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Fithess w

Phenotypic effect x

DFEs on 7 genetic backgrounds - ubiquitous negative
epistasis indicating an underlying concave fitness
landscape




WHAT WE DID SO FAR

Engineered mutations from a 9 aa region from Hsp90
(aa positions 582-590) in Saccharomyces cerevisiae

Compare DFEs across 4 environments - high costs of
adaptation Hietpas™, Bank™ et al., 2013, Evolution

MCMC method to estimate selection coefficients, and
DFEs across 6 environments - heavy-tailed DFE for
most challenging environment Bank et al., 2014, Genetics

DFEs on 7 genetic backgrounds - ubiquitous negative
epistasis indicating an underlying concave fitness
landscape

Guide to experimental design of deep mutational
scanning studies

Complete fitness landscape of 640 combinations of
mutations
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> relatively “unbiased" selection of mutations

» multi-allelic fitness landscape
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» Do single step mutations predict the way to the global
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3 QUESTIONS

» Do single step mutations predict the way to the global
optimum?

» Will adaptation take the population to the global optimum?

» Can we infer an unknown part of the fitness landscape?

¥




A PICTURE OF THE WHOLE LANDSCAPE

_.——— Beneficial
e

Growth rate

Deleterious
0 : 2 3 4 5 6
Mutational distance from parental sequence




Focal landscapes:

1) leading to global optimum ;

2) best 4 mutations

3) “worst” 4 mutations

1 - DO SINGLE STEP
MUTATIONS PREDICT THE
WAY TO THE GLOBAL
OPTIMUM?
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Strong positive and
negative epistasis
in the landscape.
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BENEFICIAL PART OF THE
LANDSCAPE

Parental
genotype

Global | o\

optimum

Local

optimum




BENEFICIAL PART OF THE
LANDSCAPE
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2 - WILL ADAPTATION
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LANDSCAPE STATISTICS INDEPENDENT OF REFERENCE

Growth rate

Ferretti L, Schmiegelt B, Weinreich D, Yamauchi A, Kobayashi Y, Tajima F & Achaz G
(2016) Measuring epistasis in fitness landscapes: The correlation of fitness effects of
mutations. Journal of Theoretical Biology 396:132—143
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HOW CAN WE MEASURE FITNESS LANDSCAPES AND
WHAT CAN WE LEARN FROM THIS EXERCISE?
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3 - CAN WE INFER AN UNKNOWN PART OF THE LANDSCAPE?
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SUMMARY/CONCLUSION

On average, our intragenic fitness
landscape looks rugged and negative
epistasis 1s common.

The global peak is accessible and
reached via a highly synergistic
combination of four mutations.

However, when evolving from
parental type, adaptation may stall at
a local peak.




SUMMARY/CONCLUSION

On average, our intragenic fitness
landscape looks rugged and negative
epistasis 1s common.

The global peak is accessible and
reached via a highly synergistic
combination of four mutations.

However, when evolving from
parental type, adaptation may stall at
a local peak.

So far, limited predictive
potential, but lots of ideas for
the future...




FISHER OR WRIGHT OR...?

* From an ecological point of view, frequent bottlenecks seem
likely.
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What would YOU like to know about fitness landscapes?
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