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What is your "favorite" evolutionary force, and why?



“
Although many processes shape 
evolution, natural selection is special 
because it creates complex, functioning 
organisms. All other processes tend to 
degrade what has been built up by natural 
selection, simply because these processes 
act at random with respect to function.

-Barton et al. , Evolution (textbook) 



THEORETICALLY, SELECTION IS THE “EASIEST" EVOLUTIONARY FORCE

s=0.1

Selective sweep
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BUT THEN, GENETIC DRIFT COMES ALONG

s=0.1 

N=1000

20 simulations

Kimura 1962, Ohta 1973

Selection is 
indistinguishable from 
drift if -1<2Ns<1 



OR LINKAGE

Enter hitchhiking trajectories
Who is the 
hitchhiker?



OR POPULATION STRUCTURE, OR EPISTASIS, OR [ADD YOUR FAVORITE HERE]

➤ Keep in mind that selection operates on phenotypic 
differences among individuals in a population; it does not act 
on a genotype, much less an allele.
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➤ Adaptation: the process of increasing (mean) fitness of a 
population in a given environment 
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➤ Adaptation: the process of increasing (mean) fitness of a 
population in a given environment 

➤ An adaptation: a trait that increases its carrier’s fitness in a 
specific environment, and that has spread bc of of the direct 
action of natural selection for its function

ADAPTATION VS. “AN ADAPTATION” 

From Nachmann et al., PNAS, 2003
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WHAT WE WANT TO KNOW ABOUT ADAPTATION
➤ How big/small are adaptive steps? 

➤ What are the proportions of beneficial, neutral, and deleterious 
mutations? 

➤ How do mutational effects change dependent on the 
environment? 

➤ How do mutational effects change dependent on the genetic 
background? (I.e., what is the role of epistasis?) 

➤ What is the role of selection vs. other evolutionary processes in 
shaping genomes? 

➤ How can we infer the contribution of selection to molecular 
evolution?

What do we expect adaptation to be like THEORETICALLY?



TWO MODELS OF ADAPTATION



Fisher, 1930 
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Fisher, 1930 

FISHER’S GEOMETRIC MODEL

➤ More challenging environment 
=> more beneficial mutations

➤ Philosophy: Large populations, a 
single fitness optimum
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WRIGHT’S SHIFTING BALANCE
Fitness

High

Low
Fitness peak

Wright, 1932

➤ Rugged fitness landscape with many fitness peaks

➤ Valley crossing via migration and genetic drift

➤ Philosophy: Small, structured populations



Which team are you on,  
Team Fisher or Team Wright, and why?
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WHAT WE WANT TO KNOW ABOUT ADAPTATION

➤ How big/small are adaptive steps?

➤ What are the proportions of beneficial, neutral, and 
deleterious mutations?

➤ How do mutational effects change dependent on the 
environment?

➤ What is the shape of the distribution of fitness effects (DFE)?
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ESTIMATES OF MEAN BENEFICIAL EFFECT SIZE FROM POLYMORPHISM DATA

➤ s=0.002 (Li and Stephan 2006; Jensen et al. 2008)

➤ s=0.01 (MacPherson et al. 2008)

➤ s=0.00001 (Andolfatto 2007)

➤ Example for known phenotype: s=0.102 (Linnen et al. 2009)

➤ Use experimental approaches to get estimates for whole DFE
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all mutants 

➤ Genetic background is precisely controlled 
(minimized potential for secondary mutations)

Hietpas, Jensen & Bolon, PNAS, 2011

Dan Bolon

Ryan Hietpas

Jeff Jensen

Deep mutational scanning results in a  
(almost “evolution-free”) snapshot of the DFE
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DEEP MUTATIONAL SCANNING FROM A MODELER’S POINT OF VIEW 

➤ Exponential growth of hundreds 
of mutants, each with its own 
growth rate/selection coefficient 

➤ Sequencing corresponds to 
multinomial sampling of 
mutants independently at each 
sampling time

➤ <1% fitness differences detectable



For the “Fisherians”: the shape of the DFE across 
environments
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FISHER’S GEOMETRIC MODEL

Fisher, 1930

Hypotheses:

• Relocation of the optimum or the 
current phenotype in a new 
environment can increase the distance 
to the optimum and hence the potential 
for beneficials.

• The distribution of beneficial mutations 
is bounded or exponential.



THE SHAPE OF THE DFE IN CHALLENGING ENVIRONMENTS
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The data set

• 9 aa region from Hsp90 (aa positions 
582-590) in Saccharomyces cerevisiae

• 6 environments: 

30ºC 30ºC+0.5M NaCl
36ºC 36ºC+0.5M NaCl
25ºC 25ºC+0.5M NaCl

• Fitness data for every possible 
codon at each aa position          
(i.e. the same 560 mutations per 
environment)

Data obtained by Ryan Hietpas @ UMassMed



The shape of the full DFE

Hietpas, Bank et al. 2013
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The shape of the full DFE

Bimodal DFE, few beneficials - close to optimum

Increased number of beneficials, increased variance - far from optimum

Hietpas, Bank et al. 2013



COSTS OF ADAPTATION



THE SHAPE OF THE BENEFICIAL TAIL OF THE DFE
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HOW PREDICTABLE IS ADAPTIVE EVOLUTION?
➤ Fit Generalized 

Pareto distribution to 
beneficial tail 

➤ Kappa parameter 
determines tail shape

From Beisel et al., Genetics, 2007

• Bounded DFE, 
limited potential for 
adaptation


• Consistent with FGM 
with close optimum

• Unbounded DFE, 
but low prob. of 
large-effect 
mutations


• Consistent with FGM 
with far optimum

• Unbounded DFE, 
highly unpredictable 
mutational effects


• Not captured by 
FGM
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An application to resistance evolution
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Influenza H1N1 mutation-accumulation experiment

Approach: Serial passaging of influenza H1N1, assayed by time-sampled 
sequencing and inference via Approximate Bayesian Computation 
(WFABC; Foll*, Shim* & Jensen, MER, 2014)


Environments:                                                                                         
MDCK (dog kidney cells) - 'standard' environment,                               
MDCK + oseltamivir (Tamiflu) - severe environmental challenge

An application to resistance evolution

Tail shape parameter in challenging environments
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Foll, Poh, et al., PLoS Genetics, 2014

Influenza H1N1 mutation accumulation experiment

DrugNo drug



Tail shape parameter in challenging environments

Foll, Poh, et al., PLoS Genetics, 2014

Influenza H1N1 mutation accumulation experiment

DrugNo drug



• In response to a novel 
environmental challenge the number 
and size of beneficial mutations 
increases, and costs of adaptation 
are observed - in agreement with 
predictions from Fisher’s geometric 
model when the optimum is 
displaced.

SUMMARY - TEAM FISHER



• In response to a novel 
environmental challenge the number 
and size of beneficial mutations 
increases, and costs of adaptation 
are observed - in agreement with 
predictions from Fisher’s geometric 
model when the optimum is 
displaced.

• Following severe environmental 
challenges, the step size of adaptive 
mutations might be highly 
unpredictable.

SUMMARY - TEAM FISHER



But what about epistasis?  
(Spoiler: this is the part for the “Wrightians”)



WRIGHT’S SHIFTING BALANCE
Fitness

High

Low
Fitness peak

Wright, 1932



WHAT IS EPISTASIS?

Definition from Nature Reviews Genetics Glossary: 

Epistatic interaction: any non-additive interaction between two 
or more mutations at different loci, such that their combined 
effect on a phenotype deviates from the sum of their individual 
effects. 
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WHAT IS EPISTASIS?

“extension" locus

This guy should have 
a brown nose!

“brown" locus

(Source: Google image search)

Classical genetics:



WHAT IS EPISTASIS?

Quantitative Genetics: 

Interaction of genetic variants such that the net phenotypic 
effect of carrying more than one variant is different than would 
be expected by simply combining the effects of each individual 
variant.
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WHY SHOULD WE CARE?

➤ epistasis creates non-random associations between loci 
(linkage disequilibrium; LD)

➤ Ruggedness of fitness landscape is a determinant of  
predictability/repeatability of evolution

➤ accumulation of epistatic alleles is basis of the most widely 
accepted model for allopatric speciation

Romero & Harnold, 2009  
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WHERE DO WE EXPECT TO SEE EPISTASIS?

➤ Within proteins 

➤ Between genomic regions involved in biological pathways 

➤ Between species

Where do you expect to see the most epistasis,  
and why?



AN INTRAGENIC EPISTATIC LANDSCAPE



DATA SET
➤ 9 aa region from Hsp90 (aa positions 582-590) in Saccharomyces cerevisiae

Data obtained by Ryan Hietpas @ UMassMed



wt

a

b

c

3x 180 1-step mutations

a

a+b

c

7 anchors, each with 
≈140 2nd steps, 

≈20 1-step controls

Data set

Anchor fitness between 97.5% and 100% of wt

Data obtained by Ryan Hietpas @ UMassMed



Questions

• What is the general pattern of 
epistasis? 

• How does “a step away” change 
the distribution of fitness effects? 

• What is the shape of the local 
fitness landscape?
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Fitness (growth rate)

Fr
eq

ue
nc

y
wt-likestrongly 

deleterious

?



Questions

• What is the general pattern of 
epistasis? 

• How does “a step away” change 
the distribution of fitness effects? 

• What is the shape of the local 
fitness landscape?
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Expected growth rate
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te not significant (52.4%)

The pattern of epistasis for 1015 2-step mutations

positive epistasis (0.7%)

negative epistasis (46.9%)
Strongly 

deleterious

Wt-like



FISHER’S GEOMETRIC MODEL

Fisher, 1930

Hypothesis:



FISHER’S GEOMETRIC MODEL

Fisher, 1930

Hypothesis:

• Relocation of the phenotype can 
increase the distance to the optimum 
and hence the potential for beneficials.
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• 2nd step much more likely to be deleterious



Shape of the DFE one step away

• No higher potential for beneficial mutations one step away from 
the wild type

• 2nd step much more likely to be deleterious

Robustness? - Concave fitness landscape?
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Characterizing the shape of the epistatic landscape

Bank, Hietpas, Jensen & Bolon, MBE, 2015



Characterizing the shape of the epistatic landscape

Bank, Hietpas, Jensen & Bolon, MBE, 2015

Models of concave fitness landscapes can explain the 
observed pattern of ubiquitous negative epistasis.



• Intragenic epistasis is frequent. 
Changing the genetic background (i.e., 
dislocating the population from its 
current state) does not result in a higher 
potential for beneficial mutations. 

SUMMARY



• Intragenic epistasis is frequent. 
Changing the genetic background (i.e., 
dislocating the population from its 
current state) does not result in a higher 
potential for beneficial mutations. 

• Models of concave fitness landscape 
motivated by biophysical properties can 
explain the observed pattern of epistasis 
in the standard environment, 
supporting the idea of mutational 
robustness. 

SUMMARY
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EPISTASIS BETWEEN SPECIES



THE DOBZHANSKY-MULLER MODEL
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➤ accumulating evidence in animals and plants 

➤ e.g. Xiphophorus, Drosophila, Mimulus 

➤ increasing number of cases with evidence for gene flow at 
present, or likely gene flow in the past

Orr & Presgraves, Bioessays, 2000
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DMIS

➤ accumulating evidence in animals and plants 

➤ e.g. Xiphophorus, Drosophila, Mimulus 

➤ increasing number of cases with evidence for gene flow at 
present, or likely gene flow in the past

Orr & Presgraves, Bioessays, 2000

• sexual selection on tumor gene

• interaction with promoter of repressor gene

• ongoing gene flow

Scarpino et al., MBE, 2013



DMIS

Turner et al., PlosGen, 2014



DMIS

Turner et al., PlosGen, 2014

In fact these were 
both "pathway" 
examples too…



TAKE A LOOK AT THE WHOLE FITNESS LANDSCAPE



A FAMOUS EXAMPLE

Khan et al. 2011

➤ Diminishing-returns epistasis 

➤ Accessible but epistatic, single-peaked
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WHY FITNESS LANDSCAPES ARE DIFFICULT

➤ fitness landscapes yield information on the 
predictability and repeatability of evolution

➤ it becomes increasingly simple to measure 
empirical fitness landscapes

➤ accumulating data on gene networks and 
pathways

But:

➤ enormous complexity

➤ unclear whether there is predictive 
potential when combining theory and data

E.g.: Can we predict costs of anti-
microbial resistance across environments?

Fitness 
peak

Adaptive walk
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divergence



THE EXPERIMENTAL APPROACH: DEEP MUTATIONAL SCANNING
➤ Systematic high-throughout sampling of hundreds 

of chosen mutations (including those that are 
strongly deleterious) 

➤ Bulk competitions ensure identical conditions for 
all mutants 

➤ Genetic background is precisely controlled 
(minimized potential for secondary mutations)

Hietpas, Jensen & Bolon, PNAS, 2011

Dan Bolon

Ryan Hietpas

Jeff Jensen
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Compare DFEs across 4 environments - high costs of 
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MCMC method to estimate selection coefficients, and 
DFEs across 6 environments - heavy-tailed DFE for 
most challenging environment       

Engineered mutations from a 9 aa region from Hsp90 
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➤ relatively “unbiased" selection of mutations 

➤ multi-allelic fitness landscape
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3 QUESTIONS
➤ Do single step mutations predict the way to the global 

optimum?

➤ Will adaptation take the population to the global optimum?

➤ Can we infer an unknown part of the fitness landscape?
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On average, our intragenic fitness 
landscape looks rugged and negative 
epistasis is common. 

The global peak is accessible and 
reached via a highly synergistic 
combination of four mutations. 

However, when evolving from 
parental type, adaptation may stall at 
a local peak.

SUMMARY/CONCLUSION

So far, limited predictive 
potential, but lots of ideas for 
the future…



• From an ecological point of view, frequent bottlenecks seem 
likely.

FISHER OR WRIGHT OR…?



• From an ecological point of view, frequent bottlenecks seem 
likely.

• But adaptation is also miraculous in constant environments 
with high population sizes - how is that possible?

FISHER OR WRIGHT OR…?

Time (generations)

Re
la

tiv
e 

fit
ne

ss

Wiser et al. 2013



• From an ecological point of view, frequent bottlenecks seem 
likely.

• But adaptation is also miraculous in constant environments 
with high population sizes - how is that possible?

FISHER OR WRIGHT OR…?

Time (generations)

Re
la

tiv
e 

fit
ne

ss

Wiser et al. 2013

Epistasis or ecology?



What would YOU like to know about fitness landscapes?
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