Stochastic Models for Spreading Populations

Mark Lewis
 The Mathematics Behind Biological Invasions

Stochastic growth models

$N_{n+1}=\lambda_{n} N_{n}$ where λ_{n} is an iid random variable

Solution: $N_{n}=N_{0} \prod_{i=0}^{n-1} \lambda_{i}$ with
average geometric growth rate $\bar{\lambda}=\left(\prod_{i=0}^{n-1} \lambda_{i}\right)^{1 / n}$
average arithmetic growth rate $\bar{r}_{n}=\log (\bar{\lambda})=\log \left(\prod_{i=0}^{n-1} \lambda_{i}\right)^{1 / n}=\frac{1}{n} \sum_{i=0}^{n-1} \log \left(\lambda_{i}\right)$
The expected arithmetic growth rate is thus $\bar{r}=\mathrm{E}\left[\log \left(\lambda_{n}\right)\right]$

What is the growth rate for the expected number of individuals $\mathrm{E}\left[N_{n}\right]$?

Stochastic growth models

What is the growth rate for the expected number of individuals $\mathrm{E}\left[N_{n}\right]$?
$\mathrm{E}\left[N_{n+1}\right]=\mathrm{E}\left[\lambda_{n}\right] \mathrm{E}\left[N_{n}\right]$ with solution $\mathrm{E}\left[N_{n}\right]=\mathrm{E}\left[N_{0}\right]\left(\mathrm{E}\left[\lambda_{n}\right]\right)^{n}$
and average geometric growth rate $\mathrm{E}\left[\lambda_{n}\right]$
The arithmetic growth rate in the expected number of individuals is thus $\tilde{r}=\log \left[\mathrm{E}\left(\lambda_{i}\right)\right]$
Which is bigger, the expected arithmetic growth rate (\bar{r}) or the arithmetic growth rate in the expected number of individuals (\tilde{r}) ?
$\underbrace{\mathrm{E}\left[\log \left(\lambda_{n}\right)\right]}_{\tilde{r}} \leq \underbrace{\log \left[\mathrm{E}\left(\lambda_{i}\right)\right]}_{\tilde{r}} \quad$ so $\bar{r} \leq \tilde{r}$

Jensen's Inequality: If X is a random variable and φ is a concave function then $\mathrm{E}[\varphi(X)] \leq \varphi(\mathrm{E}(X))$

It is straightforward to find cases where $\bar{r}<0$ but $\tilde{r}>0$ (the expected growth rate is negative but the growth rate in the expected number of individuals is positive)

Lewontin and Cohen (1969)

Integrodifference model

$u_{n+1}(x)=\int_{-\infty}^{\infty} k(x-y) f\left(u_{n}(y)\right) d y$

At the leading edge $u_{n+1}(x) \approx \lambda \int_{-\infty}^{\infty} k(x-y) u_{n}(y) d y$
Ansatz $u_{n+1}=\alpha \exp (-s(x-n c))$ yields a dispersion relation between wave speed c and steepness s

$$
\begin{aligned}
\exp (s c) & =\lambda \underbrace{\int_{-\infty}^{\infty} \exp (s u) k(u) d u}_{b(s)}=R_{0} b(s) \\
c & =\frac{1}{s} \ln (\lambda b(s)) \\
c^{*} & =\min _{s>0} \frac{1}{s} \ln (\lambda b(s))(\text { Weinberger, 1982) }
\end{aligned}
$$

Integrodifference model

Kot, Lewis and van den Driessche (1996)

Integrodifference model-stochastic environment

The population density $\mathrm{U}_{n}(x)$ is a stochastic process satisfying
$U_{n+1}(x)=\int_{-\infty}^{\infty} k_{n}(y-x) f\left(U_{n}(y), \lambda_{n}\right) d y$
where k_{n} are chosen as iid random dispersal kernels and
λ_{n} are chosen as iid random variables independent from $k_{t} \mathrm{~S}$

At the leading edge $U_{n+1}(x) \approx \lambda_{n} \int_{-\infty}^{\infty} k_{n}(x-y) U_{n}(y) d y$

We start by looking at the rate of expansion of an expectation wave:

Taking expectations we have $\mathrm{E}\left[U_{n+1}(x)\right]=\mathrm{E}\left[\lambda_{n}\right] \int_{-\infty}^{\infty} \mathrm{E}\left[k_{n}(x-y)\right] \mathrm{E}\left[U_{n}(y)\right] d y$
$c^{*}=\min _{s>0} \frac{1}{S} \ln \left(\mathrm{E}\left[\lambda_{n}\right] \mathrm{E}\left[b_{n}(s)\right]\right)$ (rate at which $\mathrm{E}\left[U_{n}\right]$ expands)

Integrodifference model-stochastic environment

What if λ_{n} and k_{n} are correlated?
$\tilde{c}=\min _{s>0} \frac{1}{S} \ln \left(\mathrm{E}\left[\lambda_{n} b_{n}(s)\right]\right)$
versus

$$
c^{*}=\min _{s>0} \frac{1}{s} \ln \left(\mathrm{E}\left[\lambda_{n}\right] \mathrm{E}\left[b_{n}(s)\right]\right)
$$

positive correlations will tend to increase the rate of expansion

Integrodifference model-stochastic environment

Previously we analyzed the rate of expansion of an expectation wave:
Now we consider the expected rate of expansion of the stochastic wave:
The rate of expansion itself will be a stochastic process, with a mean and variance

Suppose the population $U_{n}(x)$ has a random extent X_{n} defined to be the location farthest from the invasion's origin with $U_{n}(x)>u_{c r}$ and define the average speed to be $\bar{C}_{n}=\left(X_{n}-X_{n}\right) / n$

Integrodifference model-stochastic environment

Neubert Kot and Lewis (2000)

Integrodifference model-stochastic environment

Neubert et al (2000) showed that for a given wave steepness s
$\bar{C}_{n}(s)=\frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{s} \ln \left(\lambda_{i} b_{i}(s)\right)$
This is the sum of n independent random variables, and so by the
Central Limit Theorem \bar{C}_{n} is asymptotically Normally distributed with mean μ and variance σ^{2} given by
$\mu=\min _{s>0} \mathrm{E}\left[\frac{1}{s} \ln \left(\lambda_{n} b_{n}(s)\right)\right]$ and $\sigma^{2}=\frac{1}{n} \operatorname{Var}\left[\frac{1}{s^{*}} \ln \left(\lambda_{n} b_{n}\left(s^{*}\right)\right)\right]$
where s^{*} is the value of s that gives the minimum for μ

Central Limit Theorem

Suppose X_{0}, X_{1}, \ldots are iid random variables with expectation μ, and variance $\sigma^{2}<\infty$.
Define the sample average to be $S_{n}=\frac{1}{n} \sum_{i=0}^{n-1} X_{n}$.
Then an n approaches infinity, $\sqrt{n}\left(S_{n}-\mu\right)$ converges in distribution to $\mathrm{N}\left(0, \sigma^{2}\right)$.

Integrodifference model-stochastic environment

Neubert Kot and Lewis (2000)

Integrodifference model-stochastic environment

What happens to the average speed for large time?

As $\mathrm{n} \rightarrow \infty$ the average speed $\bar{C}_{n} \rightarrow \min _{s>0} \mathrm{E}\left[\frac{1}{s} \ln \left(\lambda_{n} b_{n}(s)\right)\right]=\bar{c}$

How does this compare to the speed for the expectation wave?

$$
\begin{aligned}
& \tilde{c}=\min _{s>0} \frac{1}{s} \ln \left(\mathrm{E}\left[\lambda_{n} b_{n}(s)\right]\right) \\
& \mathrm{E}\left[\ln \left(\lambda_{n} b_{n}(s)\right)\right] \leq \ln \left(\mathrm{E}\left[\lambda_{n} b_{n}(s)\right]\right) \text { so } \bar{c} \leq \tilde{c}
\end{aligned}
$$

Jensen's Inequality: If X is a random variable and φ is a concave function then $\mathrm{E}[\varphi(X)] \leq \varphi(\mathrm{E}(X))$

Stage-structured Stochastic IDE Models

$$
\begin{aligned}
& \mathbf{n}_{t+1}=\int_{-x}^{\infty}\left[\mathbf{K}_{t} \circ \mathbf{g}_{t}\left(\mathbf{n}_{t}(y)\right)\right] \mathbf{n}_{t}(y) d y \\
& \mathbf{g}_{t}\left(\mathbf{n}_{t}\right)=\left(\begin{array}{cc}
0 & f_{t} \exp \left(-a n_{t}^{(2)}\right) \\
s_{J} & s_{A}
\end{array}\right), \mathbf{K}_{t}(y-x)=\left(\begin{array}{cc}
\delta(y-x) & \frac{1}{2 b} \exp \left(-\frac{|y-x|}{b}\right) \\
\delta(y-x) & \delta(y-x)
\end{array}\right) \\
& A_{t}=g_{t}(0)=\left(\begin{array}{cc}
0 & f_{t} \\
s_{J} & s_{A}
\end{array}\right) \text { is the linearization of the growth matrix } \\
& \mathrm{B}_{\mathrm{t}}(s)=\left(\begin{array}{cc}
1 & \left(1-s^{2} b^{2}\right)^{-1} \\
1 & 1
\end{array}\right) \text { is the matrix of moment generating functions } \\
& \bar{C}_{t} \rightarrow \min _{s>0} \mathrm{E}\left[\begin{array}{l}
\left.\frac{1}{s} \ln \left(\lambda_{t} \rho\left(A_{t} \circ B_{t}(s)\right)\right)\right]=\bar{c}
\end{array}\right.
\end{aligned}
$$

Stage-structured Stochastic IDE Models

Fig. 2 Spatiotemporal dynamics of range expansion for the juvenile-adult model. Spatial distribution and abundance of juveniles (in shaded red) and adults (in shaded gray) plotted at

the indicated times. Parameters ($\rho=0, \mu=\ln 40, \sigma=0.1, a=1$, $s_{J}=0.3$, and $s_{A}=0.4$) are such that local dynamics are chaotic

Stage-structured Stochastic IDE Models

Fig. 1 The temporal dynamics of the wave speed $\frac{X_{t}-x_{0}}{t}$ for 250 simulations of the nonlinear juvenile-adult model. The front of the wave was determined by a threshold of $n_{c}=0.001$ with equal weight on both stages, i.e., $\mathbf{w}=(1,1)^{\prime}$. The dashed line is the predicted asymptotic wave speed in Eq. 5. In the inset, a histogram of the waves speeds at $t=500$ with the predicted normal approximation from the linearization. Parameter values are $\rho=0, \mu=\ln 40$, $\sigma=0.5, a=1, s_{J}=0.3$, and $s_{A}=0.4$

Schreiber and Ryan (2011)

Scentless chamomile seed dispersal

Scentless chamomile:

Scentless chamomile local dispersal data

Scentless chamomile dispersal kernel

Scentless chamomile kernel:

Scentless chamomile rate of spread

$$
\begin{array}{cc}
2004(\text { Year 1) } & 2005(\text { Year 2) } \\
\mathbf{A}=\left[\begin{array}{ccc}
0.08 & 0 & 36376.45 \\
0.27 & 0 & 517 \\
0.04 & 0.45 & 297.85
\end{array}\right]
\end{array} \mathbf{A}=\left[\begin{array}{ccc}
0.08 & 0 & 1775.22 \\
0.27 & 0 & 25.24 \\
0.04 & 0.45 & 14.53
\end{array}\right]
$$

Method	c year 1	c year 2
Equation	$c^{*}=16.55 m / y r$	$c^{*}=11.32 m / y r$
Simulation in 1D	$c^{*} \approx 16.55 m / y r$	$c^{*} \approx 11.32 m / y r$
Bootstrap 90\% CI	$\{16.43,16.67\}$	$\{10.33,12.10\}$

Scentless chamomile dispersal kernel

Stochastic Environments: year 1, year $2 \quad \bar{C}_{t}=\frac{x_{t}}{t}$

Scentless chamomile simulation model

$$
\mathbf{n}_{t+1}\left(\mathbf{x}_{i}\right)=\mathbf{P}\left(\mathbf{x}_{i}\right) \circ \sum_{x_{j} \in \Omega}\left[\mathbf{K}\left(\mathbf{x}_{j}-\mathbf{x}_{i}\right) \circ \mathbf{A}\right] \mathbf{n}_{t}\left(\mathbf{x}_{j}\right)
$$

Spread is approx 14 m per year

Furthest forward velocity

Consider simple branching process with Brownian motion:

- At time $t=0$ a single particle commences standard Brownian motion, with mean squared displacement per unit time D, starting from $x=0$ and continuing for a random length of time T given by an exponential random variable with mean $1 / r$.
- At this point in time the particle splits in two and the new particles continue with independent Brownian paths starting from $x(T)$
-These particles are subject to the same splitting and movement rules, as are their offspring.
-After an elapsed period of time t , there are n particles located $\mathrm{t} x_{1}(t) \ldots x_{\mathrm{n}}(t)$.
-Denote $u(x, t)=\operatorname{Pr}\left[\max _{i \leq n} x_{i}(t)<x\right]$
-Then

$$
\frac{\partial u}{\partial t}=D \frac{\partial^{2} u}{\partial x^{2}}+r u(1-u), \quad u(x, 0)=1-H(x)
$$

Furthest forward velocity

What if the the stochastic process is nonlinear?

Let $p(x ; N) d x$ be the probability that the furthest dispersing individual from a group of N evenly spaced parents settles on the interval $[x, x+d x]$. Then p is the probability density function for the furthest dispersing individual.

Let $P(x ; N) d x$ be the probability that therfurthest dispersing individual from a group of N evenly spaced parents lies to the left of the point x. Then P is the cumulative density function for the furthest dispersing individual.

Let $k(x)$ be the dispersal kernel for a single disperser and $K(x)=\int_{-\infty}^{x} k(y) d y$ be the cumulative density function for dispersal.

Furthest forward velocity

Consider "spread by extremes," where the furthest forward individual in the population produces the furthest forward individual in the next generation

Distance (x)

Then if each individual produces R_{0} offspring, and offspring disperse independently
$P(x ; 1)=[K(x)]^{R_{0}}$ and $p(x ; 1)=\frac{d}{d x} P(x ; 1)=R_{0} k(x)[K(x)]^{R_{0}-1}$

Furthest forward velocity

$$
p(x ; 1)=\frac{d}{d x} P(x ; 1)=R_{0} k(x)[K(x)]^{R_{0}-1}
$$

Clark Lewis and Horvath (2001)

Furthest forward velocity

$$
p(x ; 1)=\frac{d}{d x} P(x ; 1)=R_{0} k(x)[K(x)]^{R_{0}-1}
$$

Clark Lewis and Horvath (2001)

Furthest forward velocity

Consider "initial expansion from a population frontier," where trees are packed at spacing h , and the furthest forward individual in the population can come from any tree

Then if each individual produces R_{0} offspring, and offspring disperse independently
$P(x ; N)=\prod_{k=0}^{N}\left[K\left(x+x_{h k}\right)\right]^{R_{0}}$ and $p(x ; N)=\frac{d}{d x} P(x ; N)$

Approach

- An upper bound on the speed comes from assuming that forest 'fills in' immediately behind the furthest forward tree.

- A lower bound on the speed comes from assuming that the furthest-forward tree remains isolated and produces the furthest-forward tree in the next generation.

Results

- Both bounds generally lie above the theoretical predictions of Fisher's model and below theoretical predictions using integrodifference model.
- The upper bound typically lies below historical spread rates of 100-1000 m per year.
- Kernels with fat tails no longer produce asymptotically infinite spread rates.
(Clark, Lewis and Horvath 2001)

References

- Clark, J.S., Lewis, M.A., Horvath, L. (2001). Invasion by extremes: Population spread with variation in dispersal and reproduction. American Naturalist: 157, 537-554.
- Lewontin, R. C., Cohen, D. (1969). On population growth in a randomly varying environment. Proceedings of the National Academy of Sciences, 62(4), 1056-1060.
- Kot, M., Lewis, M.A., van den Driessche, P. (1996). Dispersal data and the spread of invading organisms. Ecology: 77, 2027-2042.
- McKean, H. P. (1975). Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Communications on Pure and Applied Mathematics, 28: 323-331.
- Neubert, M.G., Kot, M., Lewis, M.A. (2000). Invasion speeds in fluctuating environments. Proceedings of the Royal Society of London B: 267, 1603-1610.
- Schreiber, S. J., Ryan, M. E. (2011). Invasion speeds for structured populations in fluctuating environments. Theoretical Ecology, 4, 423-434.
- Weinberger, H. F. (1982). Long-time behavior of a class of biological models. SIAM journal on Mathematical Analysis, 13: 353-396.

