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Stochastic growth models 
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The expected arithmetic growth rate is thus r = E log λn( )*+ ,-

What is the growth rate for the expected number of individuals E Nn[ ]?

 Nn+1 = λnNn  where λn  is an iid random variable

Lewontin and Cohen (1969) 



Stochastic growth models 

What is the growth rate for the expected number of individuals E Nn[ ]?

 E Nn+1[ ] = E λn[ ]E Nn[ ]  with solution E Nn[ ] = E N0[ ] E λn[ ]( )
n

and average geometric growth rate E λn[ ]

The arithmetic growth rate in the expected number of individuals is thus r = log E λi( )!" #$

Jensen's Inequality: If X  is a random variable and ϕ  is a concave

function then E ϕ X( )!" #$≤ϕ E X( )( )

Which is bigger, the expected arithmetic growth rate (r ) or
the arithmetic growth rate in the expected number of individuals (r)?

E log λn( )!" #$
r

  
       log E λi( )!" #$

r
  

 ≤                           so r ≤ r

It is straightforward to find cases where r < 0 but r > 0 (the expected growth rate 
is negative but the growth rate in the expected number of individuals is positive)

Lewontin and Cohen (1969) 



Integrodifference model 

un+1(x) = k(x − y) f un y( )( )
−∞

∞

∫  dy

At the leading edge un+1(x) ≈ λ k(x − y)un y( )
−∞

∞

∫  dy

Ansatz un+1 =α exp(−s(x − nc)) yields a dispersion relation between wave speed c
and steepness s

exp(sc) = λ exp(su)k(u)
−∞

∞

∫  du
b(s)

  
= R0b(s)

c = 1
s

ln λb(s)( )

c* =
s>0

min
1
s

ln λb(s)( )  (Weinberger, 1982)



Integrodifference model 

Kot, Lewis and van den 
Driessche (1996) 



Integrodifference model-stochastic environment 
The population density Un x( )  is a stochastic process satisfying

Un+1(x) = kn (y− x) f Un y( ),λn( )
−∞

∞

∫  dy

where kn  are chosen as iid random dispersal kernels and
          λn  are chosen as iid random variables independent from kts

At the leading edge Un+1(x) ≈ λn kn (x − y)Un y( )
−∞

∞

∫  dy

Taking expectations we have E Un+1(x)[ ] = E λn[ ] E kn (x − y)[ ]E Un y( )"# $%−∞

∞

∫  dy

 c* =
s>0

min
1
s

ln E λn[ ]E bn (s)[ ]( )  (rate at which E Un[ ]  expands)

We start by looking at the rate of expansion of an expectation wave: 



Integrodifference model-stochastic environment 

 versus

c* =
s>0

min
1
s

ln E λn[ ]E bn (s)[ ]( )

 positive correlations will tend to increase the rate of expansion

 What if λn  and kn  are correlated? 

c =
s>0

min
1
s

ln E λnbn (s)[ ]( )



Integrodifference model-stochastic environment 

Suppose the population Un x( )  has a random extent Xn  defined

to be the location farthest from the invasion's origin with Un x( ) > ucr
and define the average speed to be Cn = (Xn − Xn ) / n

Previously we analyzed the rate of expansion of an expectation wave: 

Now we consider the expected  rate of expansion of the stochastic wave: 

The rate of expansion itself will be a stochastic process, with a mean 
and variance 



Integrodifference model-stochastic environment 

Neubert Kot and Lewis (2000) 



Integrodifference model-stochastic environment 

 µ =
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min E 1
s

ln λnbn (s)( )
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where s*  is the value of s that gives the minimum for µ

Neubert et al (2000) showed that for a given wave steepness s 

Cn s( ) =
1
n

1
si=0

n−1

∑  ln λibi s( )( )

This is the sum of n independent random variables, and so by the
Central Limit Theorem Cn  is asymptotically Normally distributed 
with mean µ  and  variance σ 2  given by

Central Limit Theorem
Suppose X0,X1,... are iid random variables with expectation µ,  and variance σ 2 <∞. 

Define the sample average to be Sn =
1
n

Xn
i=0

n−1

∑ .

Then an n approaches infinity, n Sn −µ( )  converges in distribution to N 0,σ 2( ).



Integrodifference model-stochastic environment 

Neubert Kot and Lewis (2000) 



Integrodifference model-stochastic environment 

 As n→∞ the average speed Cn →
s>0

min E 1
s

ln λnbn (s)( )
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  = c

What happens to the average speed for large time?  

How does this compare to the speed for the expectation wave? 

c =
s>0
min

1
s
ln E λnbn (s)[ ]( )

  E ln λnbn (s)( )!" #$   ln E λnbn (s)[ ]( )   ≤                           so c ≤ c

Jensen's Inequality: If X  is a random variable and ϕ  is a concave

function then E ϕ X( )!" #$≤ϕ E X( )( )



Stage-structured Stochastic IDE Models 
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Schreiber and Ryan (2011) 
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Stage-structured Stochastic IDE Models 

Schreiber and Ryan (2011) 



Stage-structured Stochastic IDE Models 

Schreiber and Ryan (2011) 



Scentless chamomile seed dispersal 
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Source ≈ 50000 seeds 

Scentless chamomile: 



Scentless chamomile local dispersal data 
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Scentless chamomile dispersal kernel 

Scentless chamomile kernel: 

Discretize 

Marginalize 



Scentless chamomile rate of spread 

2004 (Year 1) 2005 (Year 2) 



Scentless chamomile dispersal kernel 

Stochastic Environments: year 1, year 2 

€ 

C t =
xt

t

Gaussian distribution about mean 
value with diminishing variance 



Scentless chamomile simulation model 

Crops 
Forest 
Water 
Infrastructure 
Pasture 

High Density 
Low Density 

2 km 

N 

Spread is approx 14 m per year 



Furthest forward velocity 
Consider simple branching process with Brownian motion: 

• At time t = 0 a single particle commences standard Brownian motion, with 
mean squared displacement per unit time D, starting from x = 0 and 
continuing for a random length of time T given by an exponential random 
variable with mean 1/r. 

• At this point in time the particle splits in two and the new particles continue 
with independent Brownian paths starting from x(T) 

• These particles are subject to the same splitting and movement rules, as are 
their offspring. 

• After an elapsed period of time t, there are n particles located t x1(t)…xn(t). 

• Denote 

• Then  

u(x, t) = Pr max
i≤n

xi (t)< x
"
#$

%
&'

u

∂u
∂t
= D ∂2u

∂x2 + ru(1−u),       u(x, 0) =1−H (x)

McKean (1975) 



Furthest forward velocity 
What if the the stochastic process is nonlinear? 

u

Let p(x;N ) dx  be the probability that the furthest dispersing individual from a
group of N  evenly spaced parents settles on the interval x, x + dx[ ]. Then p is the 
probability density function for the furthest dispersing individual.

Let P(x;N ) dx  be the probability that the furthest dispersing individual from a
group of N  evenly spaced parents lies to the left of the point x. Then P is the 
cumulative density function for the furthest dispersing individual.

Let k(x) be the dispersal kernel for a single disperser and K(x) = k(y) dy
−∞

x
∫  be 

the cumulative density function for dispersal.



Furthest forward velocity 

Then if each individual produces R0  offspring, and offspring disperse independently 

P(x;1) = K(x)[ ]R0  and p(x;1) = d
dx
P(x;1) = R0k(x) K(x)[ ]R0−1

Consider “spread by extremes,” where the furthest forward individual in the 
population produces the furthest forward individual in the next generation 

Clark Lewis and Horvath (2001) 



Furthest forward velocity 

 p(x;1) = d
dx
P(x;1) = R0k(x) K(x)[ ]R0−1

Clark Lewis and Horvath (2001) 



Furthest forward velocity 

 p(x;1) = d
dx
P(x;1) = R0k(x) K(x)[ ]R0−1

Red maple 

Clark Lewis and Horvath (2001) 



Furthest forward velocity 

Clark Lewis and Horvath (2001) 

Then if each individual produces R0  offspring, and offspring disperse independently 

P(x;N ) = K(x + xhk )[ ]R0

k=0

N

∏  and p(x;N ) = d
dx
P(x;N )

Consider “initial expansion from a population frontier,” where trees are packed at spacing 
h, and the furthest forward individual in the population can come from any tree 



•  An upper bound on the speed comes from assuming that forest ‘fills in’ 
immediately behind the furthest forward tree. 

•  A lower bound on the speed comes from assuming that the furthest-forward 
tree remains isolated and produces the furthest-forward tree in the next 
generation. 

Approach 

Clark Lewis and Horvath (2001) 



•  Both bounds generally lie above the 
theoretical predictions of Fisher's 
model and below theoretical 
predictions using integrodifference 
model. 

•  The upper bound typically lies 
below historical spread rates of 
100-1000 m per year.  

•  Kernels with fat tails no longer 
produce asymptotically infinite 
spread rates.  

(Clark, Lewis and Horvath 2001) 

Poplar 

Gum 

Linden 

Results 
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