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Questions regarding potential invaders

e Can an invader establish i1tself 1n a new environment?

« Will the invading species spread and, 1f so, at what
speed?

 What is the effect of the invading species on
communities it encounters?
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Fisher’s model (1937)

Rate of change = Growth + Dispersal
of density

Gu = ru(l—u) + D%
where
u(x,t)
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Intrinsic growth rate (units 1/time)
Diffusion coefficient (units space?/time)
ru(1 —u) nonlinear growth function
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Spread with Fisher’s model (1937)

* Step function initial data converges wave with speed c* = 2+/7D.
(Kolmogorov, Petrovskii and Piskunov, 1937).

e Compact initial data uy(x) converges to a wave expanding at speed c*
(Aronson and Weinberger 1975, 1978).
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e Step function initial data converges wave with speed c* = 2/7D.
(Kolmogorov, Petrovskii and Piskunov, 1937).

e Compact initial data 1 (x) converges to a wave expanding at speed c*
(Aronson and Weinberger 1975, 1978).

* Proof uses a comparison theorem (solutions that are initially ordered
remain ordered for all time) plus super- and sub-solutions with speeds c*
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* Luther (1906) argued speed of a related chemical reaction was c* o« vrD
using dimensional arguments.




Definition of spread rate for Fisher’s model

The model has spread rate c* if, for any continuous initial function uy(x) with
compact support, the solution u(x, t) has the properties that foreach 0 < e < 1

lim sup  u(x, t)] =0, and lim [ sup |u(x,t) —1|] = 0.
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Definition of spread rate for Fisher’s model

The model has spread rate c* if, for any continuous initial function uy(x) with
compact support, the solution u(x, t) has the properties that foreach 0 < e < 1
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Travelling wave
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Travelling wave

* The model is
us = f(u) + Dty

where f(0) =f(1) =0andf >0for0 < u < 1.
* A travelling wave solution takes the form u(x,t) = U(z) where z = x — ct
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There is a family of travelling wave solutions. A solution exists for each
c > c¢*. Hence the spread rate coincides with the minimal travelling wave
speed.



Linear determinacy

Nonlinear Model: u; = f(u) 4+ Dy,
Linearized Model: u; = f'(0)u + Duy,

S (O)u

JS@)

flu) <f'(O)u

e The spread rate is linearly determined if spread rate of the nonlinear
system equals spread rate of the linearized system.

* With Fisher’s equation, the spread rate is linearly determined



Spread rate of linear equations

U = ru + Dy

Initial data: §(x)
Solution: ¢ N(0, 2Dt)
speed: ¢* = 2v/Dr.
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lim;_, o X:(t) = c*, independent of u,.




Spread rate of linear equations

U = ru + Duy,

Initial data: d(x) Apsatz:.u = ae—‘S(x—Cf)

Solution: e"N(0, 2Dt) Dispersion relation:

speed: ¢* = 2v/Dr. 6 — raDe
N c = r/s+Ds

Speed: ¢* = mingsoc(s) =2V Dr.

c

x (1)

lim;_, o X:(t) = c*, independent of u.. 2(rDY"
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Conditions for linear determinacy

Rate of change = Growth 4 Dispersal
of density

i = fw) + DI
O u
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 For the scalar model, f(u) < f'(0)u is sufficient for linear determinacy
(Aronson and Weinberger 1975).

e If this is violated (eg, reduced per capita growth at low density—Allee
effect) spread may not be linearly determined (Hadeler and Rothe 1975).
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Spread of Oak in North America
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Reid’s Paradox

The oak, to gain its present most northerly position in north Britain
after being driven out by the cold probably had to travel fully six
hundred miles and this, without external aid, would take something
like a million years (Reid, 1899).



Skellam’s Analysis (1951)

Using c* = 2+/rD , what average dispersal distance o, (0° =4D)
must seeds disperse to explain the spread of 1000 km in
300 generations of oak trees?

0=0.83km. Reid’s Paradox!



Accelerating Invasions

e Rapid spread through rare-long distance dispersal events
appears to be widespread with weeds and other invaders

e We believe that this 1s the case for scentless chamomile

e Williamson (2005) found that 36 out of 70 data sets for
weeds showed evidence of accelerating invasions.



Dispersal kernels can come directly from data

f oo

Neubert, Kot and Lewis (1995)




Modelling long-distance dispersal

e Implicit in the diffusion formulation is the assumption that, in a unit time
interval, propagules disperse according to a Gaussian distribution

k(x) = N(0,2D).
* Rare, long distance dispersal events typically change the shape from
Gaussian to Leptokurtic. Eg.

k(x) = pki(x) + (1 — pka(x)

k(x) ﬁ-— k. (x)
where .

k(x) = Dispersal kernel

ki(x) = Local dispersal kernel

ko(x) = Long distance kernel (L= p)k, (x)
1—p = Probability long-distance y .

=
Distance x



Integrodifterence model

Rou

t,, ()= [ k(x=y)f(u,(y)) dy k()

At the leading edge u,, (x) =~ A f _OO k(x=y)u, (y) dy
Ansatz u ., (x) = aexp(-s(x —nc)) yields a dispersion relation between wave speed ¢

and steepness s

exp(sc) = A [ exp(su)k(u) du = Ryb(s)

b(s)

¢ =Lin(1b(s))
\)

c = minlln(kb(s)) (Weinberger, 1982)

s>0 8



Integrodifterence model

Theorem (Weinberger, 1982)

Assume f is monotonic and f(u) < f'(0)u. If the moment generating function b(s)
exists on an interval [0,s™) then the spread rate is linearly determined and given by

1

¢” =min log(Rob(s))-
where
s = wave steepness (un(x) o< exp(—sx))
Ry = f'(0) =Basic reproductive rate

b(s) = [ exp(su)k(u)du (MGEF for kernel)

>

Proof uses a comparison theorem for the discrete-time recursion relation, plus
construction of sub- and super-solutions, each of which spread asymptotically
at speed c*.




Spread with the integrodifterence model

* A Gaussian kernel gives Fisher’s
wave speed ¢* = 2v/rD where the

variance of the dispersal kernel is i Fat-tailed kernel
2D and the arithmetic growth rate "
is r = log Ro. e

* Kernels that are exponentially 2 600 ponemia"y
bounded but are leptokurtic can Y " bounded kemnel
give much higher spread rates c*. & 400

* “Fat-tailed kernels” that drop off N
slower than exponentially give o
constantly accelerating invasions

* For kernels with moments of all ol & | | ,
order, this rate of acceleration can 0 100 20 30 40 50

be explicitly calculated. time ()
Kot, Lewis and van den Driessche (1996)




Numerical solutions of integrodifference model
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A resolution to Reid’s paradox

Stochastic simulation for Red Maple
(Acer rubrum)

seed rain
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Fat-tailed dispersal kernels are
consistent with measured seed rain
data and also with some observations
of long-distance dispersal.
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How Do

Trees Migrate!

Fat-tailed dispersal kernels are
consistent with measured seed rain
data and also with some observations

of long-distance dispersal.
Clark et al. (1998)
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