Wave-kinetic theory and simulations for filamentation and modulational instabilities

Raoul Trines

Central Laser Facility, Rutherford Appleton Laboratory, Didcot, United Kingdom

Contents

- Introduction to wave kinetics
- Example: photon acceleration
- Laser driven filamentation
- Drift mode turbulence
- Solitons in the magnetopause
- Summary and conclusions

Particles are also waves

J.J. Thompson: "Cathode rays are not waves, but a stream of particles (electrons)." Nobel Prize, 1906.

G.P. Thompson: "Sorry Dad, but electrons are waves after all." Nobel Prize, 1937.

Waves are also particles

A. Einstein: "Photons are particles." Nobel Prize, 1921.

This presentation: "Photons are particles, and can be accelerated. The same applies to other types of waves."

The math behind it

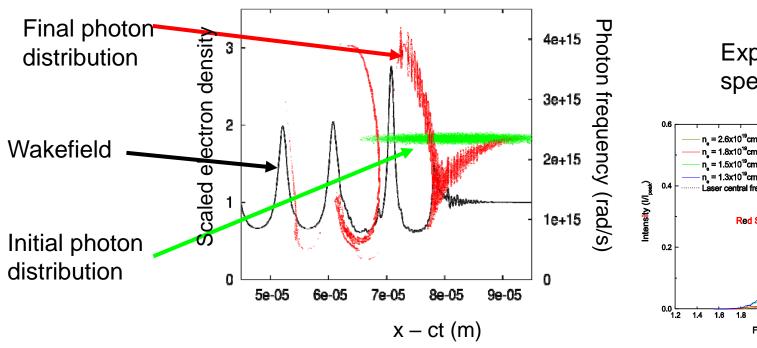
For an EM wave in unmagnetised plasma

$$\omega^{2} = \omega_{p}^{2} + c^{2}k^{2}$$

$$\hbar^{2}\omega^{2} = \hbar^{2}\omega_{p}^{2} + c^{2}\hbar^{2}k^{2}$$

$$E^{2} = (m_{0}c^{2})^{2} + c^{2}p^{2}$$

$$\frac{dx}{dt} = \frac{\partial H}{\partial p} = \frac{\partial \omega}{\partial k} \qquad \qquad \frac{dk}{dt} = -\frac{1}{\hbar} \frac{\partial H}{\partial x} = -\frac{\partial \omega}{\partial x}$$


We can use a particle model to simulate this!

Wigner function

$$W(t,x,k) = \int \vec{E}(x+s/2) \cdot \vec{E}^*(x-s/2) \exp(iks) ds \sim N(t,x,k)$$

Example: photon dynamics in a wakefield

Experimental spectrum

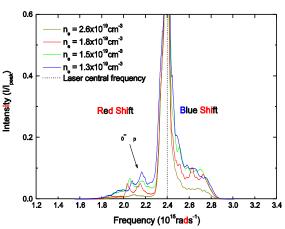
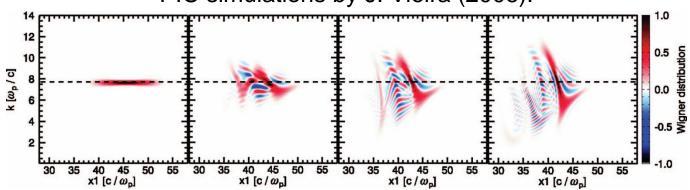
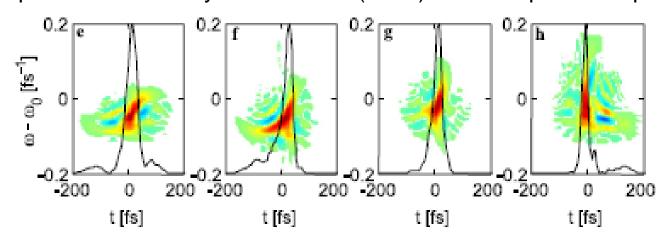
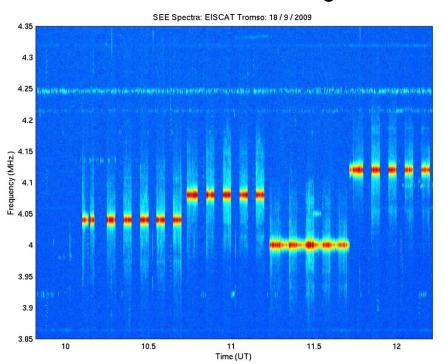



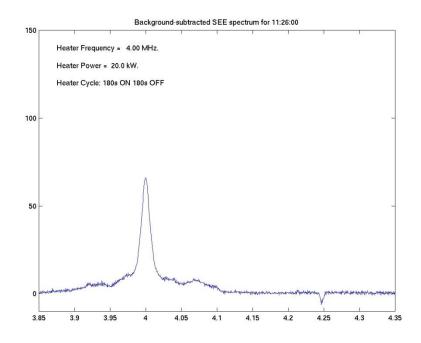
Image taken from simulations using a dedicated wave-kinetic code



Photon acceleration in laserwakefield experiments

Experimental data by J. Schreiber (2010): novel expt. development


Murphy, Trines et al., PoP **13**, 033108 (2006). J. Schreiber et al., PRL **105**, 235003 (2010).


Eiscat ionosphere experiment

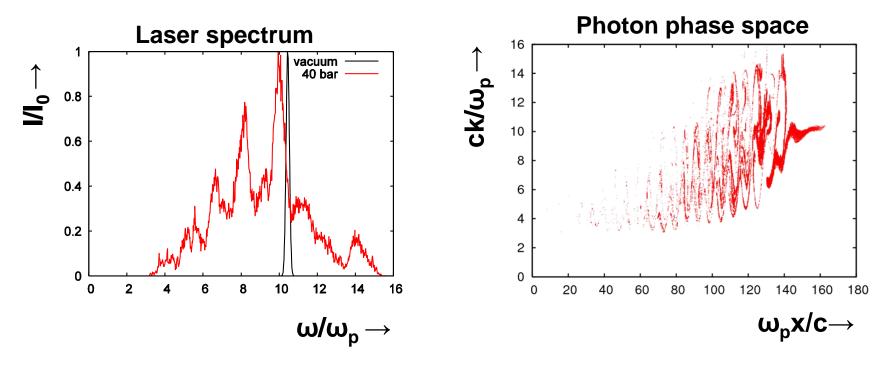
Photon acceleration can also be seen in radar wave experiments

Backscattered radar signal

Detail showing up-/downshift

Modulational instability

Modulational instability in long pulseplasma interaction will lead to:

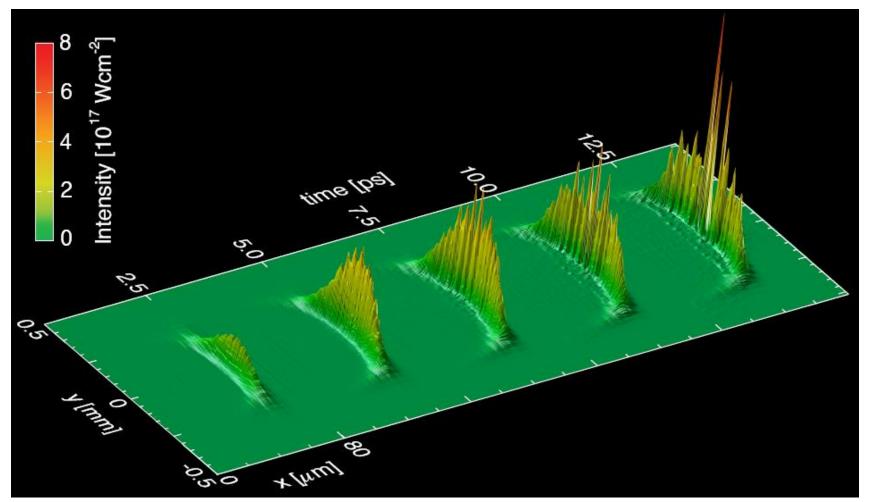

- Bunching of photons in both real and momentum space
- Redshift of some parts of the pulse, blueshift of other parts
- Non-Raman spectral peak splitting: $ω = ω_0 \pm nω_p \pm Δω$

This should be visible in both experiments and simulations Modulations to a probe pulse can be used to diagnose wakefield

Wave-kinetic simulations

Photon kinetic simulations nicely reproduce spectral structure

Simulations don't explain everything, e.g. blueshift of entire spectrum (ionisation effect?)



Filamentation instability

- The 'transverse' equivalent of the modulational instability
- A light beam or particle beam entering a plasma breaks up in the transverse direction
- This spoils the envelope of this beam
- It also spoils the effectiveness of this beam
- We need to study filamentation to prevent or at least control it

Example: Raman amplification

For a $2*10^{15}$ W/cm² pump and $\omega_0/\omega_p = 10$, the probe is amplified, but destroyed by filamentation

Theory

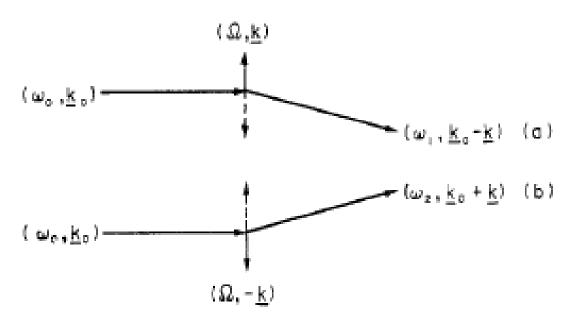
Three types of filamentation:

- Relativistic: For intense lasers the electrons experience a relativistic mass increase. This changes the local phase and group speed of the laser. Transverse modulations of laser intensity are enhanced.
- Ponderomotive: 3 dimensional force, which repels electrons from areas of high intensity to low intensity. Moderately quick.
- Thermal: The laser loses energy to the electrons in the plasma due to electron-ion collisions. The electrons are heated and expand creating low density regions for the laser beam to filament. Dominant in high Z targets.

Self-Focusing

Intensity of photons **Photons** Low Density More Intense Curved Wavefront

Physical mechanism for self-focusing driven by the ponderomotive force, relativistic mass increase or thermal effects.


Filamentation

Intensity of photons Low Density **Photons** Low Density **High Density**

Filamentation as a four-wave process

An initial plane wave (wave 1) scatters from a density perturbation (wave 2) into a Stokes and anti-Stokes wave (waves 3 and 4)

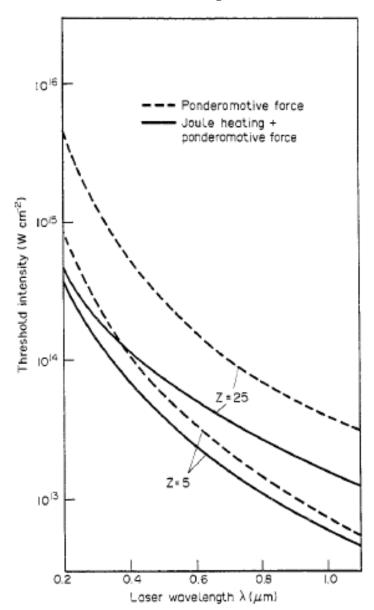
$$c^{2}\nabla^{2}\mathbf{E} - \partial^{2}\mathbf{E}/\partial t^{2} - \omega_{pe}^{2}\mathbf{E} = i4\pi e\omega\delta n\mathbf{v} + 4\pi n_{0}ev_{e}\mathbf{v}$$

$$\delta n = i n_0 e \langle (\mathbf{v} \times \mathbf{B})_{\mathbf{v}} \rangle / k_{\mathbf{v}} k_{\mathbf{B}} T_e - n_0 \delta T_e / T_e$$

Ponderomotive vs Thermal Filamentation

Ponderomotive filamentation $\propto 1\lambda^2$

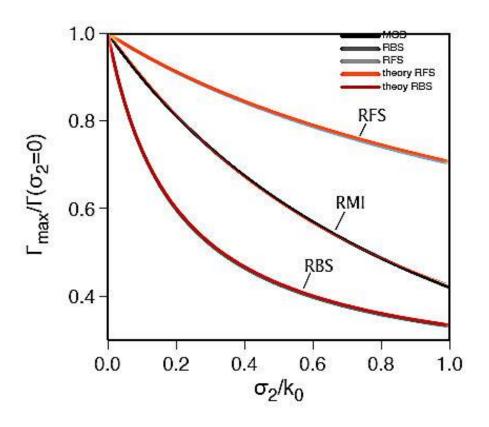
Thermal filamentation $\lambda_{mfp} < L_{filament width}$


Threshold:

$$\left(\frac{v_0}{v_{Te}}\right)_{\rm Threshold}^2 = \frac{8\omega_0^2}{\omega_{pe}^2} (\left[(0.065/k_0^2\lambda_{\rm mfp}^2)^2 + (\gamma_T/\omega_0)^2\right]^{1/2} - 0.065/k_0^2\lambda_{\rm mfp}^2).$$

Where v_0 is the electron quiver velocity in the laser field.

Threshold Intensity for thermal and ponderomotive filamentation


Both thermally driven and ponderomotive filamentation need to be investigated

The threshold intensity is higher for short wavelengths.

At x-ray wavelengths threshold intensity may not be reached.

Bandwidth Results For Raman forward and backward scattering

Raman Backscatter growth rate much more controlled by bandwidth.

Raman forward scatter a four wave process like filamentation is less affected by bandwidth.

Maximum growth rate as a function of the photon distribution width.

Advanced wave kinetics

The fast waves need not be photons
The slow waves need not be wake fields
Examples

- -Drift wave/zonal flow
- Rossby wave/zonal flow
- Langmuir/ion-acoustic wave
- Photon/gravitational wave

Modulational instability of particular interest Applications range from planetary atmospheres to tokamaks and solar flares, and many more

Drift waves

Drift waves:

- Transverse ES waves in magnetized plasma
- ■Wave vector *k* perp. to magnetic field *B*
- ■Electric field *E* parallel to *k*, perp. to *B*
- ■Plasma oscillations perp. to E and B, driven by the drift velocity

Lower hybrid drift modes...

- •are important for the physics of magnetized plasma edges,
- •control the particle and energy transport in tokamaks, in the magnetopause boundary layer [1], in stellar flares,...
- •have many applications in astrophysics, tokamak physics,...

We will explore the interaction between drift waves and zonal flows, and compare to real-life configurations, using the first ever wave-kinetic code for drift waves

"Kinetic" drift wave theory

We use the kinetic model for 2-D drift waves by Smolyakov et al., Lashmore-Davies et al.

A.I. Smolyakov, P.H. Diamond, and V.I. Shevchenko, *Phys. Plasmas* **7**, 1349 (2000). C.N. Lashmore-Davies, D.R. McCarthy, and A. Thyagaraja, *Phys. Plasmas* **8**, 5121 (2001).

Fluid model for the plasma (el. static potential $\Phi(r)$):

$$\frac{\partial \Phi}{\partial t} = \int \frac{k_x k_y}{\left(1 + k_x^2 + k_y^2\right)^2} N_k d^2 k$$

Particle model for the "driftons" (number density N_k):

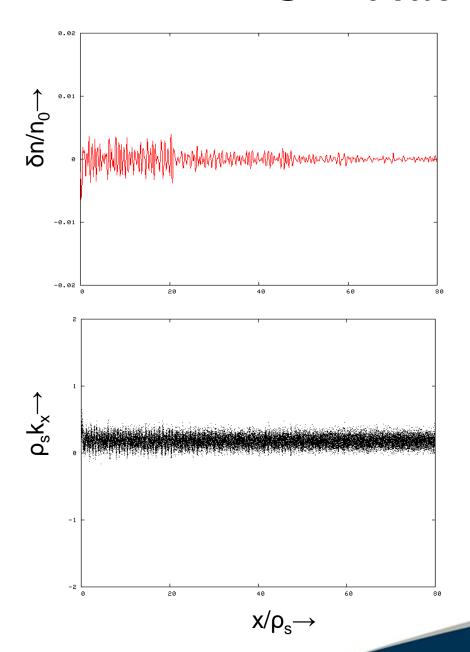
- Drifton number conservation;

- Hamiltonian:
$$\omega_i = k_x \frac{\partial \Phi}{\partial x} + \frac{k_y V_*}{\left(1 + k_x^2 + k_y^2\right)}; \qquad V_* = -\frac{1}{n_0} \frac{\partial n_0}{\partial x}$$

- Equations of motion: from the Hamiltonian

Simulations

We simulated drift waves using the quasi-particle method:

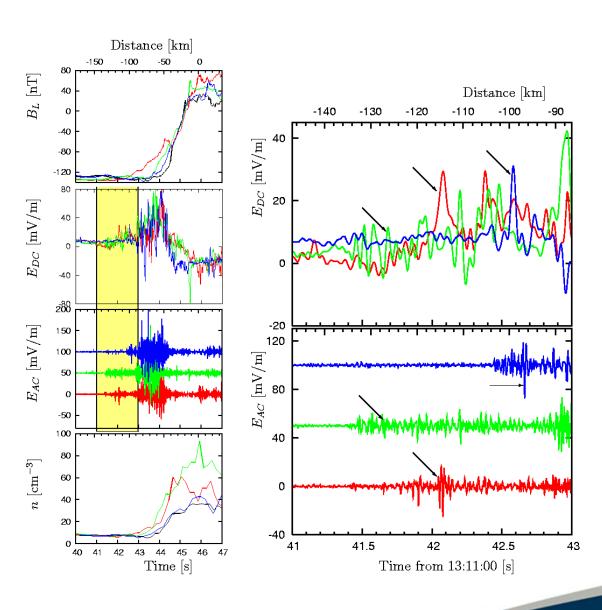

- Two spatial dimensions, slab geometry,
- Homogeneous, broadband drifton distribution,
- Plasma density profile: 2-D Gaussian (tokamak-like)

We have obtained the following results:

- Modulational instability of drift modes,
- Excitation of a zonal flow,
- Solitary wave structures drifting outwards,
- Zonal flow growth controlled by density gradient.

Simulation results

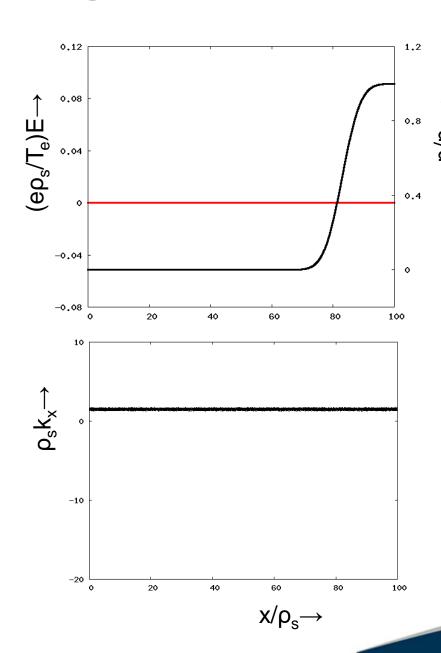
Background plasma profile: $(\nabla n)/n$ increases with radius


Radial ES field and plasma density fluctuations versus radius r:

- Excitation of a zonal flow at small background density gradients,
- Propagation of solitary structures towards regions with higher gradients.
- Bunching and drift of drift modes under influence of zonal flow

R. Trines *et al.*, Phys. Rev. Lett. **94**, 165002 (2005).

Cluster satellite data: magnetopause


See the solitary structures moving down the density gradient in the DC field...

Observe the accompanying bursts of turbulence in the AC field...

Ordered structures arising from turbulence!

Cluster versus simulations

Simulations exhibit formation of solitary structures, just like the Cluster observations;

Zonal flow wavelength: $(0.2-0.25)*\rho_s$ for obser-vations, $(0.5-0.7)*\rho_s$ for simulations;

Structure size: $(0.8-0.9)*\rho_s$ for observations, $(0.7-1.0)*\rho_s$ for simulations;

Structure speed: about $(0.08-0.1)*c_s$ for obser-vations, $(0.02-0.05)*c_s$ for simulations.

Summary and conclusions

Wave kinetics: a powerful new approach

- Simple wave description, simple implementation
- Very versatile
- Provides powerful new diagnostics

Photon acceleration

- Explains spectral modulations for short and long pulses
- Is being used to develop a real-time wakefield diagnostic
- Close ties to the modulational instability

Filamentation instability

- Potentially damaging to laser-plasma interactions
- Needs to be understood to be controlled
- Relativistic and ponderomotive filamentation easily simulated via PIC; thermal filamentation under investigation

Summary and conclusions

Drift wave turbulence: spontaneous soliton formation

- A new result, first discovered in simulations, then fully explained from existing analytic theory
- Already identified in Cluster observations of the magnetopause
- Probable extension to tokamaks and other laboratory plasma devices

Behaviour of drift modes dictated by zonal flow

- Explains formation of solitary structures at plasma edge
- Good agreement with observations by Cluster at the magnetopause

Synergy between wave-kinetic and full-PIC simulations will lead to better understanding of these instabilities, and thus to better control

