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Overview of Talk

• Here we will attempt to provide an introduction to Open Quantum Systems.

• After motivating the need for a study of open quantum systems, laying down

the basic tools required along with a brief description of density matrices, the

master equation commonly known as the Lindblad equation will be

developed and the physical assumptions underlying its derivation discussed.

This equation has wide applicability, specially in studies in quantum optics

and quantum information.

• The theory developed will be applied to a few examples relevant to

Quantum Information.

• We then discuss some aspects of non-Markovian evolution. Again our

discussions will evolve around a physical model.
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Open Quantum Systems: A Brief Preview and Mo-
tivation

• The theory of open quantum systems addresses the problems of damping

and dephasing in quantum systems by the assertion that all real systems of

interest are ‘open’ systems, surrounded by their environments [U. Weiss:

(1999); H. -P. Breuer and F. Petruccione: (2002)].

• Quantum optics provided one of the first testing grounds for the application

of the formalism of open quantum systems [W. H. Louisell: (1973)]. Application

to other areas was intensified by the works of [Caldeira and Leggett: (1983)]

and [Zurek: (1993)], among others.

• The recent upsurge of interest in the problem of open quantum systems is

because of the spectacular progress in manipulation of quantum states of

matter, encoding, transmission and processing of quantum information, for all

of which understanding and control of the environmental impact are

essential [Turchette et al.: (2000); Myatt et al.: (2000); Haroche et al. (1996)].

This increases the relevance of open system ideas to quantum computation

and quantum information.
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Open Quantum Systems: continued...

• Hamiltonian of the total (closed system):

H = HS +HR +HSR.

• S- system, R- reservoir (bath), S −R-interaction between them.

• System-reservoir complex evolves unitarily by:

ρ(t) = e−
i
h̄
Htρ(0)e

i
h̄
Ht.

• We are interested in the reduced dynamics of the system S, taking into

account the influence of its environment. This is done by taking a trace over

the reservoir degrees of freedom, making the reduced dynamics non-unitary:

ρs(t) = TrR(ρ(t)) = TrR

[

e−
i

h̄
Htρ(0)e

i

h̄
Ht
]

.
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Open Quantum Systems: continued...

• Open quantum systems can be broadly classified into two categories:

(A). Quantum non-demolition (QND), where [HS , HSR] = 0 resulting in

decoherence without any dissipation [Braginsky et al.: (1975), (1980); Caves

et al.: (1980); G. Gangopadhyay, S. M. Kumar and S. Duttagupta: (2001); SB

and R. Ghosh: (2007)] and

(B). Quantum dissipative systems, where [HS , HSR] 6= 0 resulting in

decoherence with dissipation [Caldeira and Leggett: (1983); H. Grabert, P.

Schramm and G-L. Ingold: (1988); SB and R. Ghosh: (2003), (2007)].

• In the parlance of quantum information theory, the noise generated by a

QND open system would be a “phase damping channel”, while that

generated by a dissipative (Lindblad) evolution would be a “(generalized)

amplitude damping channel”.
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Density Matrix: A Brief Interlude

• Language of density operator is often used in studies related to Open

Quantum Systems.

• Average of an operator M in Schrödinger picture (SP) (where the state

vector evolves with time but not the operator) , in the state |ψS(t)〉, is

〈M〉 = 〈ψS(t)|MS |ψS(t)〉
= TrMS|ψS(t)〉〈ψS(t)|.

• In many cases, it is not possible to determine exactly the state |ψS(t)〉 to

which the system belongs. The best one can have is the probability pψ of the

system being in the state |ψS(t)〉. Then the above expression for the operator

average becomes modified to

〈〈M〉〉 = ΣψpψTrMS|ψS(t)〉〈ψS(t)|
= TrMSρS(t),

where the density matrix ρS(t) is

ρS(t) = Σψpψ |ψS(t)〉〈ψS(t)|,

and Σψpψ = 1.
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Density Matrix: continued...

• Density matrix satisfies two properties:

(a).

Trρ = 1,

(b).

Trρ2 ≤ 1,

with equality for pure and inequality for mixed states.
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Density Matrix: Some Interesting examples

• Density matrix relects lack of complete knowledge of the system. This has

been exploited by Jaynes [E. T. Jaynes: (1957)] to get the density by

maximizing the entropy: S = −kTrρ ln(ρ) subjected to some constraints.

• Examples:

(A). Maximising S subject to the constraints Tr(ρ) = 1 and that the average

energy of the system is known, i.e., 〈E〉 = Tr(ρH), we get the density of a

harmonic oscillator of frequency ω and temperature T (this system is

equivalent to a mode of a cavity filled with electromagnetic radiation in

thermal equilibrium with the walls at temperature T ) as:

ρ =
exp(− H

kT
)

Tr exp(− H
kT

)
.

(B). Maximising S subject to the constraints Tr(ρ) = 1 and the spin polarization

s = Tr(ρσ) (where σ stands for the three Pauli spin matrices), yields the

density matrix of an ensemble of spin- 1
2

particles as:

ρ =
1

2
(I + s.σ).
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Examples of Open Quantum Systems

• Quantum Brownian motion (QBM), wherein the quantum mechanical system

is taken as a harmonic oscillator coupled linearly via its displacement x to a

fluctuating environment, serves as a paradigm of quantum open systems in

that it provides a model wherein the concepts of the system plus reservoir are

elucidated. QBM being a generalization of classical Brownian motion into the

quantum regime, gives us a physical realization of dissipation reconciled with

quantization. Interest in this has been motivated by observation of

macroscopic effects in quantum systems such as dissipation in tunneling and

problems of quantum measurement theory (for example, the loss of quantum

coherence due to a system’s interaction with its environment). This has also

been used to gain useful insight into problems which are not exactly solvable

[Caldeira and Leggett: (1983); H. Grabert, P. Schramm and G-L. Ingold:

(1988)].

• The diversity of QBM can be gauged from the fact that it has been used to

address issues in quantum gravity [B. L. Hu, J. P. Paz and Y. Zhang: (1992, 1993,

1994)] such as the interconnection of some basic quantum statistical

processes like decoherence, dissipation, particle creation, noise and

fluctuation. The understanding of many quantum statistical processes in the

early universe and black holes [B. L. Hu: (1992)] requires an extension of the

existing framework of quantum field theory in the setup of quantum open
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Examples of Open Quantum Systems:
continued...

• These ideas have been applied to the analysis of some basic issues in

quantum cosmology [J. P. Paz and S. Sinha: (1991, 1992)], and the foundation

of quantum mechanics, such as the uncertainty principle [A. Anderson and

J. J. Halliwell: (1993)] and decoherence [W. H. Zurek: (1991)] in the quantum

to classical transition problem.

• Open system ideas have been used by [R. K. Gupta et al.: (1984); A. Isar et

al.: (1994)] to study the charge equilibration process in deep inelastic

collisions and the damping of the proton and neutron asymmetry degrees of

freedom have been treated within the framework of Lindbladian master

equations.

• Open system ideas have been applied extensively in quantum optics [W. H.

Louisell: (1973); F. Haake: (1973); G. S. Agarwal: (1974)].

• These ideas have been used in quantum information theoretic processes [SB

and R. Srikanth: (2007)].

• Ideas developed by R. Landauer: (1961) and C. H. Bennett: (1988),

established a deep connection between information and thermodynamics.
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Examples of Open Quantum Systems:
continued...

• Open system ideas applied to transport processes in the context of

non-equilibrium statistical mechanics [Butticker: (1992); Y. Meir and N. S.

Wingreen; (1992); S. Datta: (1996); A. Dhar and D. Sen: (2006)]. They have

been used in the study of mesoscopic systems [Y. Imry: (1997)]. Entanglement

between charge qubits induced by a common dissipative environment was

recently analyzed using concurrence as the measure [L. D. Contreras-Pulido

and R. Aguado: (2008)] in the context of quantum information processing

using solid state nanostructures. Entanglement between two qubits

mediated by the interaction with the reservoir for both purely dephasing as

well as dissipative interactions has been studied [SB, V. Ravishankar and R.

Srikanth: (2009)]. A review of coherent and collective quantum optical

effects in mesoscopic systems has been presented in [T. Brandes: (2005)].

• These ideas have been applied to the problem of escape from a metastable

state, separated from a continuum or quasi-continuum of states by a free

energy barrier, which play a central role in low-temperature physics, nuclear

physics, chemical kinetics and transport in biomolecules [H. A. Kramers:

(1940); A. J. Leggett: (1980); H. Grabert, P. Olschowski and U. Weiss: (1987)].
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Examples of Open Quantum Systems:
continued...

• Another important model serving as a paradigm for describing a number of

phenomena is the dissipative two-state system [A. J. Leggett et al]. An

important example of a dissipative two-state system is an rf SQUID

(Superconducting Quantum Interference Device) ring threaded by an

external flux near half-a-flux quantum. Such a superconducting device might

be appropriate for the observation of macroscopic quantum coherence

effects [A. J. Leggett: (1986)]. Quantum effects in the current-voltage

characteristics of a small Josephson junction are described by this model [V.

Ambegaokar et al: (1982)]. In such systems the most important issue is the

computation of transport properties [M. Sassetti et al.: (1992); M. P. A. Fisher

and W. Zwerger: (1985); U. Eckern and F. Pelzer: (1987)].
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System-Reservoir Initial Conditions

• The open system evolution starts from the system and the reservoir being

initially separated or correlated.

(A). Separable Initial Condition: it is assumed that the system and the

environment (reservoir) are initially uncorrelated [Feynman and Vernon:

(1963); Caldeira and Leggett: (1983)]. In such a situation the initial density

matrix factorizes so that

ρ(0) = ρS(0).ρR(0),

where ρS(0) stands for the initial system density matrix and ρR(0) stands for

the initial reservoir density matrix.
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System-Reservoir Initial Conditions: con-
tinued...

(B). Non-Separable Initial Condition: in many applications, the system and the

reservoir are integral parts of the same system and their interaction is not at our

disposal. These considerations lead to the introduction of a class of initial

conditions, the ‘generalized initial conditions’ [Hakim and Ambegaokar: (1985);

H. Grabert, P. Schramm and G-L. Ingold: (1988); SB and R. Ghosh: (2003)]. A very

general class of initial conditions are of the form

ρ0 =
∑

j

OjρβO
′
j ,

where

ρβ = Z−1
β

exp(−βH)

is the canonical density matrix describing the equilibrium of the interacting sys-

tem in the presence of a time-independent potential V and Z−1
β

is the partition

function. Here β = (kBT )
−1, with T being the equilibrium temperature of the in-

teracting system. The operators Oj , O
′
j act upon the system coordinate only and

leave the environment (reservoir) coordinates unchanged but can be chosen ar-

bitrarily otherwise.
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Time scales associated with the Open System
Evolution

• The open system evolution is characterized by a number of time-scales, the

salient ones being:

• Scale associated with the natural frequency of the system.

• Relaxation time scale determined by the S-R coupling strength.

• Reservoir correlation time (memory time) associated with the high-frequency

cutoff in the reservoir spectral density and the time scale associated with the

reservoir temperature, which measures the relative importance of quantum

to thermal effects.
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Quantum Non-Demolition (QND)

• Generic Hamiltonian:

H = HS +HR +HSR = HS

+
∑

k

h̄ωkb
†
k
bk +HS

∑

k

gk(bk + b†
k
) +H2

S

∑

k

g2k
h̄ωk

.

• S- system, R- reservoir (bath), S −R-interaction between them.

[HS , HSR] = 0 ⇒ QND,

• Dephasing without dissipation...

• Use made of the above Hamiltonian in the context of the influence of

dephasing in quantum computation—[Unruh: (1995)], [Palma et al.: (1996)],

[DiVincenzo: (1995)].

• Also used by [Turchette et al.: (2000)] in context of engineered reservoir.
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Quantum Non-Demolition (QND) Measurements

• QND measurement of observable Â would be a sequence of precise

measurements of Â such that each measurement is completely predictable

from the result of the first measurement, i.e., the system to be measured is

independent of the backaction of the measuring apparatus. This implies

[Â, Ĥint] = 0, where Ĥint is the interaction term between the observable and

the measuring apparatus. Historically introduced to design gravitational-

wave antennas [Braginsky et al. : (1975); (1980)].

• Further, [Â(ti), Â(tj)] = 0 for all times ti, tj . This would protect Â from

contamination by noncommuting (with Â) observables. This is guaranteed if

Â is a constant of the free evolution, i.e., [Â, ĤS ] = 0, where ĤS is the

Hamiltonian responsible for the free evolution of Â [Caves et al. : (1980)].

• If Ĥint = κÂP̂R, where κ is a constant and P̂R ∈ HR, HR being the Hilbert

space of the apparatus or probe, then the evolution of Â with coupling

turned on is identical to its free evolution and it is free from contamination.

Then Â is the pointer observable and the interaction Ĥint corresponds to a

measurement of Â. For Â = ĤS , this would correspond to the measurement

of energy [Unruh: (1978)].
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Dynamics of the Reduced Density Matrix
for QND systems

[SB and R. Ghosh: (2007)]

• System-reservoir complex evolves unitarily by:

ρ(t) = e−
i
h̄
Htρ(0)e

i
h̄
Ht,

where ρ(0) = ρs(0)ρR(0).

• We are interested in the reduced dynamics of the system S, taking into

account the influence of its environment. Reduced density matrix in system

eigenbasis is

ρsnm(t) = e−
i
h̄
(En−Em)tei(E

2

n−E2

m)η(t)e−(En−Em)2γ(t)ρsnm(0).

Here the system eigenbasis, formed from the Wigner-Dicke states for the qubit

system and the number states for the oscillator system, would be

HS |n〉 = En|n〉.
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A Derivation of the reduced density matrix

• We consider the Hamiltonian:

H = HS +HR +HSR

= HS +
∑

k

h̄ωkb
†
k
bk +HS

∑

k

gk(bk + b†
k
) +H2

S

∑

k

g2k
h̄ωk

.

• Here HS , HR and HSR stand for the Hamiltonians of the system, reservoir and

system-reservoir interaction, respectively. HS is a generic system Hamiltonian

which can be specified depending on the physical situation. b†
k

, bk denote

the creation and annihilation operators for the reservoir oscillator of

frequency ωk, gk stands for the coupling constant (assumed real) for the

interaction of the oscillator field with the system. The last term on the

right-hand side of Eq. (1) is a renormalization inducing ‘counter term’. Since

[HS , HSR] = 0, the Hamiltonian (1) is of QND type.
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A Derivation of the reduced density matrix:
continued...

• The system-plus-reservoir composite is closed and hence obeys a unitary

evolution given by

ρ(t) = e−iHt/h̄ρ(0)eiHt/h̄,

where

ρ(0) = ρs(0)ρR(0),

i.e., we assume separable initial conditions.

• In order to obtain the reduced dynamics of the system alone, we trace over

the reservoir variables. The matrix elements of the reduced density matrix in

the system eigenbasis are

ρsnm(t) = e−i(En−Em)t/h̄ e

−i(E2

n−E2

m)/h̄
∑

k

(g2
k
t/h̄ωk)

×TrR
[

e−iHnt/h̄ρR(0)eiHmt/h̄
]

ρsnm(0),

where En’s are the eigenvalues of the system Hamiltonian.
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A Derivation of the reduced density matrix:
continued...

• Here ρR(0) is the initial density matrix of the reservoir which we take to be a

thermal bath given by:

ρR(0) = ρth =
∏

k

[

1− e−βh̄ωk
]

e−βh̄ωkb
†

k
bk

This is the density matrix of a thermal bath at temperature T , with

β ≡ 1/(kBT ), kB being the Boltzmann constant.

• In the reduced density matrix

Hn =
∑

k

[

h̄ωkb
†
k
bk + Engk(bk + b†

k
)
]

.
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A Derivation of the reduced density matrix:
continued...

• Using the identity

TrR

[

ρthe
tb†+ub

]

= exp

[

tu

2
coth

(

βh̄ωk

2

)

]

,

the reduced density matrix is obtained. There the terms

η(t) = −γ0
π

tan−1(ωct),

and

γ(t) = 2
∑

k

g2k
h̄2ω2

k

coth

(

βh̄ωk

2

)

sin2(
ωkt

2
),

are due to the effect of the bath on the system.
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Details pertaining to the reservoir

Explicit forms of η(t), γ(t):

• assuming the bath to have large number of degrees of freedom such that

information going out of the system of interest does not return to it, we take a

‘quasi-continuous’ bath spectrum with spectral density I(ω) such that

∑

k

g2k
h̄2
f(ωk) −→

∞
∫

0

dωI(ω)f(ω),

• in case of Ohmic bath with spectral density:

I(ω) =
γ0

π
ωe−ω/ωc ,

where γ0 and ωc two bath parameters, η(t) and γ(t) can be seen to be:

η(t) = −γ0
π

tan−1(ωct),
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Details pertaining to the reservoir continued ...

and γ(t) at T = 0

γ(t) =
γ0

2π
ln(1 + ω2

c t
2),

where t > 2a, and for high T

γ(t) =
γ0kBT

πh̄ωc

[

2ωct tan
−1(ωct) + ln

(

1

1 + ω2
c t

2

)]

,

where, again, t > 2a.
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Two-Level System

Hamiltonian

HS =
h̄ω

2
σz ,

σz being the usual Pauli matrix.

• System eigenbasis: |j,m〉— Wigner-Dicke States

HS |j,m〉 = h̄ωm|j,m〉
= Ej,m|j,m〉,

where −j ≤ m ≤ j.

• Initial system state:

|ψ(0)〉 = cos

(

θ0

2

)

|1〉+ eiφ0 sin

(

θ0

2

)

|0〉.

• Reduced Density Matrix:

ρsm,n(t) =

(

cos2( θ0
2
) 1

2
sin(θ0)e−i(ωt+φ0)e−(h̄ω)2γ(t)

1
2
sin(θ0)ei(ωt+φ0)e−(h̄ω)2γ(t) sin2( θ0

2
)

)

.
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Two-Level System continued ...

• Bloch vectors:

〈σx(t)〉 = sin(θ0) cos(ωt+ φ0)e
−(h̄ω)2γ(t),

〈σy(t)〉 = sin(θ0) sin(ωt+ φ0)e
−(h̄ω)2γ(t),

〈σz(t)〉 = cos(θ0).

• QND Evolution—Coplanar, fixed by the polar angle θ0, in-spiral towards the

z-axis of the Bloch sphere. This is the characteristic of a phase-damping

channel [M. Nielsen and I. Chuang: (2000)].
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Dissipative form of evolution equation: Lindblad
form

• A very useful form of the evolution equation of the reduced density matrix, of

the system of interest, for the case where the system and interaction

Hamiltonians do not commute is called the Lindblad master equation.

• The physical assumptions underlying the Lindblad form of the master

equation are the Born (weak coupling), Markov (memoryless) and Rotating

Wave Approximation (fast system dynamics compared to the ralaxation

time).
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Dynamics of the Reduced Density Matrix for
Dissipative systems: An Illustration

• Here we illustrate the Lindblad evolution by means of a practical example,

i.e., decay of a two-level system interacting with a radiation field (bath) in the

weak Born-Markov, rotating wave approximation.

• HS = 1
2
h̄ω0σz , ω0 is the transition frequency. System interacts with bath of

harmonic oscillators via the atomic dipole operator (in the interaction

picture)

~D(t) = ~dσ−e−iωt + ~d∗σ+eiωt,

where ~d = 〈g| ~D|e〉: transition matrix elements of dipole operator and the

S −R coupling term is:

HSR = − ~D. ~E.

Here ~E is the electric field operator, which in the Schrodinger picture is:

~E = i
∑

~k

∑

λ=1,2

√

2πh̄ωk

V
~eλ(~k)

(

bλ(~k)− b†
λ
(~k)

)

.

Here the field modes are represented by ~k and two corresponding,

transverse unit polarization vectors ~eλ(~k).
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Dynamics of the Reduced continued ...

• The Pauli operators σ+, σ− satisfy: [HS , σ−] = −ω0σ−, [HS , σ+] = ω0σ+, i.e.,

they lower/raise the atomic energy by ∓ω0.

• This process thus has two Lindblad operators: ~A(ω0) ≡ ~A = ~dσ−,

~A(−ω0) ≡ ~A† = ~d∗σ+.

• The Lindblad master equation for the reduced density matrix operator in the

interaction picture (neglecting the Lamb shift terms) becomes:

d

dt
ρS(t) = γ0(Nth + 1)

(

σ−ρS(t)σ+ − 1

2
σ+σ−ρS(t)−

1

2
ρS(t)σ+σ−

)

+ γ0Nth

(

σ+ρ
S(t)σ− − 1

2
σ−σ+ρS(t)−

1

2
ρS(t)σ−σ+

)

.

• Here γ0 is spontaneous emission rate

γ0 =
4ω3|~d|2
3h̄c3

,
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Dynamics of the Reduced continued ...

and σ+, σ−: standard raising and lowering operators, respectively given by

σ+ = |1〉〈0| = 1

2
(σx + iσy) ; σ− = |0〉〈1| = 1

2
(σx − iσy) .

• The first term on the RHS of the Lindblad equation containing γ0(Nth + 1) is

responsible for spontaneous (γ0) plus thermal (γ0Nth) emission while the

second term containing γ0Nth is responsible for thermal absorption.

• The master equation may be expressed in manifestly Lindblad form

d

dt
ρs(t) =

2
∑

j=1

(

2Rjρ
sR†

j −R†
jRjρ

s − ρsR†
jRj

)

,

where R1 = (γ0(Nth + 1)/2)1/2σ−, R2 = (γ0Nth/2)
1/2σ+. (If T = 0, a single

Lindblad operator suffices)

Nth =
1

e
h̄ω

kBT − 1

.

Here Nth: Planck distribution giving the number of thermal photons at the

frequency ω.
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Dynamics of the Reduced continued ...

• The Lindblad equation obtained can be easily solved by invoking the

representation of the two-level density matrix in terms of Pauli operators:

ρS(t) =
1

2
(I + 〈~σ(t)〉.~σ)

=







(

1
2

)

(1 + 〈σz(t)〉) 〈σ−(t)〉

〈σ+(t)〉
(

1
2

)

(1− 〈σz(t)〉)







.

• Using, for e.g.:
d

dt
〈σz(t) = Tr

(

σz
d

dt
ρS(t)

)

,

and likewise for the other two Pauli operators, we get three linear differential

equations which can be easily solved to yield the Bloch vectors

〈σx(t)〉 = e−
γ0
2

(2Nth+1)t〈σx(0)〉,
〈σy(t)〉 = e−

γ0
2

(2Nth+1)t〈σy(0)〉,
〈σz(t)〉 =

e−γ0(2Nth+1)t〈σz(0)〉 −
1

(2Nth + 1)

(

1− e−γ0(2Nth+1)t
)

.

An Invitation to Open Quantum Systems: A Density Matrix Approach – p.31/82



Quantum Operations

• Any evolution consistent with the general rules of quantum mechanics can

be described by a linear, completely positive map, called quantum

operation (E). [M. A. Nielsen and I. L. Chuang: (2000)]

• Complete positivity: Consider any positive map E on the system Q1: if an

extra system R of arbitrary dimensionality is introduced, and (I ⊗ E)(A) is

positive on any positive operator A on the combined system RQ1, where I
denotes the identity map on system R: then E is completely positive.

• A unitary evolution is a special case of a quantum operation: general

quantum operations can describe non-unitary evolutions, due to coupling

with environment.
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Quantum Operations continued...

• Any such quantum operation can be composed from elementary

operations:

• unitary transformations: E1(ρ) = UρU†

• addition of an auxiliary system: E2(ρ) = ρ⊗ σ: here ρ is the original system

and σ is the auxiliary one

• partial traces: E3(ρ) = TrB(ρ)

• projective measurements: E4(ρ) = PkρPk/Tr(Pkρ), with P 2
k = Pk.
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Quantum Operations continued...

Connection to quantum noise processes

• Interpret our results in terms of familiar noisy channels. How these

environmental effects can affect quantum computing.

In operator-sum representation, action of superoperator E due to

environmental interaction

ρ −→ E(ρ) =
∑

k

〈ek|U(ρ⊗ |f0〉〈f0|)U†|ek〉 =
∑

j

EjρE
†
j ,

unitary U acts jointly on system-environment |f0〉: environment’s initial state;

{|ek〉} a basis for the environment.

• environment-system assumed to start in a separable state.

• Ej ≡ 〈ek|U |f0〉 are the Kraus operators; partition of unity:
∑

j
E†
jEj = I. Any

transformation representatable as operator-sum is a completely positive (CP)

map.

An Invitation to Open Quantum Systems: A Density Matrix Approach – p.34/82



Quantum Operations continued...

Connection to quantum noise processes: QND interactions

• Here we give some illustrations of single qubit quantum noisy channels.

• QND interactions yields quantum phase damping channel: uniquely

non-classical quantum mechanical noise process, describing the loss of

quantum information without the loss of energy.

• Kraus operator elements [SB and R. Ghosh: (2007)]

E0 ≡

[

1 0

0 eiβ(t)
√
1− λ

]

; E1 ≡

[

0 0

0
√
λ

]

,

where β(t) encodes the free evolution of the system and λ the effect of the

environment.

• Applying this to initial state yields

ρs(t) = E(ρs(0)) =






cos2
(

θ0
2

) (

1
2

)

e−i(β(t)+φ0) sin(θ0)
√
1− λ

(

1
2

)

ei(β(t)+φ0) sin(θ0)
√
1− λ sin2

(

θ0
2

)







.
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Quantum Operations continued...

Connection to quantum noise processes: QND interactions

• Comparing with QND interaction with bath of harmonic oscillators

λ(t) = 1− exp
[

−2(h̄ω)2γ(t)
]

; β(t) = ωt.

• QND interaction with a bath of two level systems

λ(t) = 1− (1 + 4ω2
c t

2)(−γ0/2π)(h̄ω)
2

; β(t) = ωt.

• λ(t) −→ 1 as t −→ ∞ (exponentially for high T and as power law for T = 0)
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Quantum Operations continued...

Connection to quantum noise processes: Dissipative interactions

• Squeezed generalized amplitude damping channel: extends the concept of

generalized amplitude damping channel by allowing for finite bath

squeezing along with dissipation [R. Srikanth and SB: (2007)]

• It is characterized by the Kraus operators

E0 ≡ √
p1

[

√

1− α(t) 0

0 1

]

, E1 ≡ √
p1

[

0 0
√

α(t) 0

]

,

E2 ≡ √
p2

[

√

1− µ(t) 0

0
√

1− ν(t)

]

,

E3 ≡ √
p2

[

0
√

ν(t)
√

µ(t)e−iΦ 0

]

.
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Quantum Operations continued...

Connection to quantum noise processes: Dissipative interactions

• Here

ν(t) =
N

p2(2N + 1)
(1− e−γ0(2N+1)t),

µ(t) =
2N + 1

2p2N

sinh2(γ0at/2)

sinh(γ0(2N + 1)t/2)
exp

(

−γ0
2
(2N + 1)t

)

,

α(t) =
1

p1

(

1− p2[µ(t) + ν(t)]− e−γ0(2N+1)t
)

,

where p2 = 1− p1, and

p2 =
1

(A+B − C − 1)2 − 4D

×
[

A2B + C2 +A(B2 − C −B(1 + C)−D)

− (1 +B)D − C(B +D − 1)

± 2 (D(B −AB + (A− 1)C +D)

× (A−AB + (B − 1)C +D))1/2
]

,
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Quantum Operations continued...

Connection to quantum noise processes: Dissipative interactions

• with

A =
2N + 1

2N

sinh2(γ0at/2)

sinh(γ0(2N + 1)t/2)
exp (−γ0(2N + 1)t/2) ,

B =
N

2N + 1
(1− exp(−γ0(2N + 1)t)),

C = A+B + exp(−γ0(2N + 1)t),

D = cosh2(γ0at/2) exp(−γ0(2N + 1)t).

• If squeezing parameter r is set to zero, the Kraus operators reduce to that of

a generalized amplitude damping channel, with ν(t) = α(t), µ(t) = 0 and p1

and p2 becoming time-independent. If further T = 0, then p2 = 0, resulting in

two Kraus operators, corresponding to an amplitude damping channel.
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Dissipative Interaction with continued ...
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Dissipative Interaction with continued ...

Fig. : Effect of QND and dissipative interactions on the Bloch sphere: (A) the full

Bloch sphere; (B) the Bloch sphere after time t = 20, with γ0 = 0.2, T = 0, ω = 1,

ωc = 40ω and the environmental squeezing parameter r = a = 0.5, evolved

under a QND interaction ; (C) and (D) the effect of the Born-Markov type of

dissipative interaction with γ0 = 0.6 and temperature T = 5, on the Bloch sphere

– the x and y axes are interchanged to present the effect of squeezing more

clearly. (C) corresponds to r = 0.4, Φ = 0 and t = 0.15 while (D) corresponds to

r = 0.4, Φ = 1.5 and t = 0.15.

[SB and R. Ghosh: (2007)]
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Derivation of Lindbladians

A Simple Intuitive Proof:

• Let us look at the dynamics of the system on a timescale δt. It should satisfy

two conditions:

(A). δt≪ τS : the timescale is small compared to the characteristic timescale

of the system τS ; the system density matrix evolves only a little bit in this time

interval;

(B). δt≫ τB : At the same time δt is long compared to the time over which

the environment/bath forgets its information about the system τB .

• Since we look for dynamics beyond time τB , the evolution through time δt

should be described by a quantum operation on the current system density

matrix. Thus:

ρS(δt) = E(ρS(0)) =
∑

k

EkρS(0)E
†
k
= ρS(0) +O(δt).
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Derivation of Lindbladians continued...

• Thus it follows that the Kraus operators should be of the form

E0 = IS + (K − i

h̄
H)δt,

Ek =
√
δtLk, k ≥ 1.

K, H are arbitrary Hermitian operators, Lk are also arbitrary and are called

the Lindblad operators.

• The normalization of Kraus operators gives

IS = IS + (2K +
∑

k

L†
k
Lk)δt+O((δt)2),

implying that K = − 1
2

∑

k
L†
k
Lk.
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Derivation of Lindbladians continued...

• Therefore

ρS(δt) = ρS(0)−

{

i

h̄
[H, ρS ]−

∑

k

[

LkρS(0)L
†
k
−1

2
{ρS(0), L†

k
Lk}

]}

δt+O((δt)2).

• {A,B} = AB +BA. Taking the limit δt −→ 0, the Lindblad master equation is

obtained as

dρS

dt
=

1

ih̄
[H, ρS ] +

∑

k

[

LkρS(0)L
†
k
− 1

2
{ρS(0), L†

k
Lk}

]

.

• If the evolution were unitary, there are no Lindblad operators, then the above

master equation reduces to
dρS
dt

= 1
ih̄

[H, ρS ], the usual

Schrödinger-vonNeumann equation.

• This derivation gives no clue to the microscopic origions of the Lindbladians.

That would require a more detailed derivation.
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Derivation of Lindbladians continued...

A Detailed Derivation:

• Starting with the interaction picture von Neumann equation
d
dt
ρ(t) = −i[HSR(t), ρ(t)], for the total density matrix ρ(t). This gives:

ρ(t) = ρ(0)− i

∫ t

0

ds[HSR(s), ρ(s)].

• Inserting the integral into the von Neumann equation and tracing over the

bath:

d

dt
ρS(t) = −

∫ t

0

dsTrR[HSR(t), [HSR(s), ρ(s)]],

where TrR[HSR(s), ρ(0)] = 0 is assumed. The RHS of the equation depends on

the full density matrix ρ(s). This is where the first approximation is made:

• Born approximation: assumes that the coupling between S and R is weak,

ρR is negligibly affected by the interaction and the total system after time t is:

ρ(t) ≡ ρS(t)⊗ ρR. This gives:

d

dt
ρS(t) = −

∫ t

0

dsTrR[HSR(t), [HSR(s), ρ
S(s)⊗ ρR]].
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Derivation of the Lindblad form contin-
ued ...

• A further simplification: ρS(s) −→ ρS(t). Thus the evolution equation of the

system at t depends only on the present state. This is Redfield equation [A. G.

Redfield: (1957)].

• Redfield equation is local in time, but depends on the choice of the initial

preparation at t = 0, hence is not Markovian. To make it Markovian replace s

by t− s in the integrand and let the upper limit go to infinity. This gives:

d

dt
ρS(t) = −

∫ ∞

0

dsTrR[HSR(t), [HSR(t− s), ρS(t)⊗ ρR]].

This is a Markovian equation and the approximation is called the Markovian

approximation. It is justified when the time scale associated with the reservoir

correlations τR is much smaller than the time scale τrel over which the state

varies appreciably. Thus the Markovian evolution is defined on a

coarse-grained time scale, where the dynamical behaviour over times of the

order of τR are not resolved. Since τR depends on the reservoir temperature

and τrel on the S −R coupling strength, the Markovian approximation is

easily justified for weak S −R coupling and high T .
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Derivation of the Lindblad form contin-
ued ...

• The approximations made till now would be collectively called the

Born-Markov approximation. However, they do not guarantee a quantum

dynamical semigroup evolution [E. B. Davies: (1974); R. Dumcke and H.

Spohn: (1979)]. A further approximation involving the averaging over the

rapidly oscillating terms in the master equation is performed, the Rotating

Wave Approximation.

• The interaction Hamiltonian HSR is decomposed into eigenoperators of the

system Hamiltonian HS . A generic interaction Hamiltonian in the interaction

picture can be written as:

HSR(t) =
∑

α,ω

e−iωtAα(ω)⊗Bα(t),

where A, B denote operators belonging to the system and reservoir,

respectively. Also:

Aα(ω) =
∑

ǫ′−ǫ=ω

Π(ǫ)AαΠ(ǫ′),

where Π(ǫ) projects the operator onto the eigenspace of HS belonging to

the eigenvalue ǫ. Thus [HS , Aα(ω)] = −ωAα(ω), i.e., Aα(ω) lowers the energy

of HS by ω while A†
ω raises it by ω.
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Derivation of the Lindblad form contin-
ued ...

• From this:

eiHStAα(ω)e
−iHSt = e−iωtAα(ω),

and

eiHRtBαe
−iHRt = Bα(t).

• The earlier condition TrR[HSR(s), ρ(0)] = 0 now implies

〈Bα(t)〉 = TrR(Bα(t)ρR) = 0.

• This leads to the following form of the Born-Markov equation obtained earlier:

d

dt
ρS(t) =

∑

ω,ω′

∑

α,β

ei(ω
′−ω)tΓα,β(ω)[Aβ(ω)ρ

S(t)A†
α(ω

′)−A†
α(ω

′)Aβ(ω)ρ
S(t)]+h.c.

• Here

Γα,β(ω) =

∫ ∞

0

dseiωs〈B†
α(t)Bβ(t− s)〉,

is the one-sided Fourier transform of reservoir correlation functions

〈B†
α(t)Bβ(t− s)〉 = TrR(B†

α(t)Bβ(t− s)ρR).
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Derivation of the Lindblad form contin-
ued ...

• If ρR is a stationary state of the reservoir, [HR, ρR] = 0, the reservoir correlation

functions are homogeneous in time

〈B†
α(t)Bβ(t− s)〉 = 〈B†

α(s)Bβ(0)〉,

thus they do not depend on time.

• In the above evolution equation, |ω − ω′|−1 defines the typical time-scale

associated with the intrinsic evolution of the system. If the systematic

evolution of the system is very quick, then it goes through many cycles during

the relaxation time. Thus the non-secular terms, i.e., those for which ω′ 6= ω,

may be neglected. This is the rotating wave approximation. With this, the

evolution equation becomes:

d

dt
ρS(t) =

∑

ω

∑

α,β

Γα,β(ω)[Aβ(ω)ρ
S(t)A†

α(ω)−A†
α(ω)Aβ(ω)ρ

S(t)] + h.c.
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Derivation of the Lindblad form contin-
ued ...

• In the above equation, the term Γα,β can be rearranged as:

Γα,β(ω) =
1

2
γα,β(ω) + iSα,β(ω),

where

γα,β(ω) = Γα,β(ω) + Γ∗
β,α(ω) =

∫ ∞

−∞
dseiωs〈B†

α(s)Bβ(0)〉,

and

Sα,β(ω) =
1

2i
(Γα,β(ω)− Γ∗

β,α(ω)).
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Derivation of the Lindblad form contin-
ued ...

• With these, the evolution equation can be written as:

d

dt
ρS(t) = −i[HLS , ρS(t)] +D(ρS(t)),

where

HLS =
∑

ω

∑

α,β

Sα,βA
†
α(ω)Aβ(ω),

is called the Lamb shift as it leads to a Lamb-type renormalization of the

unperturbed energy levels due to the S −R coupling and provides a

Hamiltonian contribution to the dynamics. The term D(ρS(t)) is called the

dissipator and takes the form

D(ρS(t)) =
∑

ω

∑

α,β

γα,β

(

Aβ(ω)ρ
SA†

α(ω)−
1

2
{A†

α(ω)Aβ(ω), ρ
S}
)

.

Here {A,B} = AB +BA.

• The term γα,β , in the dissipator is the Fourier transform of the homogeneous

reservoir correlation functions, is positive by Bochner’s theorem and hence

can be diagonalized. With that the evolution equation takes the form of the

standard Lindblad equation.
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Derivation of the Lindblad form contin-
ued ...

• We thus stress that the physical assumptions underlying the Lindblad form of

the master equation are the Born (weak coupling), Markov (memoryless) and

Rotating Wave Approximation (fast system dynamics compared to the

ralaxation time).
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Simple Applications of Developed Formalism

A. Classical Capacity of Squeezed Generalized Amplitude Damping Channel

[SB and R. Srikanth: (2008)]

• A quantum communication channel can be used to perform a number of

tasks: transmitting classical or quantum information.

• How information communicated over squeezed generalized amplitude

damping channel is degraded...

• Consider the following situation: there is a sender A and receiver B; A has a

classical information source producing symbols X = 0, · · · , n with probabilities

p0, · · · , pn which are encoded as quantum states ρj (0 ≤ j ≤ n) and

communicated to B, whose optimal measurement strategy maximizes the

accessible information, which is bounded above by the Holevo quantity

χ = S(ρ)−
∑

j

pjS(ρj),

where ρ =
∑

j
pjρj , and ρj are various initial states and S(ρ) is the von

Neumann entropy.
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Classical Capacity of Squeezed Generalized
continued ...

• Here assume A encodes binary symbols of 0 and 1 in terms of pure,

orthogonal states of the form |ψ(0)〉 = cos( θ0
2
)|1〉+ eiφ0 sin( θ0

2
)|0〉, and

transmits them over the squeezed generalized amplitude damping channel

(E).

• Further assume that A transmits messages as product states, i.e., without

entangling them across multiple channel use. Then, the (product state)

classical capacity C of the quantum channel is defined as the maximum of

χ(E) over all ensembles {pj , ρj} of possible input states ρj .
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Classical Capacity of Squeezed Generalized
continued...
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Fig. 2 : Holevo bound χ for a squeezed generalized amplitude damping channel

with Φ = 0, over the set {θ0, φ0}, which parametrizes the ensemble of input states

{(θ0, φ0), (θ0 + π, φ0)}, corresponding to the symbols 0 and 1, respectively, with

probability of the input symbol 0 being f = 0.5. Here temperature T = 5, γ0 = 0.05,

time t = 5.0 and bath squeezing parameter r = 1. The channel capacity C is seen

to correspond to the optimal value of θ0 = π/2 [i.e., the input states 1√
2
(|0〉 ± |1〉)

for φ0 = 0].
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Classical Capacity of Squeezed Generalized
continued...
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Classical Capacity of Squeezed Generalized
continued ...

• Fig. 3 illustrates optimal source coding for the squeezed amplitude damping

channel, with χ plotted against θ0 corresponding to the “0” symbol. Here

Φ = 0, γ0 = 0.05 and f = 0.5. It is seen that χ is maximized for states of the

form when the pair of input states are given by (θ0 = π
2
, φ0 = 0) and

(θ0 = π
2
+ π, φ0 = 0) [i.e., states 1√

2
(|0〉 ± |1〉)]. The solid and small-dashed

curves represent temperature T = 0 and bath squeezing parameter r = 0,

but t = 1 and 2, respectively. The large-dashed and dot-dashed curves

represent T = 5 and t = 2, but with r = 0 and 2, respectively.

• A comparison of the solid and small-dashed (small-dashed and

large-dashed) curves demonstrates the expected degrading effect on the

accessible information, of increasing the bath exposure time t (increasing T ).

• A comparison of the large-dashed and dot-dashed curves demonstrates the

dramatic effect of including squeezing. In particular, whereas squeezing

improves the accessible information for the pair of input states 1√
2
(|0〉 ± |1〉), it

is detrimental for input states (θ0, φ0) given by (0, 0) (i.e., |1〉) and (π, 0) (i.e.,

|0〉).
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Classical Capacity of Squeezed Generalized
continued...
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Fig. 4 : Interplay of squeezing and temperature on the classical capacity C of

the squeezed amplitude damping channel (with input states 1√
2
(|0〉 ± |1〉), and

f = 1/2, corresponding to the optimal coding). Here Φ = 0 and γ0 = 0.05. The

solid and small-dashed curves correspond to zero squeezing r, and temperature

T = 0 and 5, respectively. The large-dashed curve corresponds to T = 5 and

r = 2. A comparison between the solid and large-dashed curves shows that

squeezing can improve C. This highlights the possible usefulness of squeezing to

noisy quantum communication.
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B. Environment-Mediated Quantum Deleter

[R. Srikanth and SB: (2007)]

• Quantum computation is well known to solve certain types of problems more

efficiently than classical computation [M. A. Nielsen and I. L. Chuang: (2000)].

• Although quantum mechanical linearity endows a quantum computer with

greater-than-classical power [P. Shor: (1995); L. K. Grover: (1997)], it also

imposes certain restrictions, such as the prohibition on cloning [W. K. Wooters

and W. H. Zurek: (1982)] and on deleting [A. K. Pati and S. Braunstein: (2000)].

The latter result means that quantum mechanics does not allow us to delete

a copy of an arbitrary quantum state perfectly.
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Requirement of Open Quantum System

• A quantum computational task can be broadly divided into three stages:

• (A). Initializing the quantum computer, by putting all qubits into a standard

‘blank state’;

• (B). Executing the unitary operation that performs the actual

computation. This is the area where “decoherence” is an obstacle. A

variety of techniques, including quantum error correction [S. Calderbank

and P. Shor: (1996); A. Steane: (1996)], dynamic decoupling [L. Viola and

S. Lloyd: (1998); D. Vitali and P. Tombesi: (2001)] , fault tolerant quantum

computation [P. Shor: (1996)], decoherence-free subspaces [D. A. Lidar, I.

L. Chuang and K. B. Whaley: (1998)], among others exist to combat

decoherence;

• (C). Performing measurements to read off results.

• In step (A), we must be able to erase quantum memory at the end of a

computational task, in order to prepare the state of a quantum computer for

a subsequent task. What is required is a quantum mechanism that with high

probability allows us to prepare standard ‘blank states’. It is clear that no

unitary process can achieve this, since true deletion would be irreversible,

and hence non-unitary. Further, the no-deleting theorem implies that no qubit

state can be erased against a copy [A. K. Pati and S. Braunstein: (2000)].
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Requirement of Open... continued...

• A direct method for initializing the quantum computer would be to measure

all qubits in the computational basis. This results in a statistical mixture of |0〉’s
and |1〉’s, and there is no unitary way in a closed system to convert the |1〉’s
while retaining the |0〉’s. However, open quantum systems, in particular a

decohering environment, can effect non-unitary evolution on a sub-system

of interest. We are thus led to conclude that decoherence is in fact

necessary for step (A), since there would be no other way to delete quantum

information.

• Here this insight is used to argue that decoherence can be useful to

quantum computation. In particular, it is shown that a dissipative

environment, the amplitude-damping channel in the parlance of quantum

information theory, can serve as an effective deleter of quantum information.

An Invitation to Open Quantum Systems: A Density Matrix Approach – p.61/82



Fidelity as a function of Temperature

• Fidelity is defined as

f(t) =
√

〈0|ρs(t)|0〉 =
√

1− 〈σ3(t)〉
2

=
1√
2

[

(

1− e−Γt〈σ3(0)〉
)

+

(

1− e−Γt
)

2N + 1

]1/2

,

where Γ ≡ γ0(2N + 1) and 〈σ3(0)〉 is the expectation value of σ3 at time

t = 0.
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Fidelity as a function... continued...
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Fig. 5 : Fidelity (f(t)) falls as a function of temperature (T , in units where h̄ ≡ kB ≡
1) until it reaches the value 1/

√
2 corresponding to a maximally mixed state. The

case shown here corresponds to θ0 = 0, γ0 = 0.5, ω = 1.0 and time t = 10. Here

we set the squeezing parameters r and Φ to zero.
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Non-Markovian Aspects of Open Quantum Sys-
tems:Some Features

• We now make a brief excursion into non-Markovian Open Quantum Systems

[H-P Breuer (2012)].

• This is a bigger class than the ones discussed till now in these lectures.

• We will illustrate our discussions using a model, introduced by Garraway [PRA

1997], of a two-level system system decaying spontaneously into a vacuum

bath.

• Only the RWA approximation is employed, the model is solvable for all

system-bath couplings.
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Non-Markovian Aspects:Model

• The system Hamiltonian is

HS = ω0σ+σ−,

describing a two-state system (qubit) with ground state |0〉, excited state |1〉
and transition frequency ω0, where σ+ = |1〉〈0| and σ− = |0〉〈1| are the raising

and lowering operators of the qubit.

• The Hamiltonian of the environment is

HR =
∑

k

ωkb
†
k
bk,

represents a reservoir of harmonic oscillators with creation and annihilation

operators b†
k

and bk. The interaction Hamiltonian takes the form

HSR =
∑

k

(

gkσ+ ⊗ bk + g∗kσ− ⊗ b†
k

)

.

• Due to the RWA, the total number of excitations in the system,

N = σ+σ− +
∑

k

b†
k
bk,

is a conserved quantity.
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Non-Markovian Aspects:Model

• Assuming the environment to be in the vacuum state |0〉 initially one finds:

ρ11(t) = |c(t)|2ρ11(0),
ρ00(t) = ρ00(0) + (1− |c(t)|2)ρ11(0),
ρ10(t) = c(t)ρ10(0),

ρ01(t) = c∗(t)ρ01(0),

where the ρij(t) = 〈i|ρS(t)|j〉 denote the matrix elements of ρS(t).

• The function c(t) is the solution of the integro-differential equation

d

dt
c(t) = −

∫ t

0

dt1f(t− t1)c(t1),

corresponding to the initial condition c(0) = 1,
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Non-Markovian Aspects:Model

• where the kernel f(t− t1) represents a reservoir two-point correlation

function,

f(t− t1) = 〈0|R(t)R†(t1)|0〉eiω0(t−t1)

=
∑

k

|gk|2ei(ω0−ωk)(t−t1),

of the environmental/reservoir operators

R(t) =
∑

k

gkbke
−iωkt.
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Non-Markovian Aspects:Model

• These results hold for a generic environmental spectral density and the

corresponding two-point correlation function. Taking, for example, a

Lorentzian spectral density in resonance with the transition frequency of the

qubit we find an exponential two-point correlation function

f(τ) =
1

2
γ0λe

−λ|τ |,

where γ0 describes the strength of the system-environment coupling and λ

the spectral width which is related to the environmental correlation time by

τR = λ−1.

• Using this we find

c(t) = e−λt/2
[

cosh

(

dt

2

)

+
λ

d
sinh

(

dt

2

)]

,

where d =
√

λ2 − 2γ0λ.
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Non-Markovian Aspects:Time-Local Master Equa-
tions

• A time-local master equation, providing a generalization of the usual

Lindbladian type of equation would be of the form

d

dt
ρS(t) = K(t)ρS(t).

• The generator K(t) of the time-local master equation must of course preserve

the Hermiticity and the trace.

• From these requirements it follows that the generator must be of the following

general form

K(t)ρS = −i [HS(t), ρS ]

+
∑

i

γi(t)

[

Ai(t)ρSA
†
i (t)−

1

2

{

A†
i (t)Ai(t), ρS

}

]

.

The structure of the generator provides a natural generalization of the

Lindblad structure, in which the Hamiltonian HS(t), the Lindblad operators

Ai(t) as well as the various decay rates γi(t) may dependent on time.

• When γi(t) ≥ 0, the resulting dynamics is completely positive, since the

generator is then in Lindblad form for each fixed t ≥ 0.
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Non-Markovian Aspects

• For the Garraway model, the time-local generator takes the form

K(t)ρS = − i

2
S(t)[σ+σ−, ρS ]

+γ(t)

[

σ−ρSσ+ − 1

2
{σ+σ−, ρS}

]

,

where γ(t) = −2ℜ
(

ċ(t)
c(t)

)

, S(t) = −2ℑ
(

ċ(t)
c(t)

)

.

• The quantity S(t) plays the role of a time-dependent frequency shift, and γ(t)

can be interpreted as a time-dependent decay rate. Due to the time

dependence of these quantities the process does not generally represent a

dynamical semigroup.
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Non-Markovian Aspects: Approach To Markovian
Behaviour

• In the limit of small α = γ0/λ we may approximate c(t) ≈ e−γ0t/2.

• S(t) = 0 and γ(t) = γ0, i.e., the generator K(t) assumes the form of a

Lindblad generator of a quantum dynamical semigroup.

• α can also be written as the ratio of the environmental correlations time

τR = λ−1 and the relaxation time τrel = γ−1
0 of the system α = τR

τrel
.

• Thus we see that the standard Markov condition γ0 ≪ λ indeed leads to a

Markovian semigroup here.
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Non-Markovian Aspects: Divisibility of dynamical
Maps

• A family of dynamical maps Φ(t, 0) is defined to be divisible if for all

t2 ≥ t1 ≥ 0 there exists a CPT map Φ(t2, t1) such that the relation

Φ(t2, 0) = Φ(t2, t1)Φ(t1, 0) holds.

• The simplest example of a divisible quantum process is given by a dynamical

semigroup. For a semigroup Φ(t, 0) = exp[Lt] and divisibility is satisfied with

the CPT map Φ(t2, t1) = exp[L(t2 − t1)].

• Consider now a quantum process given by the time-local master equation

with a time dependent generator. The dynamical maps can then be

represented in terms of a time-ordered exponential,

Φ(t, 0) = T exp

[∫ t

0

dt′K(t′)

]

, t ≥ 0,

where T denotes the chronological time-ordering operator.

An Invitation to Open Quantum Systems: A Density Matrix Approach – p.72/82



Non-Markovian Aspects: Divisibility of dynamical
Maps

• We can also define the maps

Φ(t2, t1) = T exp

[∫ t2

t1

dt′K(t′)

]

, t2 ≥ t1 ≥ 0,

such that the composition law Φ(t2, 0) = Φ(t2, t1)Φ(t1, 0) holds by

construction. The maps Φ(t2, t1) are completely positive, as is required by the

divisibility condition, if and only if the rates γi(t) of the generator are positive

functions. Thus divisibility is equivalent to positive rates in the time-local

master equation [Laine et al. (2010)].
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Non-Markovian Aspects: Divisibility of dynamical
Maps

• For the Garraway model, the necessary and sufficient condition for the

complete positivity of Φ(t2, t1) is given by |c(t2)| ≤ |c(t1)|.
• Thus the dynamical map of the model is divisible if and only if |c(t)| is a

monotonically decreasing function of time.

• The rate γ(t) can be written as

γ(t) = − 2

|c(t)|
d

dt
|c(t)|.

This shows that any increase of |c(t)| leads to a negative decay rate in the

corresponding generator, and illustrates the equivalence of the

non-divisibility of the dynamical map and the occurrence of a temporarily

negative rate in the time-local master equation.
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Non-Markovian Aspects: Information Flow

• Consider two parties, Alice and Bob. Alice prepares a quantum system in

one of two states ρ1 or ρ2 with probability 1
2

each, and then sends the system

to Bob. It is Bob’s task to find out by a single measurement on the system

whether the system state was ρ1 or ρ2. It turns out that Bob cannot always

distinguish the states with certainty, but there is an optimal strategy which

allows him to achieve the maximal possible success probability given by

Pmax =
1

2

[

1 +D(ρ1, ρ2)
]

.

• The trace distance D(ρ1, ρ2) = 1
2
||ρ1 − ρ2|| = 1

2
tr|ρ1 − ρ2| can therefore be

interpreted as a measure for the distinguishability of the quantum states ρ1

and ρ2. Here tr|A| = tr
√
A†A.
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Non-Markovian Aspects:Properties of Trace Dis-
tance

• The trace distance between any pair of states satisfies 0 ≤ D(ρ1, ρ2) ≤ 1.

• The trace distance is sub-additive with respect to tensor products of states

D(ρ1 ⊗ σ1, ρ2 ⊗ σ2) ≤ D(ρ1, ρ2) +D(σ1, σ2).

• The trace distance is invariant under unitary transformations U ,

D(Uρ1U†, Uρ2U†) = D(ρ1, ρ2).

More generally, all trace preserving and completely positive maps, i.e., all

trace preserving quantum operations Λ are contractions of the trace

distance,

D(Λρ1,Λρ2) ≤ D(ρ1, ρ2).
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Non-Markovian Aspects

• No quantum process describable by a family of CPT dynamical maps can

ever increase the distinguishability of a pair of states over its initial value.

• When a quantum process reduces the distinguishability of states, information

is flowing from the system to the environment. Correspondingly, an increase

of the distinguishability signifies that information flows from the environment

back to the system.

• The definition for quantum non-Markovianity, discussed here, is based on the

idea that for Markovian processes any two quantum states become less and

less distinguishable under the dynamics, leading to a perpetual loss of

information into the environment.

• Quantum memory effect thus arise if there is a temporal flow of information

from the environment to the system. The information flowing back from the

environment allows the earlier open system states to have an effect on the

later dynamics of the system, which implies the emergence of memory

effects [Breuer et al. (2009)].
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Non-Markovian Aspects: Measure

• A quantum process described in terms of a family of quantum dynamical

maps Φ(t, 0) is non-Markovian if there is a pair of initial states ρ1,2S (0) such that

the trace distance between the corresponding states ρ1,2S (t) increases at a

certain time t > 0:

σ(t, ρ1,2S (0)) ≡ d

dt
D(ρ1S(t), ρ

2
S(t)) > 0,

where σ(t, ρ1,2S (0)) denotes the rate of change of the trace distance at time t

corresponding to the initial pair of states.

• This implies that all divisible families of dynamical maps are Markovian,

including the class of quantum dynamical semigroups.
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Non-Markovian Aspects: Measure

• To prove this statement suppose that Φ(t, 0) is divisible. For any pair of initial

states ρ1,2S (0) we then have

ρ1,2S (t+ τ) = Φ(t+ τ, t)ρ1,2S (t), t, τ ≥ 0.

Since Φ(t+ τ, t) is a CPT map we can apply the contraction property to

obtain:

D(ρ1S(t+ τ), ρ2S(t+ τ)) ≤ D(ρ1S(t), ρ
2
S(t)).

This shows that for all divisible dynamical maps the trace distance decreases

monotonically and that, therefore, these processes are Markovian.

• Thus non-Markovian quantum processes must necessarily be described by

non-divisible dynamical maps and by time-local master equations whose

generator involves at least one temporarily negative rate γi(t).
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Non-Markovian Aspects: Measure

• This suggests defining a measure N (Φ) for the non-Markovianity of a

quantum process through [Breuer et al. (2009)]

N (Φ) = max
ρ
1,2

S
(0)

∫

σ>0

dt σ(t, ρ1,2S (0)).

• The time integration is extended over all time intervals (ai, bi) in which σ is

positive and the maximum is taken over all pairs of initial states. The measure

can be written as

N (Φ) = max
ρ1,2(0)

∑

i

[

D(ρ1S(bi), ρ
2
S(bi))−D(ρ1S(ai), ρ

2
S(ai))

]

.

To calculate this quantity one first determines for any pair of initial states the

total growth of the trace distance over each time interval (ai, bi) and sums

up the contribution of all intervals. N (Φ) is then obtained by determining the

maximum over all pairs of initial states.
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Non-Markovian Aspects: Measure: An Illustration

• Considering the Garraway model, the time evolution of the trace distance

corresponding to any pair of initial states ρ1S(0) and ρ2S(0) is given by

D(ρ1S(t), ρ
2
S(t)) = |c(t)|

√

|c(t)|2a2 + |b|2,

where a = ρ111(0)− ρ211(0) and b = ρ110(0)− ρ210(0).

• The time derivative of this expression yields

σ(t, ρ1,2S (0)) =
2|c(t)|2a2 + |b|2
√

|c(t)|2a2 + |b|2
d

dt
|c(t)|.

• From this we conclude that the trace distance increases at time t if and only

if the function |c(t)| increases at this point of time. It follows that the process is

non-Markovian, N (Φ) > 0, if and only if the dynamical map is non-divisible,

which in turn is equivalent to a temporarily negative rate γ(t).
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Conclusion

• We have discussed the basic ideas of Open Quantum Systems from a broad

perspective, both Markovian as well as non-Markovian evolutions.

• We have motivated the need for a study of Open Quantum Systems in

Quantum Optics and Information, as well as introduced some useful

techniques in this context.

• The semigroup Lindblad evolution was discussed in some detail.

• The physical assumptions underlying the methods were discussed and

elucidated by applying each of them to an open system model.

• Some physical examples, based on the Lindbladian evolution, were also

elaborated.

• We then talked about some aspects of non-Markovian behaviour in Open

Quantum Systems.
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