# Spontaneous emission from quantum dots beyond Fermi's golden rule

S. Hughes



Queen's University, Kingston, Ontario, Canada

#### <u>Thanks:</u>

Kaushik Roy-Choudhury, NSERC(\$), organizers



# Fermi's golden rule for spon. emission

 $|\Gamma_{fi} = \frac{2\pi}{\hbar^2} \rho(\omega_{\mathbf{k}})| \langle f, \mathbf{1}_{\mathbf{k}} | H_{\text{Int}} | \mathbf{0}_{\mathbf{k}} \rangle |^2$ 



# LDOS: $\rho(\mathbf{r}_0, \omega_0) \propto \text{Im}[\mathbf{G}(\mathbf{r}_0, \mathbf{r}_0, \omega_0)]$

# Purcell effect

• LDOS can be tuned by having QDs coupled to resonant cavity structures, e.g., in photonic crystals, which can enhance the SE rate



E. M. Purcell, Phys. Rev. 69, 681 (1946).

# Semiconductor quantum dots (QDs)

#### InAs dot, NRC, Canada



- 3D confinement
- Discrete densityof-states
- Usually inside solid crystal



# Motivation for QD quantum optics

- Integration, tunable emission, large dipoles
- On-chip QIP
- Fundamental quantum optics in solid state nanostructures



# Outline

- Basic theory of SE in a photon bath
- Coupling in an acoustic phonon bath polaron transform approach
- Mean field limits and connection to previous works – why Fermi's golden rule breaks down?
  - Examples for a cavity and a coupled cavity waveguide

#### Light-Matter Hamiltonian

$$H = \int d\mathbf{r} \int_0^\infty d\omega \,\omega \,\hat{\mathbf{f}}^{\dagger}(\mathbf{r},\omega) \hat{\mathbf{f}}(\mathbf{r},\omega) + \omega_x \hat{\sigma}^{\dagger} \hat{\sigma}^{-} \\ - \left[ \hat{\sigma}^{\dagger} \int_0^\infty d\omega \,\mathbf{d} \cdot \hat{\mathbf{E}}(\mathbf{r}_d,\omega) + \text{H.c.} \right]$$

With: 
$$\hat{\mathbf{E}}(\mathbf{r},\omega) \propto \int d\mathbf{r}' \mathbf{G}(\mathbf{r},\mathbf{r}';\omega) \sqrt{\mathrm{Im}[\varepsilon(\mathbf{r}',\omega)]} \hat{\mathbf{f}}(\mathbf{r}',\omega)$$

Applies to any inhomogeneous and lossy structure, including metal nanoparticles.

Master Equation in Interaction Picture Interaction picture, 2<sup>nd</sup>-order Born approximation:

$$\frac{\partial \tilde{\rho}(t)}{\partial t} = -\int_0^t d\tau \operatorname{Tr}_{\mathsf{R}}\{[\tilde{H}_{\mathsf{I}}(t), [\tilde{H}_{\mathsf{I}}(t-\tau), \tilde{\rho}(t)\rho_{\mathsf{R}}]]\}$$

$$\tilde{H}_{\mathrm{I}}(t) = -[\hat{\sigma}^{+} \int_{0}^{\infty} d\omega \,\hat{\mathbf{E}}(\mathbf{r}_{d},\omega) e^{(\omega_{x}-\omega)t} + \mathrm{H.c.}]$$

Bath approximation, gives Lindblad scattering term

$$\frac{\partial \rho}{\partial t}\Big|_{\rm inc} = \frac{\gamma(t)}{2} (2\hat{\sigma}^- \rho \hat{\sigma}^+ - \hat{\sigma}^+ \hat{\sigma}^- \rho - \rho \hat{\sigma}^+ \hat{\sigma}^-)$$

Spontaneous emission rate in a photon bath

$$\gamma(t) = \operatorname{Re}(\int_0^t J_{\text{ph}}(\tau))$$

Photon correlation function

$$J_{\text{ph}}(\tau) = \int_0^\infty d\omega \frac{\mathbf{d} \cdot \text{Im}[\mathbf{G}(\mathbf{r}_d, \mathbf{r}_d; \omega)] \cdot \mathbf{d}}{4\pi \hbar \varepsilon_0} e^{i(\omega_x - \omega)\tau}$$

"Golden rule" obtained in Markov limit

$$\gamma\equiv\gamma(t
ightarrow\infty)\propto \mathsf{LDOS}(\omega_x)$$

#### For better or worse – QDs are <u>not</u> atoms!

Besombes et al, PRB, 2001

Acoustic phonon broadening mechanism in single quantum dot emission



# Excitation-Induced Dephasing (EID)

"<u>Damping</u> of exciton Rabi rotations by acoustic phonons ..."



#### Electron+Phonons: "Polarons"

electrons in an ionic lattice:



# Independent Boson Model (IBM)

$$H_{\rm IBM} = \omega_x \sigma^+ \sigma^- + \sum_q \omega_q b_q^\dagger b_q + \sigma^+ \sigma^- \sum_q \lambda_q (b_q + b_q^\dagger)$$

LA phonon bath  $b(b^{\dagger}) = \lambda_q + 1 \rho^{-1} |e\rangle$  exciton  $\sigma + 1 \sigma^{-1} |g\rangle = \omega_x$ 

• *Exactly solvable model* for <u>linear</u> polarization decay:

$$P(t) \propto e^{-i(\omega_x - \Delta_P)t} e^{[\phi(t) - \phi(0)]}$$
  
$$\phi(t) = \sum_k \frac{\lambda_q}{\omega_q} \left[ \underset{q}{N_q} e^{i\omega_q t} + (\underset{q}{N_q} + 1) e^{-i\omega_q t} \right]$$
  
emission absorption

see Axt et al, Knorr et al, Mahan's "Many Particle Physics" book

#### Phonon Spectral Function/QD Absorption



14

#### Coupling Photon and Phonon Baths

$$H = \int d\mathbf{r} \int_{0}^{\infty} d\omega \,\omega \,\hat{\mathbf{f}}^{\dagger}(\mathbf{r},\omega) \hat{\mathbf{f}}(\mathbf{r},\omega) + \omega_{x} \hat{\sigma}^{+} \hat{\sigma}^{-} - \left[ \hat{\sigma}^{+} \int_{0}^{\infty} d\omega \,\mathbf{d} \cdot \hat{\mathbf{E}}(\mathbf{r}_{d},\omega) + \text{H.c.} \right] + \sigma^{+} \sigma^{-} \sum_{q} \lambda_{q} (b_{q} + b_{q}^{\dagger}) + \sum_{q} \omega_{q} b_{q}^{\dagger} b_{q}$$



#### Master Equation with Photons and Phonons

• Polaron transform

 $H' \to e^P H e^{-P}$  with  $P = \sigma^+ \sigma^- \sum_q \frac{\lambda_q}{\omega_q} (b_q^\dagger - b_q)$ 

- Phonon correlation function:  $C_{pn}(t) = e^{[\phi(t) \phi(0)]}$
- Phonon-modified SE rate:

$$\tilde{\gamma}(t) = \operatorname{Re}\left[\int_{0}^{t} d\tau C_{pn}(\tau) \int_{0}^{\infty} d\omega J_{ph}(\omega) e^{i(\omega_{x}-\omega)\tau}\right]$$
$$= \operatorname{Re}\left[\int_{0}^{t} d\tau C_{pn}(\tau) J_{ph}(\tau)\right]$$

 $\tilde{\gamma} \not\propto \text{LDOS}(\omega_x) \implies$  Breakdown of golden rule

# Mean Field Limits (both golden rule)

$$\tilde{\gamma}(t) = \operatorname{Re}[\int_{0}^{t} d\tau C_{pn}(\tau) J_{ph}(\tau)] \xrightarrow{\mathbb{C}^{\Xi} 0.9}_{0.8_{0}} \xrightarrow{4K (InAs QD)}_{2m} (rs)}$$

Delta function photon correlation time (free space)  $\tilde{\gamma} = \operatorname{Re}(\int_{0}^{\infty} J_{ph}(\tau)) \rightarrow \gamma(t)$ 

McCutcheon, Nazir, PRL. 2013; P. Kaer et al. PRB, 2012.

Long photon bath correlation time (high Q cavity)  $\tilde{\gamma}(t) = e^{-\phi(0)} \operatorname{Re}(\int_0^t e^{\phi(\tau)} J_{\text{ph}}(\tau)) \rightarrow \langle B \rangle^2 \gamma(t)$ Roy and John, PRA, 2010

#### Example 1: Simple Lorentzian Cavity



#### Three Example Cavity Bath Functions





Dashed lines on right are results of previous cavity-QED polaron MEs, where mean field limit is used for SE decay (Wilson-Rae, Imamoglu PRB,2002; Roy, SH, PRL, 2011)

# Phonon-Modified SE: Intermediate Q

$$Q = 2300 \qquad \kappa = 0.6 \ meV$$



# Cavity Results for Phonon-Modified SE

$$Q = 600 \quad \kappa = 2.4 \, meV$$



#### Example 2: CROW structure



#### LDOS model details: Fussell, Hughes, Dignam, PRB (2007)

Phonon-modified SE from a CROW



Two orders of magnitude SE increase outside band

#### Coherent excitation: simple no-cavity case

$$\Gamma_{\rm ph}^{\sigma^+}(\Delta_{Lx},\eta_x) = 2 \langle B \rangle^2 \eta_x^2 \operatorname{Re} \int_0^\infty d\tau e^{i\Delta_{Lx}\tau} \left[ e^{\phi(\tau)} - 1 \right]$$

planar QD (InAs) sample



S. Weiler et al, PRB <u>86</u>, 241304(R) (2012).

Roy and Hughes, PRX, 2012

# Can also explain the Mollow Triplet Data



#### QD coherently excited, Q=2300 cavity



## QD coherently excited, CROW structure



# Summary

- In presence of phonons, quantum dot SE rate in a structured photonic medium causes Fermi's golden rule to break down
- The breakdown is particularly significant in low to intermediate Q cavities and non-Lorentzian bath functions like waveguides
- Theory can be applied to any photon reservoir spectral function and effects should show up strongly in both PL and incoherent spectra

Refs: K. Roy-Choudhury and S. Hughes, arXiv:1406.3649 ; ibid, arXiv:1411.6050