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7
445/ Quantized field
» Classical monochromatic e-m field:
E(r,t)=E,cos(wt—k-r+¢)

* Quantized free field (Schradinger pic.):
E(r)=iY E"E (a,e™" —aje™")
/
W|Th [&g 9&};'] — 6%'

ho
d single-photon field £;" = f
and single-photon field & \/280L3

The field states belong to a Hilbert space

. o . A e 1
and evolve with Hamiltonian 5 _ Eha)g(az@ +5j
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T . .
{4’5/ Single-mode quantized field 4

* Consider only one mode:
E(r)=i EVE(ae™ —a'e ™)
 Introduce quadrature operators:
EP _ g(l)(&eia)t _I_&‘re—ia)t)

Va\

EQ _ _l-g(l)(&eia)t . &Te—ia)t)

Hermitian = Observables
* From [&,&T]:I , we get:

g, AF, 2[£" ]
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7
{4’5/ Quasi-classical state (1)
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+ We have: AE,AE,>[£V]
- Minimum uncertainty state:AE, AE, = [2(”]2
« State with symmetric minimum uncertainty:
AE,=AE,=£E"
« Such state is called a quasi-classical, or
coherent, or Glauber state:

A . o112 oo 2 (&T)n
ilo)= aa) 3 Gl =Y o)
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{4’3/ Quasi-classical state (2)

* Coherent state:
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—|oc| /22 |
(a) (b) Es(r=0.f
A E ,(_r ,t_)
) 2|a,_-|c;,_§ D 1)
< E > --------------- o e’ 0
Q (1) 41'»(;}”
EP

« The "most classical" quantum state of light
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{4’5/ Quasi-classical state (3)

* Coherent state:

—|(x| /22 \/_|

* Poisson statistics for photons:

(a) (b)
P(n,) P(n;) _

>
01234567 891011 n; 60 70 80 90 100 110 120 130 140 n,



K-/  Quasi-classical state (4)

ECOLE
7 I POLYTECHNIQUE

A

a)=D(a))0)

displacement operator

D(a)D'(ot)= D' () D(et)=1
D' ()= D(-a)

D(a)D(B)=" PP D(a+B)

10
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7
{4’5/ More on quadrature operators

* Generalized quadrature operators:
IA’ﬁ = 2(1)(&eiﬁ +&Te_"ﬁ) o -
A | . AP,AQ, 2| E
Qp = —iS(l)(&e’ﬁ —&Te"ﬁ) B [ ]
» Electric field:
E(r)= —5{}3[3 sin(k-r— )+ Qﬁ cos(k-r— /3)}
» Average values for a coherent state:
(0] Byl or) =2|o] € cos(B+0) 2
(] Q5| ety =2|a] €V sin( B+ )
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Homodyne detection

14

A &4
or)—

/ &3
—_— —_—
(LO)

Va\

0,

2
> (to be analyzed)

LO: ot = pe” s

Va\

AN’

(9

/

1 POLYTECHNIQUE
a,=—=a, +a
3 1 2
A 1 A\ Va\
I/ a =—(a —a)
3 4 \/5 2 1
N _ A’{' A /\T A . /\T N /\T A
N,=a,a,—a,a,=a,a,+a, q,
A P A One can measure
<Nd> — T<¢l B=—6 ¢l> === the average value
E of any quadrature
AT A
a, d,

Photon noise in s‘ra’re| ¢,>
Always increases with N,

/

o)+ L ab}
2] 4

Fluctuations of quadrature P
Can be decreased by squeezing
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Ji
{@I/ Generation of a squeezed vacuum
]

() Mode ¢
—es yPeristal —

Degenerate case: () = @'

Effective Hamiltonian: H = Ho +V

Incident mode £: coherent state ¢ € R” |
Neglect pump depletion: ‘ OC(Z‘)> with o/(7) = e

4

V%‘/O :ga{e—iQI&T2+eiQt+&2}

16
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{@I/ Generation of a squeezed vacuum
]
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"} _ ga{e—iQt&TZ n eithf\lz}
0

t=0 :‘(1)> = ‘ O> (vacuum). We apply ‘70 during time .

Heisenberg picture: ih%c/\l(t) = [&(t) ,ﬁH (t):|
N iwa—irdte™ j =282
dt h

Injected into }A’ﬁ and Qﬁ with B=wr—m /4 :
( A ~ — - . o
[ A n ] A

< 05 (7)=0;(0)e™ |AQ;* (7)= [g<1>]2 o2

déﬁ -~
— = ;LQ[; One quadrature is amplified, while the other one
. dt is "deamplified ». !




{4:/ Generation of a squeezed vacuum

EA /AE AQ
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|

Number of Photons:

( )
A A

.1 P2+Q2 - .
N:54 zﬁ[g(l)]ﬁz — 17 > <N(’L‘)>—smh2 AT

J

The average number of photons diverges exponentially with

At. The squeezed "vacuum" contains many photons |
18



Outline

Single-mode quantized field
Quasi-classical state
Quadrature operators

Homodyne detection

Generation of a squeezed vacuum
More general squeezed state
Experimental illustration

Reduction of quantum noise in a
measurement

POLYTECHNIQUE

19



/]
K’i/ More general squeezed states

ECOLE
POLYTECHNIQUE

AE, AE, =[£" T

R)=S(R)|cx) (ReR)
With A(R)=6XP[R(a —&”)/2] squeeze operator
A, o,R)=ala,R) (AEP)2= :g(l):ze2R
A,i C:lCO shR+a'sinh R (AEQ)Z: _g(l)_ze—ZR
| Ag Ay =1
~ n A E 4
A,=S(R)aS™(R)

In general R is complex
and the squeezed
quadrature is rotated by

arg(R)/2

0) -
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K’;/ More general squeezed states
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Coherent state

*—;

0

l. Phase squeezed state

| Amplitude squeezed state
4=

| Squeezed vacuum

0

21
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FIG. 1. (a) Phase plot of the uncertainties in the quadrature
amplitudes of the electric field. The solid line represents the
variance v?(8) of the field X (6) =X 4+cos6+ X —sin@ as a func-
tion of 6 for a squeezed state; the dashed line is for the vacuum
state. (b) Measurement of the phase dependence of the quan-
tum fluctuations in a squeezed state produced by degenerate
parametric down conversion. The plot corresponds roughly to
the quantity v(8) as in (a). More precisely, the phase depen-
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1 / 3 13
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|
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Reduction of quantum noise in a
measurement
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N,

(N,)=

AN’

‘ ¢l> (to be analyzed)

Photon noise in s’ra‘re| ¢z>

0)=I0

(0=

L0180} =0

A3 =(0la1

a, a,|0)+

o7

Ppl0)=p

Quadrature noise

Usual photon noise

25



‘4’; Reduction of quantum noise in a 4
T measurement gL -
?,)

Second example: squeezed vaccum

7 R
(T}Q 4 Nd <Nd>:E<¢l Pﬁ=—0 ¢i>:O
i . 2
o)—> —_ ) R L D X
i T Al et
0.)

One chooses -0 =wr—m /4

. ezm

AN’ =sinh® AT+ pe™" = ot p’e”* for At > 1

Optimum noise compression for e =1/2p

Leading to AN’ = p | for a squeezed vacuum

To be compared with AN; = p2 for "regular" vacuum
26




le Reduction of quantum noise in a

1000 -
=

] I m easure me nT Ecl%fecmoue

pZ — 1020

100+

10+

0 2 4 6 8 10 o 10 20 30 40
AT AT

In practice: reduction limited to a factor of
the order of 100, because of losses

27



Incident state: ‘l//> = ‘ OC,R> @‘ O>

Average:

Variance:

Influence of losses
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Losses | —1°=r"

> aout — tain —r avac

EQout — tEQin o rEQvac

Vacuum field enters through the
fourth port -> Fluctuations

<l// ‘ E Qout

Vo

E

2
Qin 05,R> Classical transmission

w)=t{a,R

Qout

(AE,,, ) =r(sf,

ST <[ T (e +r)

Vacuum fluctuations destroy squeezing !

28
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~ Influence of losses

2 2 POLYTECHNIQUE
Diosses Losses | —t"=r
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Vacuum fluctuations destroy squeezing !
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Conclusion
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Squeezing is a nice illustration of non-
classical states of light

Squeezing can be produced by second-
order nonlinear interaction

One can imagine use squeezing to reduce
quantum fluctuations in measurements

However squeezing is extremely fragile
and sensitive to losses



