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Quantized field 
•  Classical monochromatic e-m field: 

•  Quantized free field (Schrödinger pic.): 

with  
and single-photon field 
 
The field states belong to a Hilbert space 
and evolve with Hamiltonian  

E(r,t) = E0 cos ωt − k ⋅r +ϕ( )
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Single-mode quantized field 

•  Consider only one mode: 

•  Introduce quadrature operators: 

Hermitian è Observables 
•  From                   , we get: 
 

 

  
Ê(r) = i E (1)!ε âeik⋅r − â†e− ik⋅r( )

 

ÊP = E (1) âeiωt + â†e− iωt( )
ÊQ = −iE (1) âeiωt − â†e− iωt( )

â, â†⎡⎣ ⎤⎦ = 1

 ΔEP ΔEQ ≥ E (1)⎡⎣ ⎤⎦
2
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•  We have: 
•  Minimum uncertainty state:  
•  State with symmetric minimum uncertainty: 

•  Such state is called a quasi-classical, or 
coherent, or Glauber state: 

 
 

 

Quasi-classical state (1) 

 ΔEP ΔEQ ≥ E (1)⎡⎣ ⎤⎦
2

 ΔEP ΔEQ = E (1)⎡⎣ ⎤⎦
2

 ΔEP = ΔEQ = E (1)
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Quasi-classical state (2) 

•  Coherent state: 

•  The "most classical" quantum state of light 
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Quasi-classical state (3) 

•  Coherent state: 

•  Poisson statistics for photons: 
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α = e−α
2 /2 α n
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Quasi-classical state (4) 
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α = D̂ α( ) 0

D̂ α( )= exp α â† −α *â( )With displacement operator 

D̂ α( ) D̂† α( )= D̂† α( ) D̂ α( )= 1̂

D̂† α( )= D̂ −α( )

D̂ α( ) D̂ β( )= e αβ*−α*β( )/2D̂ α + β( )
α

0

α

EQ

EP

D̂ α( )
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More on quadrature operators 

•  Generalized quadrature operators: 

•  Electric field: 

•  Average values for a coherent state: 
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P̂β = E (1) âeiβ + â†e− iβ( )
Q̂β = −iE (1) âeiβ − â†e− iβ( )  ΔP̂βΔQ̂β ≥ E (1)⎡⎣ ⎤⎦

2

 
Ê(r) = −

!
ε P̂β sin k ⋅r − β( ) + Q̂β cos k ⋅r − β( ){ }

 

α P̂β α = 2 α E (1) cos β +ϕ( )
α Q̂β α = 2 α E (1) sin β +ϕ( )
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Q̂β
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Homodyne detection 

â1

â2

â3
â4 -­‐	
   Nd ∝ I3 − I4

I3

I4

α

φi

â3 =
1
2
â1 + â2( )

â4 =
1
2
â2 − â1( )

(to be analyzed) 

(LO) 

N̂d = â
†
3 â3 − â

†
4 â4 = â

†
1 â2 + â

†
2 â1

LO: α = ρeiθ
 
N̂d = ρ

E (1) φi P̂β=−θ φi
One can measure 
the average value 
of any quadrature 

 
ΔN̂ 2

d = φi â
†
2 â2 φi + ρ 2

E (1)⎡⎣ ⎤⎦
2 ΔP̂

2
β=−θ

Photon noise in state  
Always increases with N2 

φi Fluctuations of quadrature  
Can be decreased by squeezing 

P̂
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Generation of a squeezed vacuum 
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χ (2)cristalMode L�

Ω

Mode l�ω

ω ' Mode l’�
Ω =ω +ω '

Degenerate case:  ω =ω '
Effective Hamiltonian: Ĥ = Ĥ0 + V̂

 

Ĥ0 = !Ω Â†Â + !ω â†â

V̂ = g Â â†( )2 + Â† â( )2{ }
Incident mode L: coherent state �  α ∈!+

Neglect pump depletion: �α (t) withα (t) =αe− iΩt

V̂ → V̂0 = gα e− iΩt â†2 + eiΩt+â2{ }



Generation of a squeezed vacuum 
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V̂0 = gα e− iΩt â†2 + eiΩt â2{ }
t = 0 : ω = 0 (vacuum). We apply      during time τ. �V̂0

Heisenberg picture:�
 
i! d
dt
â t( ) = â t( ), ĤH (t)⎡⎣ ⎤⎦

dâ
dt

= −iω â − iλâ†e− iΩt
 
λ = 2gα

!

Injected into      and       with                        : �Q̂βP̂β β =ωt −π / 4
dP̂β
dt

= −λP̂β

dQ̂β

dt
= λQ̂β

⎧

⎨
⎪⎪

⎩
⎪
⎪

P̂β τ( ) = P̂β 0( )e−λτ

Q̂β τ( ) = Q̂β 0( )eλτ
 

ΔP̂β
2 τ( ) = E (1)⎡⎣ ⎤⎦

2
e−2λτ

ΔQ̂β
2 τ( ) = E (1)⎡⎣ ⎤⎦

2
e2λτ

One quadrature is amplified, while the other one 
is "deamplified ». 



Generation of a squeezed vacuum 
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N̂ = 1
2

P̂β
2 + Q̂β

2

2 E (1)⎡⎣ ⎤⎦
2 −1

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
N̂ τ( ) = sinh2 λτ

The average number of photons diverges exponentially with  
λτ. The squeezed "vacuum" contains many photons ! 

Number of Photons: 
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More general squeezed states 
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Ŝ R( )= exp R â2 − â†2( ) / 2⎡⎣ ⎤⎦ squeeze operator 

α ,R = Ŝ R( ) α

With 
 (R∈!)

ÂR = âcoshR + â† sinhR

ÂR α ,R =α α ,R
 ΔEP ΔEQ = E (1)⎡⎣ ⎤⎦

2

 

ΔEP( )2 = E (1)⎡⎣ ⎤⎦
2
e2R

ΔEQ( )2 = E (1)⎡⎣ ⎤⎦
2
e−2R

ÂR = Ŝ R( ) â Ŝ−1 R( )
ÂR , Â

†
R⎡⎣ ⎤⎦= 1̂

In general R is complex 
and the squeezed 
quadrature is rotated by 
arg(R)/2 

α ,R

0

α

EQ

EP

D̂ α( ) Ŝ R( )



More general squeezed states 
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Coherent state 

Phase squeezed state 

Amplitude squeezed state 

Squeezed vacuum 
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Reduction of quantum noise in a 
measurement 
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â1

â2

â3
â4 -­‐	
   Nd

I3

I4

α

φi (to be analyzed) 

(LO) 

 
N̂d = ρ

E (1) φi P̂β=−θ φi

 
ΔN̂ 2

d = φi â
†
2 â2 φi + ρ 2

E (1)⎡⎣ ⎤⎦
2 ΔP̂

2
β=−θ

Photon noise in state  φi Quadrature noise 

First example: vacuum φi = 0

 
N̂d = ρ

E (1) 0 P̂β=−θ 0 = 0

 
ΔN̂ 2

d = 0 â†2 â2 0 + ρ 2

E (1)⎡⎣ ⎤⎦
2 0 P̂

2
β=−θ 0 = ρ 2 Usual photon noise 
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ΔN̂ 2

d = φi â
†
2 â2 φi + ρ 2

E (1)⎡⎣ ⎤⎦
2 ΔP̂

2
β=−θ

Second example: squeezed vaccum φi

 
N̂d = ρ

E (1) φi P̂β=−θ φi = 0

â1

â2

â3
â4 -­‐	
   Nd

I3

I4

α

φi

(LO) 

One chooses  −θ =ωt −π / 4

 
ΔN̂ 2

d = sinh
2 λτ + ρ 2e−2λτ ≈ e

2λτ

4
+ ρ 2e−2λτ for λτ ≫1

Optimum noise compression for e−2λτ = 1/ 2ρ

Leading to                   for a squeezed vacuum ΔN̂ 2
d = ρ

To be compared with                    for "regular" vacuum 
 

ΔN̂ 2
d = ρ 2
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In practice: reduction limited to a factor of 
the order of 100, because of losses 



Influence of losses 
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âin

âvac

α ,R

0

âlosses

âout = t âin − râvac

ψ ÊQout ψ = t α ,R ÊQin α ,R

ψ = α ,R ⊗ 0Incident state:  

Classical transmission  t 2

ÊQout = t ÊQin − rÊQvac

 
ΔÊQout( )2 = t 2 ΔÊQin( )2 + r2 E (1)⎡⎣ ⎤⎦

2
= E (1)⎡⎣ ⎤⎦

2
t 2e−2R + r2( )

Losses 1− t 2= r 2

Vacuum field enters through the 
fourth port -> Fluctuations 

Average:  

Variance:  

Vacuum fluctuations destroy squeezing ! 
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âout = t âin − râvac

Losses 1− t 2= r 2

Vacuum fluctuations destroy squeezing ! 
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Conclusion 

•  Squeezing is a nice illustration of non-
classical states of light 

•  Squeezing can be produced by second-
order nonlinear interaction 

•  One can imagine use squeezing to reduce 
quantum fluctuations in measurements 

•  However squeezing is extremely fragile 
and sensitive to losses 
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