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Vacuum fluctuations: losses 
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†
in⎡⎣ ⎤⎦ = t

2 ≠ 1̂

 âℓ, â
†
ℓ⎡⎣ ⎤⎦ = 1̂But all modes should obey 

Something is missing….: coupling to other modes. 



Vacuum fluctuations: losses 
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Losses modeled by a beam splitter: r 2= 1− t 2 with t <1

âout , â
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Extra vacuum fluctuations enter through the empty port, 
which mimics coupling to other modes due to absorbing or 
scattering centers. 



Vacuum fluctuations: gain 
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Something is missing again.: coupling to other modes. 
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â†vac

âout , â
†
out⎡⎣ ⎤⎦ = g

2 âin , â
†
in⎡⎣ ⎤⎦ + g2 −1( ) â†vac , âvac⎡⎣ ⎤⎦ = 1̂

Extra vacuum fluctuations enter through the empty port, 
which mimics coupling to other modes due to amplifying 
atoms. 

âout = gâin + g2 −1 â†vacâin

Gain: G = g 2>1
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0

âout = gâin + g2 −1 â†vacâinin G

 

ΔÊPout( )2 = G ΔÊPin( )2 + (G −1) E (1)⎡⎣ ⎤⎦
2

ΔÊQout( )2 = G ΔÊQin( )2 + (G −1) E (1)⎡⎣ ⎤⎦
2

ÊPout = gÊPin + g2 −1 ÊPvac

ÊQout = gÊQin − g2 −1 ÊQvac 

ÊP = E (1) â + â†( )
ÊQ = −iE (1) â − â†( )

Input noise amplification Excess noise 

The amplification process necessarily introduces noise. 
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0

âout = gâin + g2 −1 â†vacâinα G

 

ΔÊPout( )2 = G ΔÊPin( )2 + (G −1) E (1)⎡⎣ ⎤⎦
2

ΔÊQout( )2 = G ΔÊQin( )2 + (G −1) E (1)⎡⎣ ⎤⎦
2

in = αIf                  (coherent state), then: 
 
leading to:  

 
ΔÊPin( )2 = ΔÊQin( )2 = E (1)⎡⎣ ⎤⎦

2

 
ΔÊPout( )2 = ΔÊQout( )2 = (2G −1) E (1)⎡⎣ ⎤⎦

2

The intensity is amplified by a gain G, while the noise is amplified by a 
factor (2G-1). Thus the signal-to-noise ratio is degraded by a factor:  

F = SNRin
SNRout

= 2G −1
G

>1
 F ! 2 = 3dBwhenG≫1



Phase sensitive amplification 
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ÊPout = gÊPinÊPin G,1 /G

ΔÊPout( )2 = G ΔÊPin( )2

ΔÊQout( )2 = 1G ΔÊQin( )2
Intensity and noise are 
(de-) amplified by the 
same factor.  

F = SNRin
SNRout

= G
G

= 1/G
1/G

= 1

ÊQout =
1
g
ÊQinÊQin

ÊPout , ÊQout⎡⎣ ⎤⎦ = ÊPin , ÊQin⎡⎣ ⎤⎦ âPout , â
†
Qout⎡⎣ ⎤⎦ = 1̂

in

One quadrature is amplified while the other is "deamplified"  

Then: and 



PIA vs. PAS 
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× 2G −1

× 2G −1

× G

× G

EQ
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× G
×1/ G

× G

×1/ G

Phase sensitive amplification	  Phase insensitive amplification	  

No coupling to other 
modes than the pump 
(Hamiltonian system)	  

Coupling to other modes 
through amplifying atoms 
(open system)	  
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χ (2)cristalMode L

Ω

Mode lω

ω ' Mode l’
Ω =ω +ω '

Degenerate case:  ω =ω '
Effective Hamiltonian: Ĥ = Ĥ0 + V̂

 

Ĥ0 = !Ω Â†Â + !ω â†â

V̂ = g Â â†( )2 + Â† â( )2{ }
dP̂β
dt

= −λP̂β

dQ̂β

dt
= λQ̂β

⎧

⎨
⎪⎪

⎩
⎪
⎪

P̂β τ( ) = P̂β 0( )e−λτ

Q̂β τ( ) = Q̂β 0( )eλτ

One quadrature is amplified, while the other one 
is "deamplified ». 
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We experimentally demonstrate that a type-II pulsed optical parametric amplifier operated in a phase-
insensitive configuration works as a near-perfect classical optical amplifier whose noise figure approaches 3 dB
at high gains. We further demonstrate that, when operated in a phase-sensitive configuration, this amplifier
works as a quantum-optical amplifier whose noise figure goes below 3 dB and approaches 0 dB at high gains.
The noise figure of 1.45 + 0.2 dB, measured for a gain of 9 dB, is clearly in the quantum regime.

1. INTRODUCTION
Optical amplifiers (OA's) are a key element in communica-
tions systems because they can directly amplify optical sig-
nals and are free of the bandwidth limitations imposed on
optical communications by conventional electronic ampli-
fiers. Since in optical communications OA's are cascaded
in series (as in-line repeaters, as boosters before branch-
ing, or as preamplifiers before detection), it is imperative
that they do not add noise to the signals that they amplify.
We quantify this feature by means of the noise figure
(NF) of the amplifier, which is defined as the signal-to-
noise ratio (SNR) at the input of the amplifier divided by
the SNR at the output, that is,

NF = SNRin (1)
SNRout

Clearly, for an ideal amplifier that adds no noise, we must
have NF = 1 (i.e., 0 dB).

In the best traveling-wave amplifiers that are used to
date in optical systems, the NF attains a value of -5 dB
for semiconductor OA's' and -4 dB for Er-doped optical-
fiber OA's.2 The NF's of these OA's cannot be improved
much further because they approach the quantum limit for
phase-insensitive amplification, which is 3 dB.3-6 Such a
phase-insensitive amplifier (PIA), in addition to amplify-
ing the quadrature that carries the signal, also amplifies
the conjugate quadrature that carries only noise. In this
case it can be shown 6 (see also Section 2 below) that the
SNR is degraded by a factor of 2, hence the NF of 3 dB.
This situation is depicted in Fig. 1(a), in which the beams
at the input and output of the PIA are represented in a
phase-space diagram. The quantum noise of the coherent
input is depicted by a disk of unit radius surrounding the
vector extremity. The edge of the disk represents the l/e
isoprobability curve for the possible outcomes of a mea-
surement. The area of the disk is directly given by the
Heisenberg uncertainty principle, which for a coherent
beam verifies

AE1AE 2 = 1, (2)

where AE, and AE2 are in units of \/2. On phase-
insensitive amplification all the dimensions of the disk are
magnified by the same factor. Thus the noise spot re-
mains a disk (i.e., the noise power is the same in both
quadratures), but its area is now larger, indicating that
the amplifier has introduced excess noise beyond that
required by the Heisenberg uncertainty principle.

Thirty years ago Louisell' pointed out that a coupled-
mode parametric amplifier can overcome this limit if both
its input channels are excited. More recently several
workers4 ` contributed to the development of a theoretical
framework for the analysis of quantum noise in optical
amplifiers. The main idea is that a parametric amplifier
that has both input channels excited is sensitive to the
phase of the input signal. Such a phase-sensitive ampli-
fier (PSA) amplifies both the signal and the noise in the
quadrature that carries information but deamplifies the
noise in the conjugate quadrature that carries no informa-
tion. In this case it can be shown3 (see also Section 2
below) that the SNR remains unchanged, implying that an
ideal PSA has NF = 1 (i.e., 0 dB) in the amplified quadra-
ture. Figure 1(b) allows us to understand this situation
better. By amplifying one quadrature and deamplifying
its conjugate, one distorts the noise spot into an ellipse, in
contrast to the PIA configuration. However, in spite of
the distortion, the area of the noise spot is unchanged and
remains equal to that required by the Heisenberg uncer-
tainty principle. The amplifier thus operates in the
quantum-limited regime. This means that no additional
noise is introduced into the signal in the amplified
quadrature, thus resulting in a NF of 0 dB, which is asso-
ciated with quantum-limited optical amplification.
Although many quantum features of parametric amplifi-
cation such as twin-photon-noise reduction,9 squeezing,'0 "'
and quantum-nondemolition measurements'2 have been re-
cently introduced, the early theoretical predictions on the
quantum NF of parametric amplification, to our knowl-
edge, have not yet been experimentally demonstrated.
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Fig. 2. Experimental setup. A frequency-doubled mode-locked
(ML) Q-switched (QS) YLF:Nd laser pumps (at 527 nm) a
traveling-wave parametric amplifier composed of two type-II
KTP crystals. The polarization of the input signal (at 1054 nm)
is rotated by the half-wavelength plate (A/2) to achieve phase-
insensitive or phase-sensitive amplification. The photodiode
current is split 90/10, with each partial current measured by use
of a spectrum analyzer and a boxcar combination.

Ndet = -q[cosh2(yz)a'a + sinh2 (yz)bb+
+ cosh(yz)sinh(yz)(a+b+ + ab)] + (1 - q)c+c
+ Vi1(1- i) [coshyz)a'c + sinh(yz)bc
+ cosh(yz)ac' + sinh(yz)b'c+]. (26)

For the case of a PIA the detected signal is therefore

(N)det = -qn cosh2 (yz) = Y7nGpIA, (27)

whereas the noise power is

(AN2)det = 'qn cosh 2(yz)[1 + 2 sinh 2 (yz)]

= 2 2nGpuA + (1 - 277)GPIA 2 (28)

This corresponds to an overall NF of

NFpu = 2 2 + 1 , (29)
GpiA 71GPA

which shows that at low gains the presence of downstream
losses degrades the NF of the amplifier but that at high
gains this degradation is compensated and that one attains
the classical 3-dB limit.

Similarly, for the case of PSA, the output of the signal
channel is

N) n(N)+ = 72 q-G, (30)
2

whereas the noise power in this channel is

(AN) = 71 -Gp[-q cosh(2yz) + 1 - q], (31)

corresponding to a NF of

NF, = 2[77 cosh(2yz) + 1 - q] (32)
,qG,6

In the amplifying quadrature ( = 0) the NF becomes

1 + 2(1 - 71) (33)
Go nGo

Clearly, at high gain the noise introduced by downstream
losses is compensated, and the PSA may reach the ideal

NF of 1, a factor of 2 better than the PIA. The experi-
ments presented in this paper aim to demonstrate Eqs. (28)
and (33).

3. EXPERIMENT
Our experimental setup, schematically presented in Fig. 2,
is based on a frequency-doubled mode-locked Q-switched
YLF laser pumping two type-II KTP crystals in series,
constituting a traveling-wave parametric amplifier. The
pump beam, at 527 nm, consists of a train of 35-ps-long
pulses with a repetition rate of 76 MHz modulated into
Gaussian envelopes of 400-ns duration (FWHM), produced
at a repetition rate of 400 Hz. A small part of the fun-
damental (nondoubled) laser beam at 1054 nm is col-
linearly injected into the pump beam and serves as the
input signal to the amplifier. This beam consists of
630-ns-long (FWHM) Gaussian trains of 50-ps-long pulses,
synchronized with the pulses of the pump beam. At the
exit of the amplifier one eliminates the pump beam by
means of two RG 715 filters and places a polarizer to se-
lect the two polarizations (signal and idler) parallel to the
crystal axes. Note that the signal and idler outputs of the
type-II parametric amplifier are degenerate with respect
to wavelength but are clearly nondegenerate (and there-
fore separable) with respect to polarization. One places a
half-wave plate before the amplifier, which permits rota-
tion of the polarization of the input beam. When the in-
put beam is polarized parallel to one of the crystal axes
(say, the signal axis) the parametric amplifier is not sensi-
tive to the phase of the input, as shown in Section 2 above:
the phase of the idler automatically adjusts itself to any
fluctuations of the phase of the signal. On the other hand,
when the input is polarized at 450 with respect to the crys-
tal axes the amplifier is sensitive to the phase of the input
signal. For a particular phase = 0 the light produced
by the parametric amplifier is in phase with the input sig-
nal and thus constructively interferes with it, giving rise
to amplification, whereas for the conjugate quadrature the
field emitted by the amplifier is out of phase with the in-
put signal, and thus their interference produces deampli-
fication of the input.

In our experimental setup one adjusts the confocal
parameter of all the beams to be much larger than the
crystal length to minimize mode distortion and diffraction
effects. 4 One keeps the pump beam to a maximum in-
tensity of 50 MW/cm2, also to minimize distortion, thus
producing a maximum power gain of GpIA of 6.4 dB in the
phase-insensitive configuration and Go of 9 dB in the am-
plified quadrature of the phase-sensitive configuration.

The output of the signal channel is focused (FWHM =
80 ,tm) onto a 300-,um-diameter InGaAs photodiode
(Epitaxx ETX-300) with nominal quantum efficiency of
-90% and low dark current. One avoids optical satura-
tion of the photodiode by limiting the optical gain and by
adjusting the input-signal intensity to be of the order of
20 kW/cm2, so that the peak photocurrent never exceeds
10 mA, i.e., 0.5 V on 50 fQ. The output photocurrent from
the photodiode is split 90/10, and the 10% portion is intro-
duced into a spectrum analyzer (HP 8563A) set at
76 MHz: measurement of the 76-MHz modulation of the
mode-locked laser constitutes the signal carried by the
beam. The 90% portion of the photocurrent is introduced
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Fig. 3. Noise power of the parametric output in the phase-
insensitive configuration as a function of gain (triangles), fitted
to Eq. (28). The squares represent the measured noise power of
a coherent beam.

into a bandpass filter that transmits between 12 and
25 MHz and has 90-dB attenuation outside this range.
This filter prevents saturation of the subsequent low-noise
amplifier (Trontech W11OB-13) by the 76-MHz modulation
and its harmonics. We checked this by examining the ab-
sence of distortion in the temporal profile of the amplified
pulse. The amplifier output is fed into a second spectrum
analyzer with 10-MHz rf bandwidth (Tektronix 2782) set
at 18 MHz. In principle, in the determination of the SNR,
one must measure the noise over the same frequency band
as the signal. However, because of the very large ampli-
tude of the signal at 76 MHz, direct measurement of the
quantum noise at this frequency is not possible. On the
other hand, measurement of the noise at 18 MHz ges
a quantitative measure of the quantum noise at the modu-
lation frequency (76 MHz) because of the large band-
width of traveling-wave pulsed parametric amplification
(>100 GHz). The large bandwidth of the spectrum ana-
lyzer (and bandpass filter) permits one to time resolve the
envelope of the Q-switched pulse train, and only approxi-
mately seven mode-locked pulses at the center of the train
are effectively registered (50-ns time window).

To treat the signals quantitatively, video averaging is
provided by two boxcars following each of the two spec-
trum analyzers; the boxcars are triggered by the Q-switch
synchronization from the laser-power supply, and their
gate width is 50 ns. Each measurement involves -5000
Q-switched trains, which are averaged by a computer that
receives the data from the boxcars. One performs all the
measurements by simultaneously registering the modula-
tion (at 76 MHz) and the noise (at 18 MHz) for the output
beams. These two quantities are then plotted as x and y,
respectively, giving the noise power as a function of the
amplifier gain. In the case of the PIA, one varies the gain
GpIA by changing the incident intensity of the pump beam.
For the case of PSA, one varies the gain G, by scanning
the relative phase of the pump and input beams. One
achieves this by modulating the path of the input beam
with a piezoelectric transducer.

4. RESULTS
First we consider the PIA configuration in which the
polarization of the input beam is fixed parallel to the ex-

traordinary axis of the crystal; this polarization corre-
sponds to the signal channel.

The results of the measurement of quantum-noise power
in the PIA configuration are given in Fig. 3, in which the
measured noise (triangles) is plotted as a function of the
amplifier gain GpIA, expressed in decibels. One obtains
the 0-dB point by removing the pump beam, and therefore
this point corresponds to GpLA = 1 and is then followed by
an attenuation (1 - -q) resulting from the overall detection
efficiency -q. The theoretical expression [Eq. (28) divided
by -q] is also plotted for -q = 0.85, which fits the experi-
mental data quite well. In Fig. 3 are also plotted, for com-
parison, the noise power resulting from shot noise at each
output intensity (squares). One obtains these data by
turning off the pump beam and then adjusting the inten-
sity of the input laser beam so that it matches the output
intensity measured in the presence of amplification. As
expected, the shot-noise curve is a line of slope 0.5. Note
that at all the output intensities the noise power of the
amplified beam is larger than the noise power correspond-
ing to shot noise. In Fig. 4 we plotted the F that can
be deduced from the experimental data (trian es) and fit-
ted it to Eq. (29). Note that for a gain of G'IA of 6.4 dB,
the largest examined in this experiment, we obtained a
NF of 2.2 dB, whereas at larger gains the NF should ap-
proach 3 dB, as the theoretical curve of Eq. (29) indicates.

We now consider the experimental PSA configuration, in
which the polarization of the input beam is set at 450 with
respect to the extraordinary and ordinary axes, so that it
projects equally onto the signal and idler polarizations.
As discussed in Section 2 above, the parametric amplifier
is phase sensitive in this configuration. Note that, in this
experiment, to minimize the changes betwefn the PIA
and the PSA configurations, one retains the polarizer sepa-
rating signal and idler at the output of the amplifier.

The noise power measured in the phase-sensitive con-
figuration is presented in Fig. 5, where it is plotted as a
function of the phase-sensitive gain Gas in decibels. The
experimental results (stars) are quite well fitted by the
expected theoretical expression [Eq. (31)], with -q = 0.82.
The shot noise that corresponds to the output intensity is
also plotted (squares). In this configuration it was pos-
sible to check whether the input beam was shot-noise lim-

SIGNAL PHASE (deg)
120 90 0

8 .................. ,. . .. .

6

'4X
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-2 0 2 4 6 8 10
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Fig. 4. NF of the phase-insensitive (triangles) and phase-
sensitive (stars) parametric amplifiers, fitted to Eqs. (29) and
(33), respectively.
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Fig. 3. Noise power of the parametric output in the phase-
insensitive configuration as a function of gain (triangles), fitted
to Eq. (28). The squares represent the measured noise power of
a coherent beam.

into a bandpass filter that transmits between 12 and
25 MHz and has 90-dB attenuation outside this range.
This filter prevents saturation of the subsequent low-noise
amplifier (Trontech W11OB-13) by the 76-MHz modulation
and its harmonics. We checked this by examining the ab-
sence of distortion in the temporal profile of the amplified
pulse. The amplifier output is fed into a second spectrum
analyzer with 10-MHz rf bandwidth (Tektronix 2782) set
at 18 MHz. In principle, in the determination of the SNR,
one must measure the noise over the same frequency band
as the signal. However, because of the very large ampli-
tude of the signal at 76 MHz, direct measurement of the
quantum noise at this frequency is not possible. On the
other hand, measurement of the noise at 18 MHz ges
a quantitative measure of the quantum noise at the modu-
lation frequency (76 MHz) because of the large band-
width of traveling-wave pulsed parametric amplification
(>100 GHz). The large bandwidth of the spectrum ana-
lyzer (and bandpass filter) permits one to time resolve the
envelope of the Q-switched pulse train, and only approxi-
mately seven mode-locked pulses at the center of the train
are effectively registered (50-ns time window).

To treat the signals quantitatively, video averaging is
provided by two boxcars following each of the two spec-
trum analyzers; the boxcars are triggered by the Q-switch
synchronization from the laser-power supply, and their
gate width is 50 ns. Each measurement involves -5000
Q-switched trains, which are averaged by a computer that
receives the data from the boxcars. One performs all the
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the relative phase of the pump and input beams. One
achieves this by modulating the path of the input beam
with a piezoelectric transducer.
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First we consider the PIA configuration in which the
polarization of the input beam is fixed parallel to the ex-
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The results of the measurement of quantum-noise power
in the PIA configuration are given in Fig. 3, in which the
measured noise (triangles) is plotted as a function of the
amplifier gain GpIA, expressed in decibels. One obtains
the 0-dB point by removing the pump beam, and therefore
this point corresponds to GpLA = 1 and is then followed by
an attenuation (1 - -q) resulting from the overall detection
efficiency -q. The theoretical expression [Eq. (28) divided
by -q] is also plotted for -q = 0.85, which fits the experi-
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parison, the noise power resulting from shot noise at each
output intensity (squares). One obtains these data by
turning off the pump beam and then adjusting the inten-
sity of the input laser beam so that it matches the output
intensity measured in the presence of amplification. As
expected, the shot-noise curve is a line of slope 0.5. Note
that at all the output intensities the noise power of the
amplified beam is larger than the noise power correspond-
ing to shot noise. In Fig. 4 we plotted the F that can
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ted it to Eq. (29). Note that for a gain of G'IA of 6.4 dB,
the largest examined in this experiment, we obtained a
NF of 2.2 dB, whereas at larger gains the NF should ap-
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which the polarization of the input beam is set at 450 with
respect to the extraordinary and ordinary axes, so that it
projects equally onto the signal and idler polarizations.
As discussed in Section 2 above, the parametric amplifier
is phase sensitive in this configuration. Note that, in this
experiment, to minimize the changes betwefn the PIA
and the PSA configurations, one retains the polarizer sepa-
rating signal and idler at the output of the amplifier.
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Conclusion 

•  Phase insensitive amplifiers degrade the 
signal-to-noise ratio, due to coupling to 
vacuum modes 

•  Phase sensitive amplifiers can amplify 
without degrading the SNR 

•  Practical implementation is based on 
parametric processes, based on χ(2) or χ(3) 
processes. 

•  See Tarek Labidi’s poster for 
implementation in nonlinear optical fibers 
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