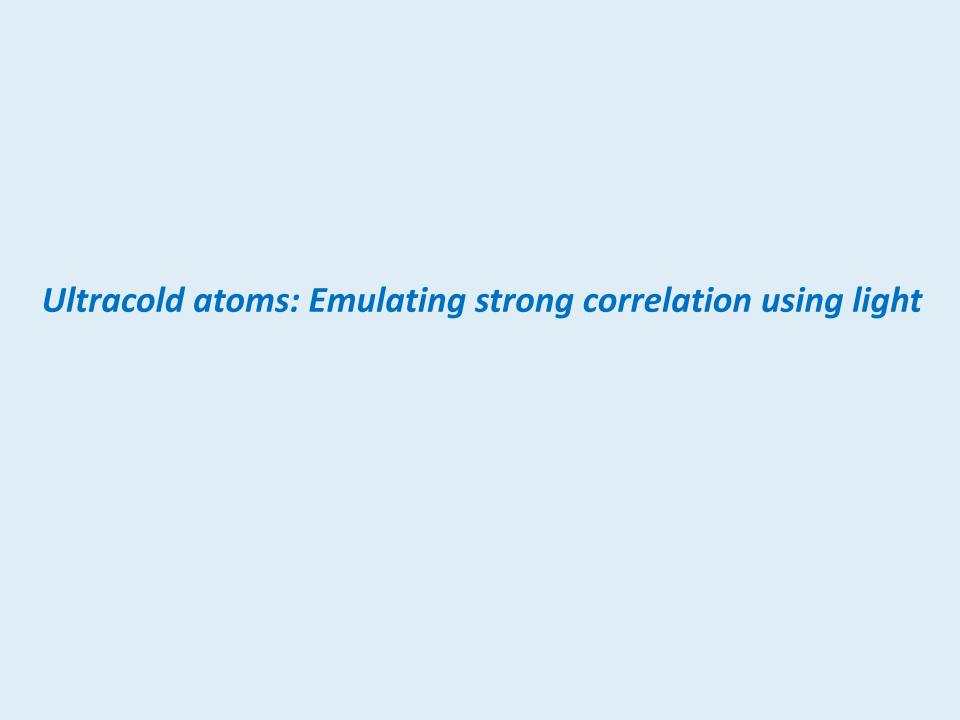
Translational symmetry broken Mott states of ultracold bosons

K. Sengupta

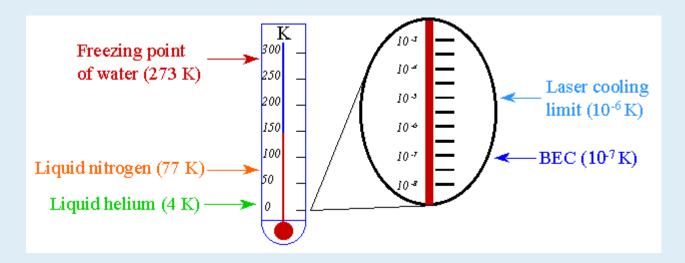
Theoretical Physics Department, IACS, Kolkata

Outline

- 1. Emulating correlated systems: Bose Hubbard model
- 2. Translational symmetry breaking via "electric field" application
- 3. Realizing antiferromagnetic spin chains
- 4. Observing quantum dynamics: Kibble Zureck scaling in a nutshell
- 5. Tuning the dipole model
- 6. Breaking symmetries with Rydberg atoms
- 7. Conclusion



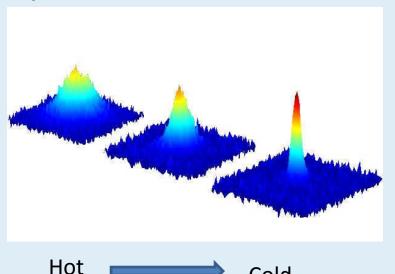
How cold is ultracold



Perspective about how cold these atoms really are: coldest place in the universe

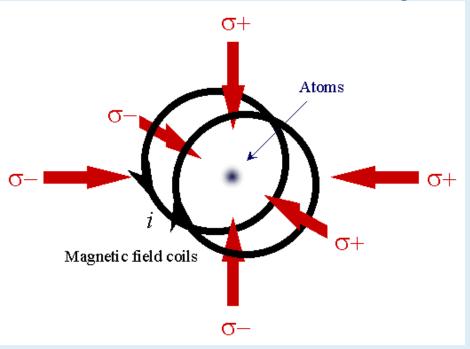
How do you measure such temperatures?

Form a BEC and measure the width of the central peak in its momentum distribution.



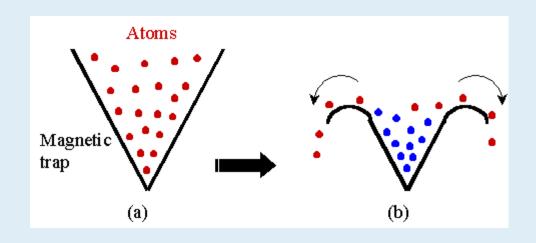
Cold

Cooling techniques: two methods



Doppler cooling of atoms

Creation of optical molasses leading to microkelvin temperatures



Further evaporative cooling of the atoms leading to temperature ~ 10 nK

This is well below critical Temperature of a BEC

Emulating lattices for bosons with light

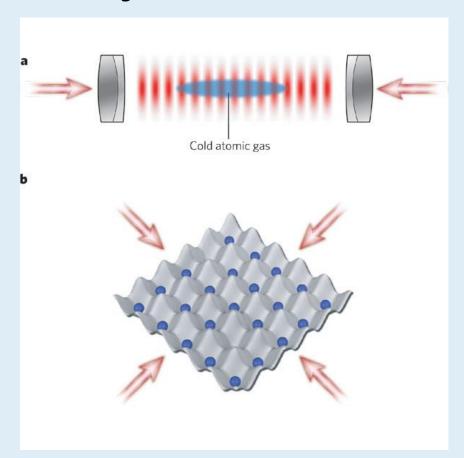
Apply counter propagating laser: standing wave of light.

The atoms feel a potential $V = -a |E|^2$

For positive α , the atoms sits at the bottom of the potential generated by the lasers:

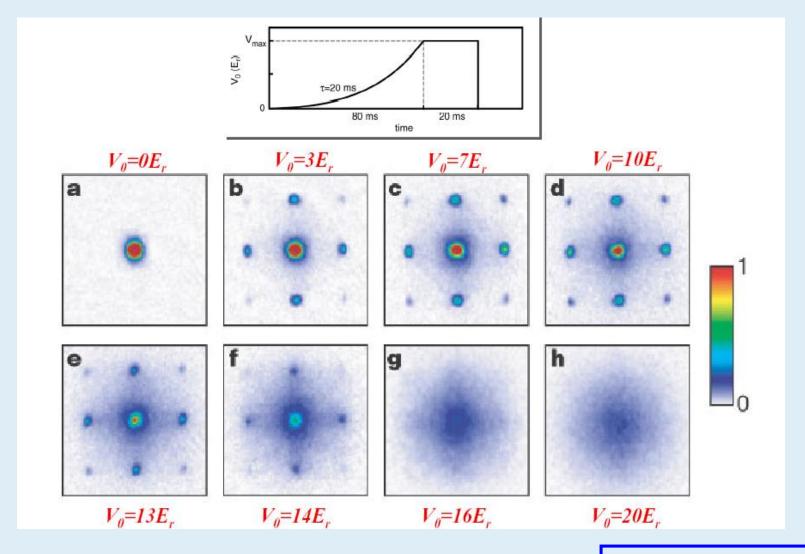
Bloch theory for bosons

Optical Lattices	Solid state crystals
 Fully controllable, no defects, no vibrations 	 Very complex condensed matter environment
 Lattice spacing micrometers 	 Lattice spacing Angstroms
• Trapped atom mass ~ 10-100 amu	• Electron mass 1/1900 amu
• Temperature : T~1 nK	• Temperature : T~ 100 K



How does one realize physics of interacting quantum matter using such bosons

Emulating strong correlation

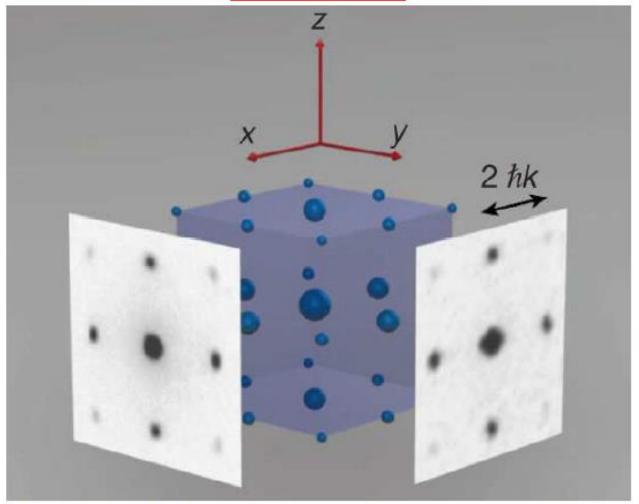


Experiments with cold atoms in an optical lattice (Greiner et al. 2001)

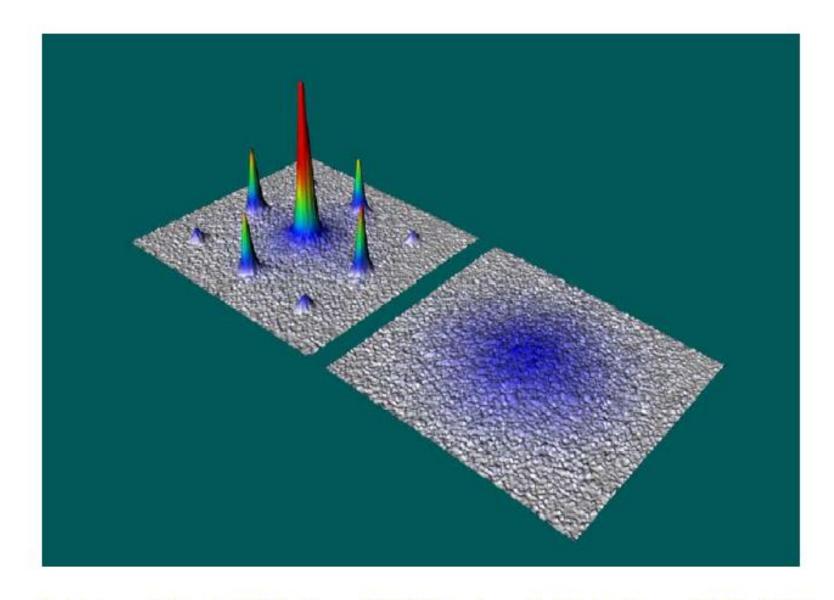
Unit of energy

 $E_r = 2\hbar^2 \pi^2 / m\lambda^2$

Superfluid state



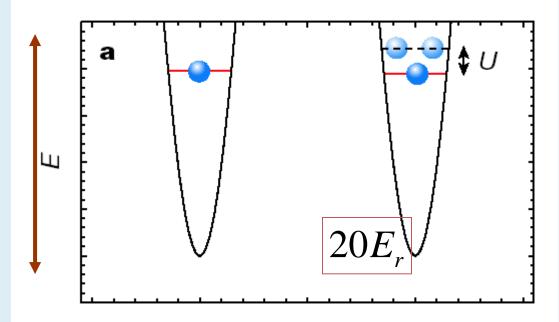
Schematic three-dimensional interference pattern with measured absorption images taken along two orthogonal directions. The absorption images were obtained after ballistic expansion from a lattice with a potential depth of $V_0 = 10 \, E_r$ and a time of flight of 15 ms.



M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch, Nature 415, 39 (2002).

Theoretical Modeling

For a deep enough potential, the atoms are localized: Mott insulator described by single band Bose-Hubbard model.



Energy Scales

$$\delta E_n = 5E_r \sim 20 \text{ U}$$
U ~10-300 t

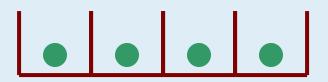
Ignore higher bands

Model Hamiltonian

$$\mathcal{H} = -t \sum_{\langle i,j
angle} \left(b_i^\dagger b_j + ext{h.c.}
ight) \ + rac{U}{2} \sum_i n_i (n_i - 1) \ - \mu \sum_i n_i$$

Mott-Superfluid transition: preliminary analysis

Mott state with 1 boson per site



$$\mathcal{H}_{\text{on-site}} = \frac{U}{2} \sum_{i} n_i (n_i - 1) - \mu \sum_{i} n_i$$

Stable ground state for 0 < m < U

Adding a particle to the Mott state

Mott state is destabilized when the excitation energy touches 0.

$$\delta E_p = (-\mu + U) - 2zt$$
 $t_p^c = (-\mu + U)/2z$

Removing a particle from the Mott state

$$\delta E_h = \mu - zt
t_c^h = \mu/z$$

Destabilization of the Mott state via addition of particles/hole: onset of superfluidity

Beyond this simple picture

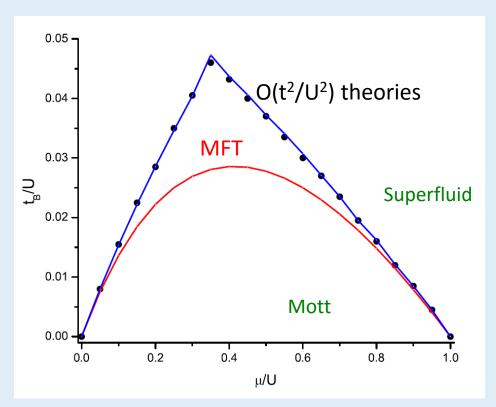
Higher order energy calculation by Freericks and Monien: Inclusion of up to O(t³/U³) virtual processes.

Mean-field theory (Fisher 89)

Quantum Monte Carlo studies for 2D systems: Trivedi and Krauth.

Predicts a quantum phase transition with z=2 (except at the tip of the Mott lobe where z=1).

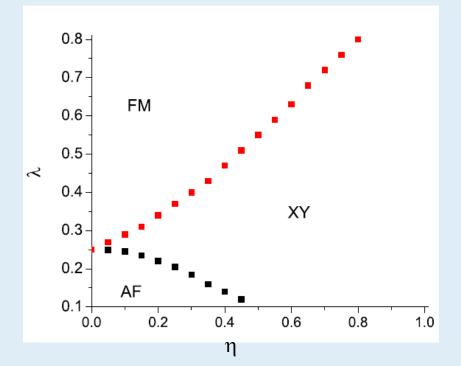
Phase diagram for n=1 and d=3



Theoretical routes for translational symmetry breaking: Mott states of bosons

Realize two or more species of ultracold bosons on a lattice and rely on order-by-disorder.

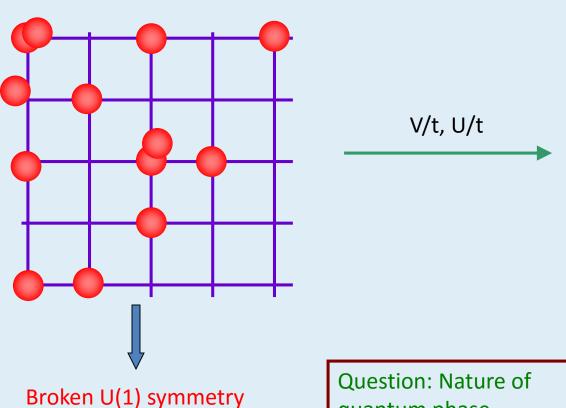
$$\mathcal{H} = \sum_{\alpha=1,2} \left[\sum_{\langle ij \rangle} \left(-\frac{t_{\alpha}}{t_{\alpha}} b_{i,\alpha}^{\dagger} b_{j\alpha} + \text{h.c.} \right) - \mu \sum_{i} n_{i\alpha} \right] + \frac{U}{2} \left[\sum_{i,\alpha} n_{i,\alpha} \left(n_{i\alpha} - 1 \right) + 2 \frac{\lambda}{\lambda} \sum_{i} n_{i1} n_{i2} \right] = T + H_{0}$$



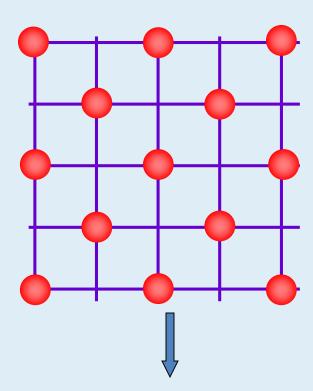
$$\begin{aligned} \mathsf{FM} &\equiv |1,0\rangle \quad \theta_A = \theta_B = 0 \\ \mathsf{AF} &\equiv |1,0\rangle_A \, |0,1\rangle_B \quad \theta_A = 0, \theta_B = \pi \\ \mathsf{XY} &\equiv \cos\left(\theta/2\right) |1,0\rangle + \sin\left(\theta/2\right) |0,1\rangle \\ \theta_A &= \theta_B \neq 0 \end{aligned}$$

Add a nearest neighbor interaction between the bosons

$$H_{\mathsf{Bose}} \ = \ -t \sum_{\left\langle ij \right\rangle} \left(b_i^\dagger b_j + \mathsf{h.c} \right) + rac{U}{2} \sum_i \widehat{n}_i \left(\widehat{n}_i - 1 \right) + V \sum_{\left\langle ij \right\rangle} \widehat{n}_i \widehat{n}_j - \mu \sum_i \widehat{n}_i$$



quantum phase transition?



Broken translation symmetry

Apply an "electric field" to neutral bosons

Shift the center of the trap holding the bosons

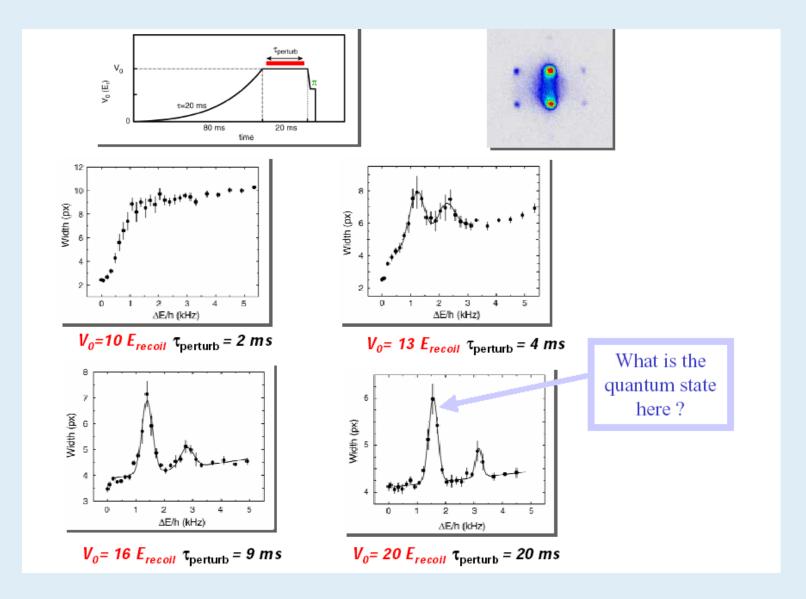
Apply a linearly (spatial) varying magnetic field to spin polarized bosons.

$$H \rightarrow H = g \mu_B s_z B(x)$$

Linear term in the boson Hamiltonian

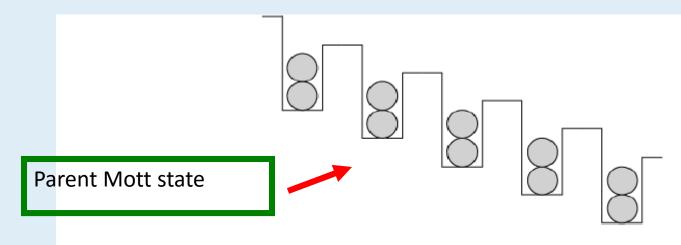
$$H_{\text{bosons}} = -J \sum_{\langle ij \rangle} (b_i^{\dagger} b_j + \text{h.c.}) - \sum_i (\mu + \mathcal{E}i) \hat{n}_i$$
$$+ U/2 \sum_i \hat{n}_i (\hat{n}_i - 1)$$

Generation of electric field for neutral bosons



There seem to be sharp resonant absorption at fixed "electric field" amplitude indicating a definite quantum state in the Mott regime

Construction of an effective model: 1D



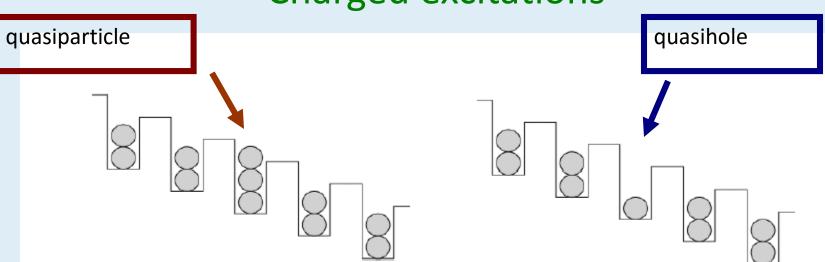
$$H = -w \sum_{\langle ij \rangle} \left(b_i^{\dagger} b_j + b_j^{\dagger} b_i \right) + \frac{U}{2} \sum_i n_i \left(n_i - 1 \right) - \sum_i \mathbf{E} \cdot \mathbf{r}_i n_i$$

$$n_i = b_i^{\dagger} b_i$$

$$|U-E|, w \ll E, U$$

Describe spectrum in subspace of states resonantly coupled to the Mott insulator

Charged excitations



Effective Hamiltonian for a quasiparticle in one dimension (similar for a quasihole):

$$H_{\text{eff}} = -\sum_{j} \left[3w \left(b_{j}^{\dagger} b_{j+1} + b_{j+1}^{\dagger} b_{j} \right) + E j b_{j}^{\dagger} b_{j} \right]$$

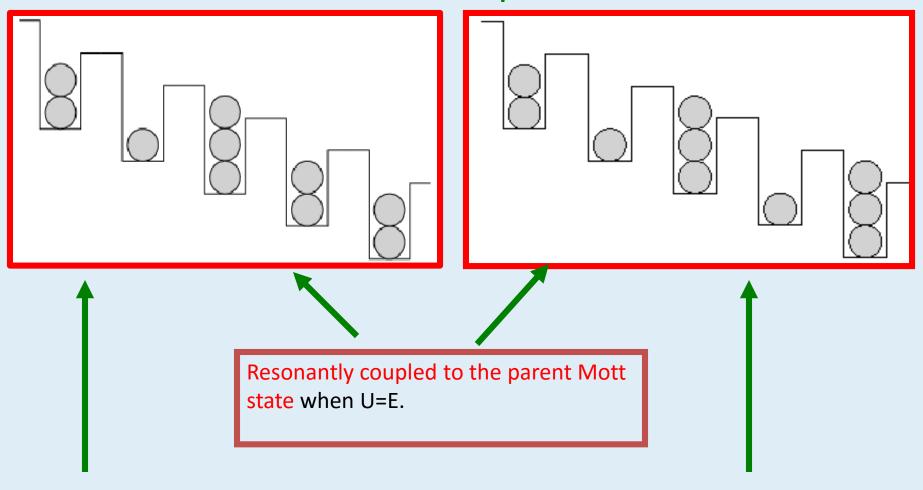
Exact eigenvalues $\varepsilon_m = Em$; $m = -\infty \cdots \infty$

Exact eigenvectors $\psi_m(j) = J_{j-m}(6w/E)$

All charged excitations are strongly localized in the plane perpendicular electric field. Wavefunction is periodic in time, with period h/E (Bloch oscillations)

Quasiparticles and quasiholes are not accelerated out to infinity

Neutral dipoles



Neutral dipole state with energy U-E.

Two dipoles which are not nearest neighbors with energy 2(U-E).

Effective dipole Hamiltonian: 1D

$$d_{\ell}^{\dagger} \Rightarrow$$
 Creates dipole on link ℓ

$$\begin{split} H_d = -\sqrt{6}w \sum_{\ell} \left(d_{\ell}^{\dagger} + d_{\ell}\right) + (U - E) \sum_{\ell} d_{\ell}^{\dagger} d_{\ell} \\ \text{Constraints:} \quad d_{\ell}^{\dagger} d_{\ell} \leq 1 \quad ; \quad d_{\ell+1}^{\dagger} d_{\ell+1} d_{\ell}^{\dagger} d_{\ell} = 0 \end{split}$$

Determine phase diagram of H_d as a function of (U-E)/w

Note: there is <u>no explicit dipole hopping term</u>.

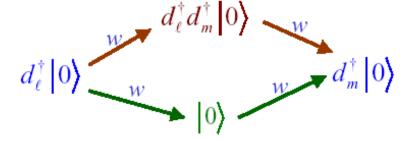
However, dipole hopping is generated by the interplay of terms in H_d and the constraints.

Weak Electric Field

Ground state is dipole vacuum (Mott insulator) 0

First excited levels: single dipole states $d_{\ell}^{\dagger} | 0 \rangle$

Effective hopping between dipole states



If both processes are permitted, they exactly cancel each other. The top processes is blocked when ℓ, m are nearest neighbors

 \Rightarrow A nearest-neighbor dipole hopping term $\sim \frac{w^2}{U-E}$ is generated

The effective Hamiltonian for the dipoles for weak E:

$$\mathcal{H}_{d,\text{eff}} = (U - E) \sum_{l} \left[|l| > < l| + \frac{w^2 n_0 (n_0 + 1)}{(U - E)^2} (|l| > < l| + |l + 1|) \right]$$

- Lowest energy excitations: Single band of dipole excitations.
- These excitations soften as E approaches U. This is a precursor of the appearance of Ising density wave with period 2.
- Higher excited states consists of multiparticle continuum.

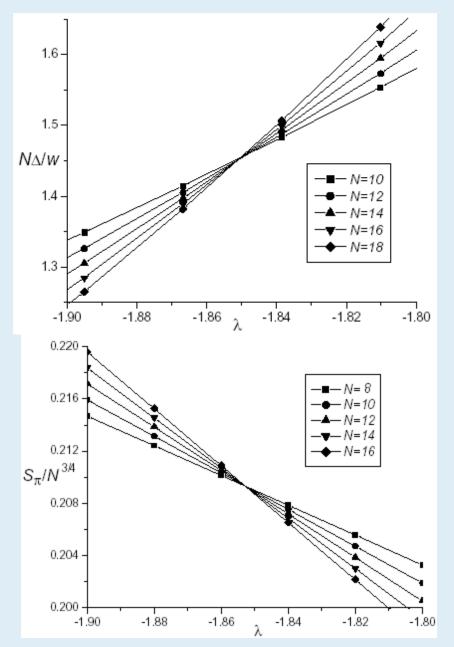
Strong Electric field

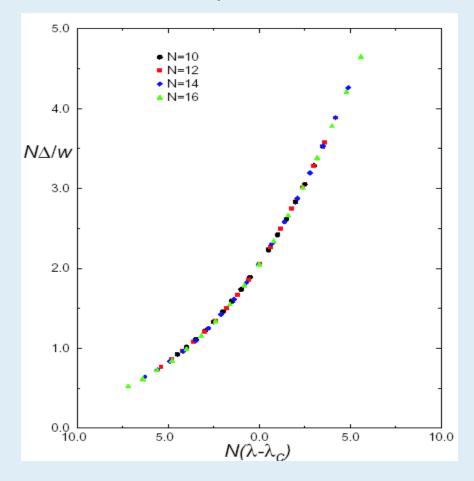
- The ground state is a state of maximum dipoles.
- Because of the constraint of not having two dipoles on consecutive sites, we have two degenerate ground states

$$\cdots d_1^{\dagger} d_3^{\dagger} d_5^{\dagger} d_7^{\dagger} d_9^{\dagger} d_{11}^{\dagger} \cdots | 0 \rangle \qquad or \qquad \cdots d_2^{\dagger} d_4^{\dagger} d_6^{\dagger} d_8^{\dagger} d_{10}^{\dagger} d_{12}^{\dagger} \cdots | 0 \rangle$$

- The ground state breaks Z2 symmetry.
- The first excited state consists of band of domain walls between the two filled dipole states.
- Similar to the behavior of Ising model in a transverse field.

Intermediate electric field: QPT





Quantum phase transition at E-U=1.853w. Ising universality.

Measurements appropriate for the Mott state

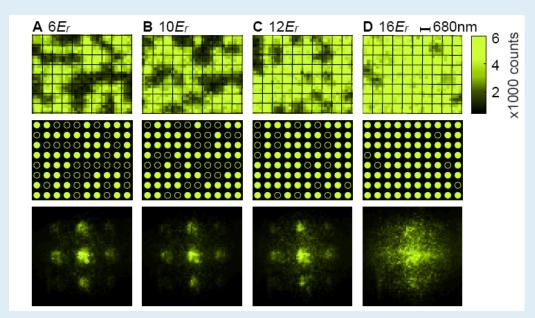


FIG. 1. Single-site imaging of atom number fluctuations across the superfluid-Mott insulator transition. (A - D) Images within each column are taken at the same final 2D lattice depth of (**A**) $6E_r$, (**B**) $10E_r$, (**C**) $12E_r$ and (**D**) $16E_r$. Top row: in-situ fluorescence images from a region of 10×8 lattice sites within the n=1 Mott shell that forms in a deep lattice. In the superfluid regime (A, B), sites can be occupied with odd or even atom numbers, which appear as full or empty sites respectively in the images. In the Mott insulator, occupancies other than 1 are highly suppressed (D). Middle row: results of the atom detection algorithm [16] for images in the top row. A full (empty) circle indicates the presence (absence) of an atom on a site. Bottom row: time of flight fluorescence images after 8ms expansion of the cloud in the 2D plane as a result of non-adiabatically turning off the lattice and the transverse confinement (averaged over 5 shots and binned over 5×5 lattice sites).

- 1. Prepare the state with 2D 87 Rb BEC of 10 5 atoms (F=m $_{f}$ =1): use magnetic trap potential.
- 2. Project a square optical lattice on it with λ =680nm and ramp the lattice depth.
- 3. After the state is prepared, increase the lattice depth to freeze the atoms.
- 4. Apply light so that light-assisted collision eject pair of atoms from each site.
- 5. Image the remaining atoms to detect parity of occupation.
- 6. For SF, $p_{odd} = 0.5(1-e^{-\langle n \rangle}) < 0.5$ while for Mott state $p_{odd} = 0.1$.

Realizing the tilted Bose-Hubbard model

Experimental generation of a linearly varying Zeman field along x to generate the tilt.

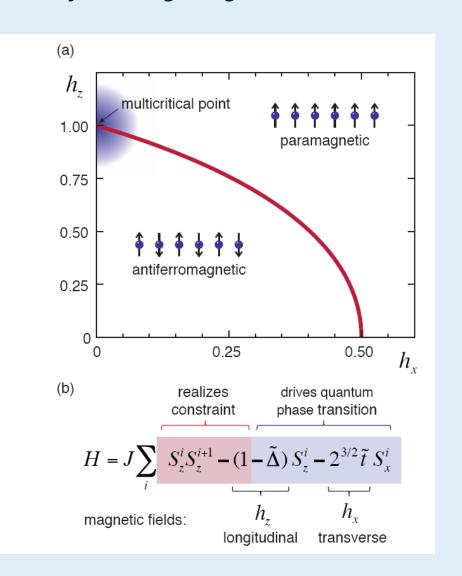
One can describe the system using dipoles or spins via the following transformation

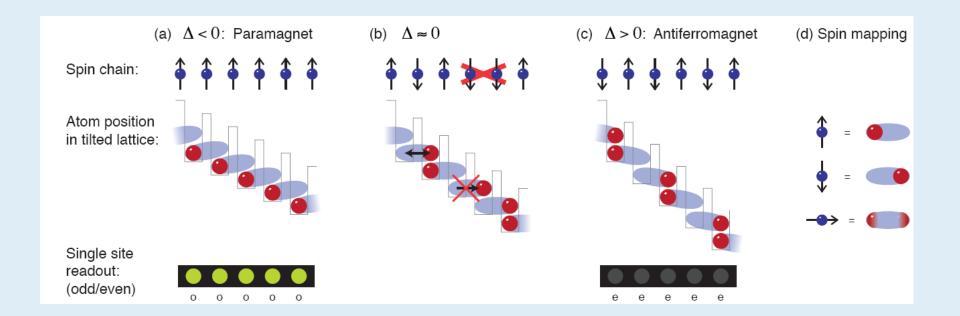
$$S_z^j = \frac{1}{2} - d_j^{\dagger} d_j, S_x^j = \frac{1}{2} \left(d_j^{\dagger} + d_j \right), \text{ and } S_y^j = \frac{i}{2} \left(d_j^{\dagger} - d_j \right)$$

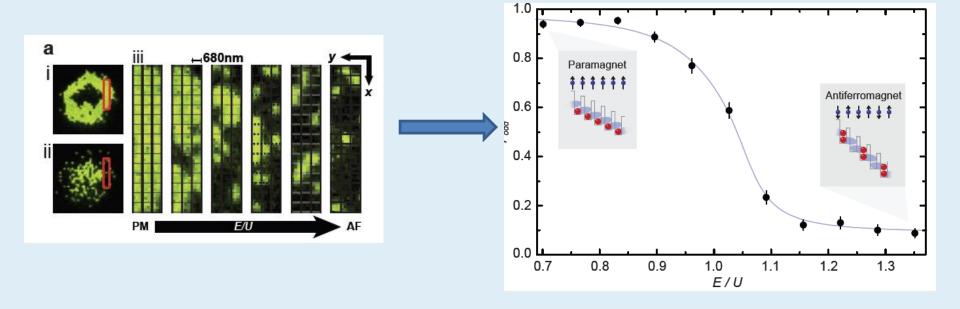
The dipole Hamiltonian can then be mapped to the spin Hamiltonian where the constraint is realized by the J term.

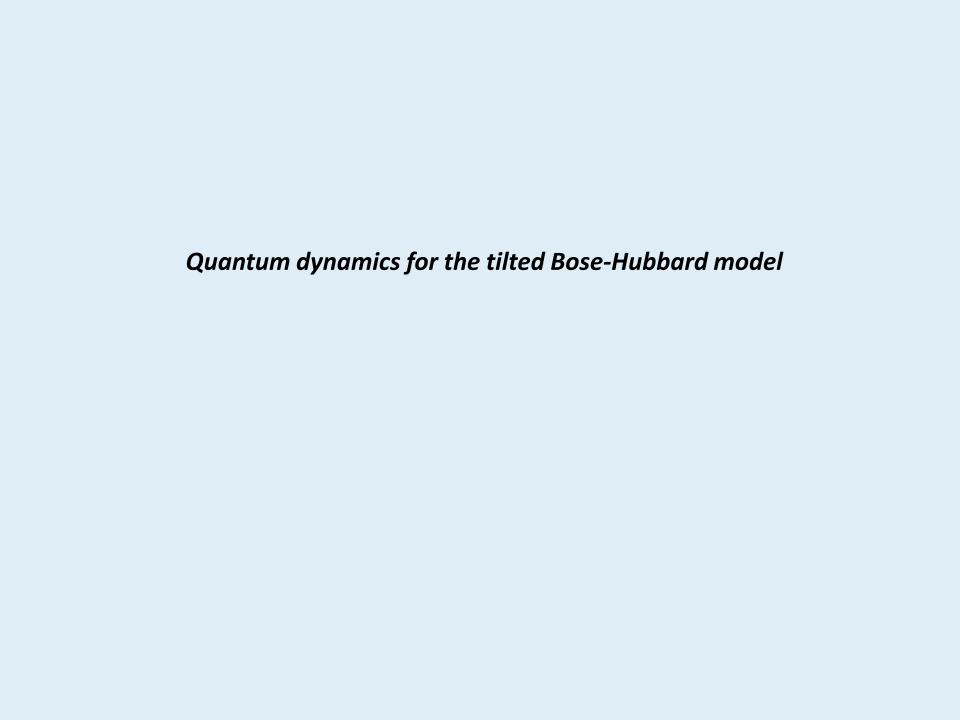
$$H = -\sqrt{M(M+1)t} \sum_{j} \left(d_j^{\dagger} + d_j \right) + (U - E) \sum_{j} d_j^{\dagger} d_j$$

$$H = J \sum_{j} S_{z}^{j} S_{z}^{j+1} - 2\sqrt{M(M+1)}t \sum_{j} S_{x}^{j}$$
$$- (J - \Delta) \sum_{j} S_{z}^{j}$$
$$= J \sum_{j} (S_{z}^{j} S_{z}^{j+1} - h_{x} S_{x}^{j} - h_{z} S_{z}^{j})$$



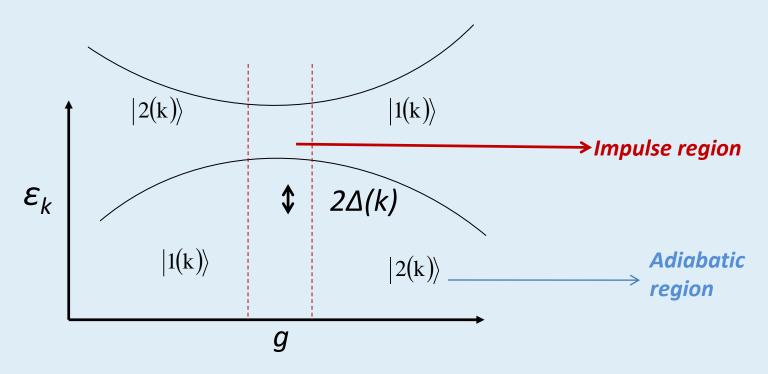






Introduction to Kibble Zureck Scaling

What is the rate at which excitations are produced when a system is taken "slowly" through a critical point via a ramp?



Away from the avoided crossing, for slow ramp rate, there are no excitations.

Probability of the system to be in the excited state: $p = \exp[-\pi \Delta(t)^2 / d \Delta(t)/dt]$

At and near the avoided crossing, the system produces excitations. This happens if

$$d \Delta(t)/dt > \Delta(t)^2$$

Landau criteria for excitation production

Generic critical points: A phase space argument

The system enters the impulse region when rate of change of the gap is the same order as the square of the gap.

$$d\ln(\Delta_{\vec{k}})/dt \ \geq \ \Delta_{\vec{k}}$$

For slow dynamics, the impulse region is a small region near the critical point where scaling works

$$\Delta_{\vec{k}} \sim \lambda^{z\nu} |t/\tau|^{z\nu}$$

The system thus spends a time T in the impulse region which depends on the quench time

$$T \sim \tau^{z\nu/(z\nu+1)}$$

In this region, the energy gap scales as

$$\Delta_{\mathbf{k}} \sim \tau^{-z\nu/(z\nu+1)}$$

Thus the scaling law for the defect density turns out to be

$$\Omega_n \sim |\mathbf{k}|^d \sim \Delta_{\mathbf{k}}^{d/z} \sim \tau^{-\nu d/(z\nu+1)}$$

Since the defects are primarily dipoles, one expects dipole density to have same scaling

Computation for the dipole chain

Solve the Schrodinger equation

$$i\hbar \partial_t |\psi(t)\rangle = H_d(t)|\psi(t)\rangle.$$
 $\mathcal{E}(t) = \mathcal{E}_0 + (\mathcal{E}_f - \mathcal{E}_0)t/\tau$

$$H_d(t) = [U - \mathcal{E}(t)] \sum_{\ell} d_{\ell}^{\dagger} d_{\ell} - J \sum_{\ell} (d_{\ell}^{\dagger} + d_{\ell}),$$

Numerically, it is easiest to express the wavefunction in terms of the basis of $H_d(t=\tau)$

$$|\psi(t)\rangle = \sum_{m} c_m(t)|m\rangle_f.$$

The Schrodinger equation can then be written as

$$i\hbar\partial_t|\psi(t)\rangle = H_0(t)|\psi(t)\rangle = [H_0[\mathcal{E}_f] + \Delta H_0(t)]|\psi(t)\rangle$$

 $\Delta H_0(t) = (\mathcal{E}_f - \mathcal{E}_0)(1 - t/\tau)\sum_{\ell} \hat{n}_{\ell}^d$ (

This leads to equations for the coefficients $c_m(t)$

$$(i\hbar\partial_t - E_m^f)c_m(t) = (\mathcal{E}_f - \mathcal{E}_0)(1 - t/\tau)\Lambda_{nm}(t)$$

$$\Lambda_{nm} = \sum_n c_n(t) f\langle m| \sum_\ell \hat{n}_\ell^d |n\rangle_f$$

Finally, one can express any expectation value in terms of $c_m(t)$

$$n_{d} = \frac{1}{L} \langle \psi(\tau) | \sum_{l} \hat{n}_{\ell}^{d} | \psi(\tau) \rangle = \frac{1}{L} \sum_{m,n} c_{m}^{*}(\tau) c_{n}(\tau) \Lambda_{mn}$$

$$D = n_{d} - \Lambda_{00}, \quad |F|^{2} = |\langle 0 | \psi(\tau) \rangle|^{2} = |c_{0}(\tau)|^{2}$$

$$Q = \langle \psi(\tau) | H(\tau) | \psi(\tau) \rangle = \sum_{m \neq 0} E_{m}^{f} |c_{m}(\tau)|^{2}.$$
(1)

Effect of finite size

For slow enough rate, the dynamics is controlled by the presence of system-size induced gap: Landau-Zenner regime

The Kibble-Zureck regime showing critical scaling now shifts to higher ramp rates

One can encode this fact using a finite-size scaling theory

Thus the KZ regime occurs for $\tau << L^{(1/\nu+z)}$

Plot of excitation (dipole) density as a function of ramp rate $v=1/\tau$ showing the extent of the Kibble Zureck regime.

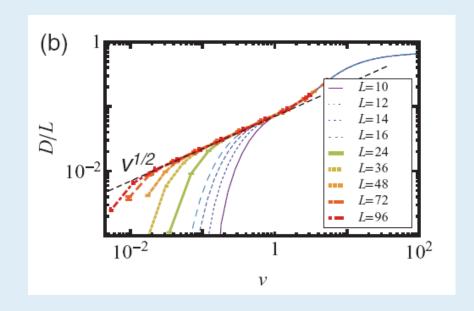
Experimental route to verification of Kibble-Zureck scaling in isolated Quantum systems.

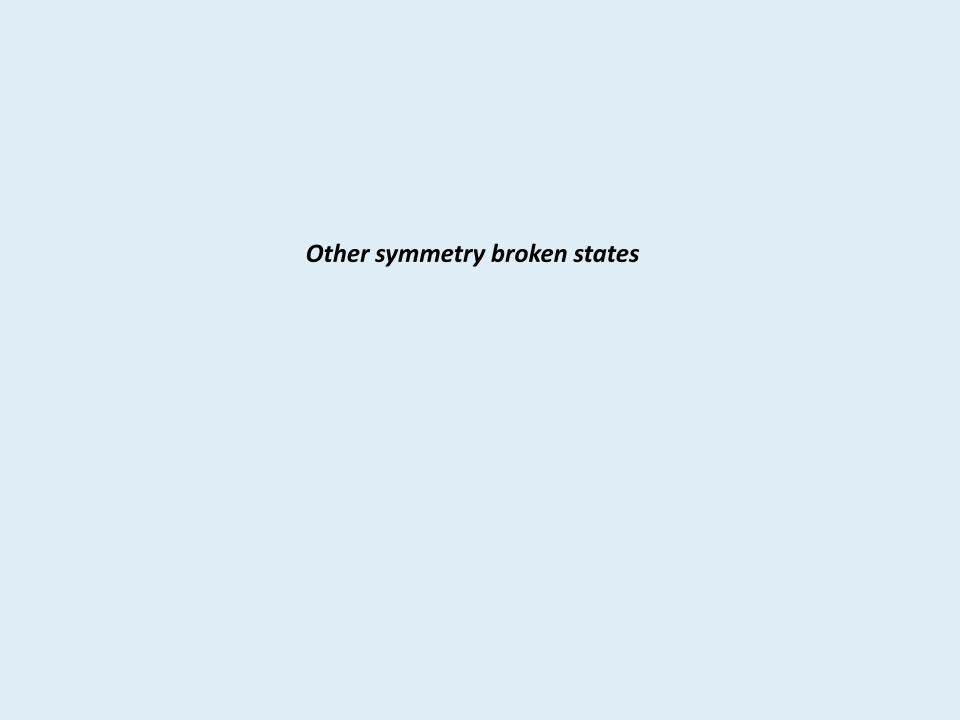
$$F \sim L^{d} \tau^{-d\nu/(z\nu+1)} s_1(L^{1/\nu+z}/\tau)$$

 $Q \sim L^{d} \tau^{-(d+z)\nu/(z\nu+1)} s_2(L^{1/\nu+z}/\tau)$

$$s_{1,2}(y >> 1) \sim 1$$

 $s_1(y \ll 1) \sim y^{2-d\nu/(z\nu+1)}$
 $s_2(y \ll 1) \sim y^{2-(d+z)\nu/(z\nu+1)}$.





Theoretical route using tilted Bose-Hubbard

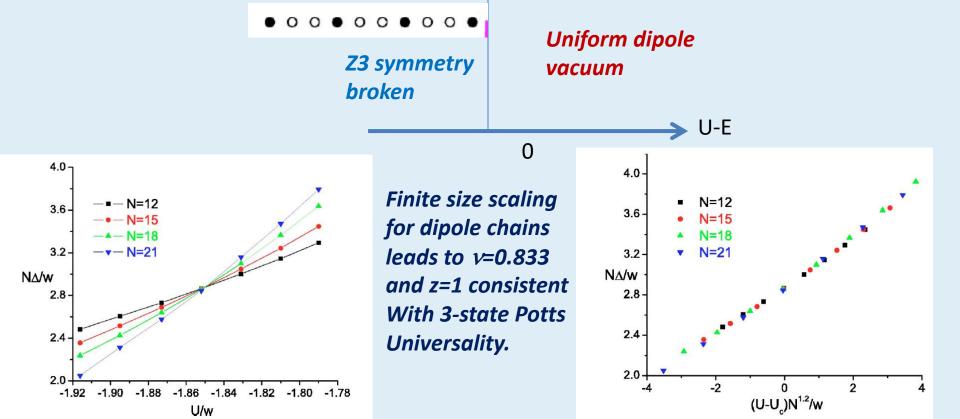
Add a repulsive interaction between dipoles on different sites

Putting $V_{l,l+2}$ -> infinity ensures a Z_3 symmetry broken state for large negative U-E.

$$H_0 = H_d + H_1, \qquad H_1 = \sum_{\ell_1 \ell_2} V_{\ell_1 \ell_2} \hat{n}_{\ell_1}^d \hat{n}_{\ell_2}^d$$

$$H_d = -w \sum_{\ell} (d_{\ell} + d_{\ell}^{\dagger}) + (U - \mathcal{E}) \sum_{i} \hat{n}_{\ell}^d$$

The phase for the model has been worked out. The intermediate critical point belongs to 2D classical 3 state Potts with v=5/6 and z=1.

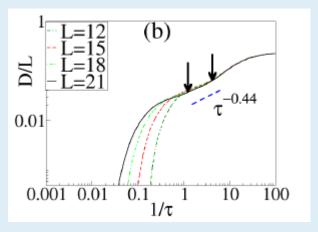


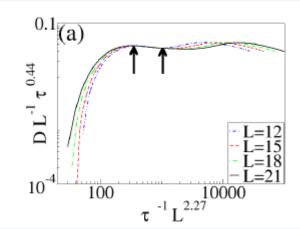
Ramp dynamics

Linear ramp to the critical point from the dipole vacuum state

$$\mathcal{E}(t) = \mathcal{E}_0 + (\mathcal{E}_f - \mathcal{E}_0)t/\tau$$

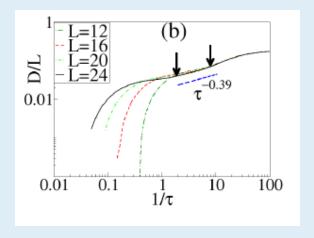
For the 3-state Potts z=1 and v=5/6 KZ exponent is expected to be 5/11

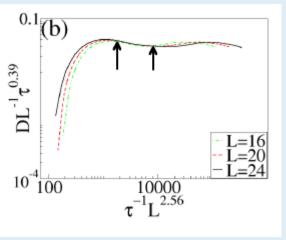




Theoretically expected Kibble-Zureck exponent depends on universality class through z and ν

For the 4-state Potts z=1 and v=2/3 KZ exponent is expected to be 2/5



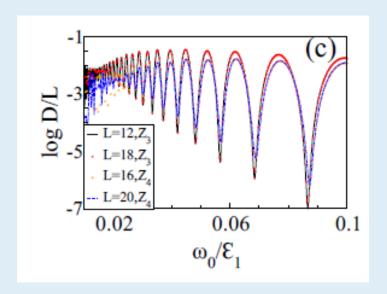


Periodic dynamics

Drive the system periodically through the critical point

Measure excitation density D at the end of a single drive cycle

$$\mathcal{E}(t) = \mathcal{E}_0 - \mathcal{E}_1 \cos(\omega_0 t)$$



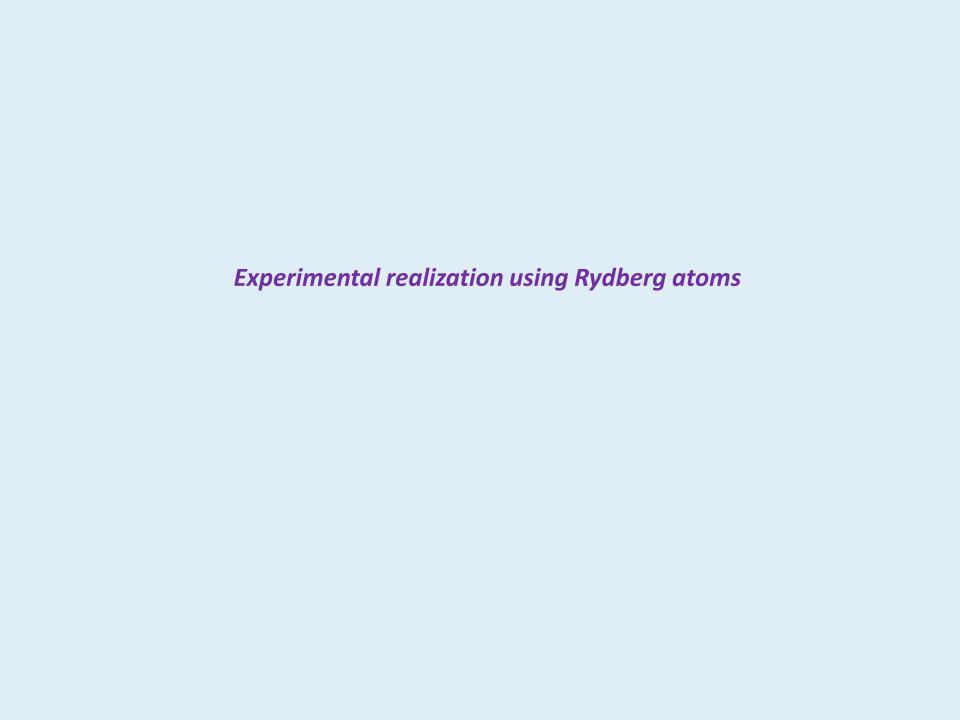
D is a non-monotonic function of the drive frequency.

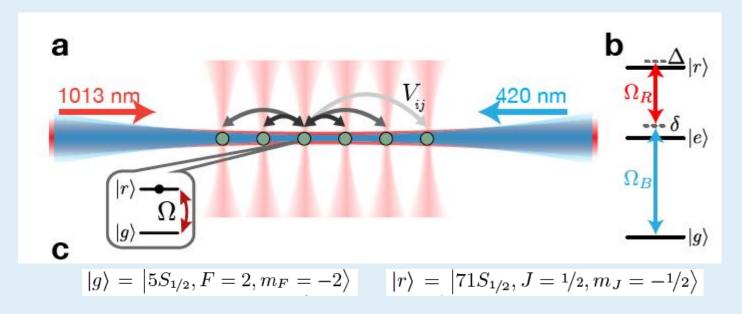
For special values of the drive frequency D almost vanishes. The system return to its starting (ground) state with unit probability.

This phenomenon occurs due to near-perfect destructive quantum interference on successive Passage through the impulse region around the Quantum critical point.

Dynamics induced freezing

Many-body realization of Stuckelberg interference phenomenon





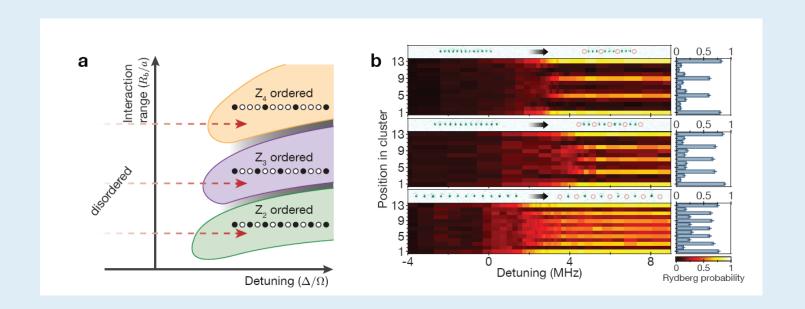
System of ⁸⁷Rb atoms controllably coupled to their Rydberg excited state.

The interaction between two atoms in their excited (Rydberg) states is denoted by V and is a tunable parameter.

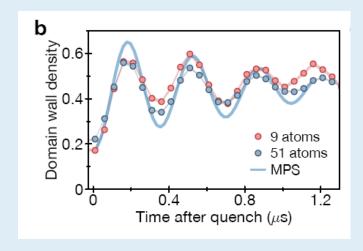
One can vary the detuning parameter Δ which allows one to preferentially put the atom in a Rydberg or ground state

$$\frac{\mathcal{H}}{\hbar} = \sum_{i} \frac{\Omega_{i}}{2} \sigma_{x}^{i} - \sum_{i} \Delta_{i} n_{i} + \sum_{i < j} V_{ij} n_{i} n_{j},$$

The ground state of the Hamiltonian is analogous to the dipole model with the identification of the Rydberg atom density with the dipole density



Realization of states with broken Z_n symmetries (n=2,3,4) with Rydberg atoms



Evolutions following quench dynamics: Robust long-lived quantum oscillations

Conclusion