Heavy-Ion Fusion Reactions around the Coulomb Barrier

Kouichi Hagino
Tohoku University, Sendai, Japan

hagino@nucl.phys.tohoku.ac.jp
www.nucl.phys.tohoku.ac.jp/~hagino
cf. Experimental aspects of H.I. Fusion reactions: lectures by Prof. Mahananda Dasgupta (ANU)
3.11 earthquake

Heavy-Ion Fusion Reactions around the Coulomb Barrier

Kouichi Hagino
Tohoku University, Sendai, Japan

hagino@nucl.phys.tohoku.ac.jp

www.nucl.phys.tohoku.ac.jp/~hagino
\diamond Fusion reactions and quantum tunneling \diamond Basics of the Coupled-channels method \diamond Concept of Fusion barrier distribution
४Quasi-elastic scattering and quantum reflection
cf. Experimental aspects of H.I. Fusion reactions: lectures by Prof. Mahananda Dasgupta (ANU)

Fusion: compound nucleus formation

Inter-nucleus potential

Two forces:

1. Coulomb force Long range, repulsive
2. Nuclear force Short range, attractive

Potential barrier due to the compensation between the two (Coulomb barrier)

- above barrier
-sub-barrier
-deep subbarrier

Why subbarrier fusion?

Two obvious reasons:

discovering new elements (SHE by cold fusion reactions)
nuclear astrophysics (fusion in stars)

Why subbarrier fusion?

Two obvious reasons:
\checkmark discovering new elements (SHE)
\checkmark nuclear astrophysics (fusion in stars)

Other reasons:
\checkmark reaction mechamism
strong interplay between reaction and structure
(channel coupling effects)
cf. high E reactions: much simpler reaction mechanism
\checkmark many-particle tunneling
cf. alpha decay: fixed energy
tunneling in atomic collision: less variety of intrinsic motions

Basic of nuclear reactions

Shape, interaction, and excitation structures of nuclei \longleftarrow scattering expt. cf. Experiment by Rutherford (α scatt.)

Notation

Projectile (beam)

Target nucleus

detector

measures a particle intensity as a function of scattering angles
${ }^{208} \mathrm{~Pb}\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{208} \mathrm{~Pb}$
${ }^{208} \mathrm{~Pb}\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{O}^{\prime}\right)^{208} \mathrm{~Pb}$
${ }^{208} \mathrm{~Pb}\left({ }^{17} \mathrm{O},{ }^{16} \mathrm{O}\right){ }^{209} \mathrm{~Pb}$
$:{ }^{16} \mathrm{O}+{ }^{208} \mathrm{~Pb}$ elastic scattering
$:{ }^{16} \mathrm{O}+{ }^{208} \mathrm{~Pb}$ inelastic scattering
: 1 neutron transfer reaction

Scattering Amplitude

$$
\begin{aligned}
\psi(\boldsymbol{r}) & \rightarrow e^{i \boldsymbol{k} \cdot \boldsymbol{r}}+f(\theta) \frac{e^{i k r}}{r} \\
& =(\text { incident wave })+(\text { scattering wave })
\end{aligned}
$$

Differential cross section

The number of scattered particle through the solid angle of $\mathrm{d} \Omega$ per unit time:

$$
N_{\mathrm{scatt}}=\boldsymbol{j}_{s c} \cdot \boldsymbol{e}_{r} r^{2} d \Omega
$$

$$
j_{s c}=\frac{\hbar}{2 i m}\left[\psi_{s c}^{*} \nabla \psi_{s c}-c . c .\right] \sim \frac{k \hbar}{m} \frac{|f(\theta)|^{2}}{r^{2}} e_{r}
$$

(flux for the catt. wave)

$$
\frac{d \sigma}{d \Omega}=|f(\theta)|^{2}
$$

Scattering Amplitude

partial wave decomposition
Motion of Free particle: $-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=E \psi=\frac{k^{2} \hbar^{2}}{2 m} \psi$

$$
\begin{aligned}
\psi(\boldsymbol{r}) & =e^{i \boldsymbol{k} \cdot \boldsymbol{r}}=\sum_{l=0}^{\infty}(2 l+1) i^{l} j_{l}(k r) P_{l}(\cos \theta) \\
& \rightarrow \frac{i}{2 k r} \sum_{l=0}^{\infty}(2 l+1) i^{l}\left[e^{-i(k r-l \pi / 2)}-e^{i(k r-l \pi / 2)}\right] P_{l}(\cos \theta)
\end{aligned}
$$

In the presence of a potential: $\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\boldsymbol{r})-E\right] \psi=0$
Asymptotic form of wave function

$$
\begin{aligned}
\psi(\boldsymbol{r}) & \rightarrow \frac{i}{2 k r} \sum_{l=0}^{\infty}(2 l+1) i^{l}\left[e^{-i(k r-l \pi / 2)}-S_{l} e^{i(k r-l \pi / 2)}\right] P_{l}(\cos \theta) \\
& =e^{i \boldsymbol{k} \cdot \boldsymbol{r}}+\left[\sum_{l}(2 l+1) \frac{S_{l}-1}{2 i k} P_{l}(\cos \theta)\right] \frac{e^{i k r}}{r}
\end{aligned}
$$

$f(\theta) \quad$ (scattering amplitude)
(note)

$$
\psi(\boldsymbol{r}) \rightarrow \frac{i}{2 k} \sum_{l}(2 l+1) i^{l} \frac{1}{r}\left[\frac{e^{-i(k r-l \pi / 2)}}{\Omega}-\frac{S_{l} e^{i(k r-l \pi / 2)}}{\Omega}\right] P_{l}(\cos \theta)
$$

Total incoming flux

Total outgoing flux

$$
j_{\mathrm{in}}^{\mathrm{net}}=\frac{k \hbar}{m} \cdot \frac{\pi}{k^{2}} \sum_{l}(2 l+1)
$$

$$
j_{\mathrm{out}}^{\mathrm{net}}=\frac{k \hbar}{m} \cdot \frac{\pi}{k^{2}} \sum_{l}(2 l+1)\left|S_{l}\right|^{2}
$$

If only elastic scattering:
$\left|S_{l}\right|=1 \quad$ (flux conservation)

$$
S_{l}=e^{2 i \delta_{l}} \quad \delta_{l}: \text { phase shift }
$$

Optical potential and Absorption cross section

Reaction processes
$>$ Elastic scatt.
$>$ Inelastic scatt.
$>$ Transfer reaction
$>$ Compound nucleus formation (fusion)

Loss of incident flux (absorption)

Optical potential

$$
\begin{aligned}
& V_{\mathrm{Opt}}(\boldsymbol{r})=V(\boldsymbol{r})-i W(\boldsymbol{r}) \quad(W>0) \\
& \longleftrightarrow \nabla \cdot \boldsymbol{j}=\cdots=-\frac{2}{\hbar} W|\psi|^{2}
\end{aligned}
$$

(note) Gauss's law

$$
\int_{S} \boldsymbol{j} \cdot \boldsymbol{n} d S=\int_{V} \boldsymbol{\nabla} \cdot \boldsymbol{j} d V
$$

$$
\psi(r) \rightarrow \frac{i}{2 k} \sum_{l}(2 l+1) i^{i} \frac{1}{r}\left[\frac{e^{-i(k r-l \pi / 2)}}{\Omega}-\frac{S_{l} e^{i(k r-l \pi / 2)}}{\psi_{\mathrm{in}}}\right] P_{l}(\cos \theta)
$$

Total incoming flux

$$
j_{\text {in }}^{\text {net }}=\frac{k \hbar}{m} \cdot \frac{\pi}{k^{2}} \sum_{l}(2 l+1) \quad j_{\text {out }}^{\text {net }}=\frac{k \hbar}{m} \cdot \frac{\pi}{k^{2}} \sum_{l}(2 l+1)\left|S_{l}\right|^{2}
$$

Net flux loss: $\quad j_{\text {in }}^{\text {net }}-j_{\text {out }}^{\text {net }}=\frac{k \hbar}{m} \cdot \frac{\pi}{k^{2}} \sum_{l}(2 l+1)\left(1-\left|S_{l}\right|^{2}\right)$
Absorption cross section:

$$
\sigma_{\mathrm{abs}}=\frac{\pi}{k^{2}} \sum_{l}(2 l+1)\left(1-\left|S_{l}\right|^{2}\right)
$$

In the case of three-dimensional spherical potential:

$$
\begin{aligned}
& \psi(\boldsymbol{r}) \rightarrow \frac{i}{2 k} \sum_{l}(2 l+1) i^{l} \frac{1}{r}\left[e^{-i(k r-l \pi / 2)}-S_{l} e^{i(k r-l \pi / 2)}\right] P_{l}(\cos \theta) \\
& -S_{l} \sim R \text { (reflection conf.) } \stackrel{\mathrm{r}(\mathrm{fm})}{\rightleftarrows} P=|T|^{2}=1-\left|S_{l}\right|^{2}
\end{aligned}
$$

$$
\sigma_{\mathrm{abs}}=\frac{\pi}{k^{2}} \sum_{l}(2 l+1)\left(1-\left|S_{l}\right|^{2}\right)=\frac{\pi}{k^{2}} \sum_{l}(2 l+1) P_{l}
$$

Overview of heavy-ion reactions

Heavy-ion: Nuclei heavier than ${ }^{4} \mathrm{He}$

Two forces:

1. Coulomb force Long range, repulsive
2. Nuclear force Short range, attractive

Potential barrier due to the compensation between these two (Coulomb barrier)

- Double Folding Potential

$$
\begin{aligned}
V_{D F}(\boldsymbol{r})= & \int_{\times v_{n n}\left(\boldsymbol{r}+\boldsymbol{r}_{2}-\boldsymbol{r}_{1}\right)} d \boldsymbol{r}_{1} d \boldsymbol{r}_{2} \rho_{1}\left(\boldsymbol{r}_{1}\right) \rho_{2}\left(\boldsymbol{r}_{2}\right)
\end{aligned}
$$

cf. Michigan 3 range Yukawa (M3Y) interaction

$$
\begin{aligned}
v_{n n}(r)= & 7999 \frac{e^{-4 r}}{4 r}-2134 \frac{e^{-2.5 r}}{2.5 r} \\
& -276 \delta(r) \quad(\mathrm{MeV})
\end{aligned}
$$

- Phenomenological potential

$$
a_{d} \sim 0.54 \quad(\mathrm{fm})
$$

$$
V_{W S}(r)=-\frac{V_{0}}{1+\exp \left[\left(r-R_{0}\right) / a\right]}
$$

$$
a \sim 0.63 \quad(\mathrm{fm})
$$

Three important features of heavy-ion reactions

1. Coulomb interaction: important
2. Reduced mass: large

$$
\mu=m_{T} m_{P} /\left(m_{T}+m_{P}\right)
$$

3. Strong absorption inside the Coul. barrier
(semi-) classical picture concept of trajectory

Automatic compound nucleus formation once touched (assumption of strong absorption)

the region of large overlap

-High level density (CN)
\bullet Huge number of d.o.f.

Relative energy is quickly lost
 and converted to internal energy
$l<l_{g}$:can access to the strong absorption $l \geq l_{g}$:cannot access cassically

Formation of hot CN (fusion reaction)

Partial decomposition of reaction cross section

angular momentum

angular momentum

Figure 4.18 Schematic decomposition of the total heavy-ion reaction cross section into contributions from different partial waves when (a) the grazing angular momentum (quantum number ℓ_{g}) is below the critical angular momentum (quantum number ℓ_{c}) that can be carried by the compound nucleus, and (b) when ℓ_{g} exceeds ℓ_{c}. In both (a) and (b) the straight line is obtained from Equation (4.3) and the dashed areas indicate regions in which different types of heavy-ion nuclear reaction mechanisms predominate.

Taken from J.S. Lilley, "Nuclear Physics"

Classical Model for heavy-ion fusion reactions

b (impact parameter)

$$
l_{c l}=k b \quad k=\sqrt{2 \mu E / \hbar^{2}}
$$

$l<l_{g} \quad \begin{aligned} & \text { : can access to the } \\ & \text { region classically }\end{aligned}$

$$
\Longrightarrow b_{g}=l_{g} / k
$$

$$
\sigma^{c l}=2 \pi \int_{0}^{b_{g}} b d b=\pi b_{g}^{2}
$$

$$
V_{b}+\frac{\left(k b_{g}\right)^{2} \hbar^{2}}{2 \mu R_{b}^{2}}=E
$$

n

$$
\sigma_{\text {fuss }}^{c l}(E)=\pi R_{b}^{2}\left(1-\frac{V_{b}}{E}\right)
$$

$$
\sigma_{\text {fus }}^{c l}(E)=\pi R_{b}^{2}\left(1-\frac{V_{b}}{E}\right)
$$

\Longrightarrow Classical fusion cross section is proportional to $1 / E$

Taken from J.S. Lilley, "Nuclear Physics"

Fusion reaction and Quantum Tunneling

$$
\sigma_{\text {fus }}(E)=\frac{\pi}{k^{2}} \sum_{l}(2 l+1) P_{l}(E)
$$

Fusion takes place by quantum tunneling at low energies!

Quantum Tunneling Phenomena

For a parabolic barrier......

$$
V(x)=V_{b}-\frac{1}{2} m \Omega^{2} x^{2}
$$

$$
P(E)=\frac{1}{1+\exp \left[\frac{2 \pi}{\hbar \Omega}\left(V_{b}-E\right)\right]}
$$

Energy derivative of penetrability

Potential Model: its success and failure

$\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+V(r)+\frac{l(l+1)^{2}}{2 \mu r^{2}}-E\right] u_{l}(r)=0$
Asymptotic boundary condition: $u_{l}(r) \rightarrow H_{l}^{(-)}(k r)-S_{l} H_{l}^{(+)}(k r)$

Fusion cross section:
Mean angular mom. of CN :

$$
\begin{aligned}
\sigma_{\mathrm{fus}} & =\frac{\pi}{k^{2}} \sum_{l}(2 l+1) P_{l} \\
\langle l\rangle & =\frac{\sum_{l} l(2 l+1) P_{l}}{\sum_{l}(2 l+1) P_{l}}
\end{aligned}
$$

$$
P_{l}=1-\left|S_{l}\right|^{2}
$$

Wong's formula

C.Y. Wong, Phys. Rev. Lett. 31 ('73)766

$$
\sigma_{\mathrm{fus}}(E)=\frac{\pi}{k^{2}} \sum_{l}(2 l+1) P_{l}(E)
$$

i) Approximate the Coul. barrier by a parabola: $V(r) \sim V_{b}-\frac{1}{2} \mu \Omega^{2} r^{2}$

$$
\Longleftrightarrow P_{0}(E)=1 /\left(1+\exp \left[\frac{2 \pi}{\hbar \Omega}\left(V_{b}-E\right)\right]\right)
$$

ii) Approximate P_{l} by P_{0} :

$$
P_{l}(E) \sim P_{0}\left(E-\frac{l(l+1) \hbar^{2}}{2 \mu R_{b}^{2}}\right)
$$

(assume l-independent Rb and curvature)
iii) Replace the sum of l with an integral

$$
\sigma_{\mathrm{fus}}(E)=\frac{\hbar \Omega}{2 E} R_{b}^{2} \log \left[1+\exp \left(\frac{2 \pi}{\hbar \Omega}\left(E-V_{b}\right)\right)\right]
$$

(note) For $E \gg V_{b} \quad 1 \ll \exp \left(\frac{2 \pi}{\hbar \Omega}\left(E-V_{b}\right)\right)$

(note)

$$
\frac{d\left(E \sigma_{\mathrm{fus}}\right)}{d E}=\frac{\pi R_{b}^{2}}{1+\exp \left[\frac{2 \pi}{\hbar \Omega}\left(V_{b}-E\right)\right]}=\pi R_{b}^{2} \cdot P_{l=0}(E)
$$

$$
\sigma_{\text {fus }}(E)=\frac{\hbar \Omega}{2 E} R_{b}^{2} \log \left[1+\exp \left(\frac{2 \pi}{\hbar \Omega}\left(E-V_{b}\right)\right)\right]
$$

Comparison between prediction of pot. model with expt. data

Fusion cross sections calculated with a static energy independent potential

$>$ Works well for relatively light systems
$>$ Underpredicts $\sigma_{\text {fus }}$ for heavy systems at low energies

With a deeper nuclear potential (but still within a potential model).....

Potential Inversion

$$
P_{0}(E)=\frac{1}{\pi R_{b}^{2}} \frac{d\left(E \sigma_{\mathrm{fus}}\right)}{d E}
$$

(note)

$$
P_{0}(E)=1 /\left[1+S_{0}(E)\right], \quad S_{0}(E)=\int_{r_{1}}^{r_{2}} d r \sqrt{\frac{2 \mu}{\hbar^{2}}(V(r)-E)}
$$

$$
\left.t(E) \equiv r_{2}-r_{1}=-\frac{2}{\pi} \sqrt{\frac{\hbar^{2}}{2 \mu}} \int_{E}^{V_{b}} \frac{d S_{0}\left(E^{\prime}\right)}{d E^{\prime}}\right) \frac{\sqrt{E^{\prime}-E}}{d E^{\prime}}
$$

$\sigma_{\text {fus }} \longrightarrow \uparrow V(r)$
Semi-classical app.

- Energy independent
-local
- single-ch.
$\sigma_{\text {fus }} \longrightarrow \uparrow V(r)$
Semi-classical app.
- Energy independent - local
- single-ch.

${ }^{64} \mathrm{Ni}+{ }^{74} \mathrm{Ge}$ Unphysical potentials \rightarrow

Beautiful demonstration of C.C. effects
A.B. Balantekin, S.E. Koonin, and J.W. Negele, PRC28('83)1565

Fusion cross sections calculated with a static energy independent potential

Target dependence of fusion cross section

\rightleftarrows Strong target dependence at $E<V_{b}$

Low-lying collective excitations in atomic nuclei

Low-lying excited states in even-even nuclei are collective excitations, and strongly reflect the pairing correlation and shell strucuture

$$
E_{4} / E_{2}<2 \quad E_{4} / E_{2} \sim 2-2.2 \quad E_{4} / E_{2} \sim 2.7 \quad E_{4} / E_{2} \sim 3.33
$$

SCHEMATIC EVOLUTION OF STRUCTURE NEAR CLOSED - SHELL \rightarrow MID SHELL

Taken from R.F. Casten,
"Nuclear Structure from a Simple Perspective"

図 3－4 Dyアイソトープの低励起スペクトル，励起エ ネルギーの単位は keV 。

Effect of collective excitation on $\sigma_{\text {fus }}$ rotational case

Excitation spectra of ${ }^{154} \mathrm{Sm}$

$$
\begin{aligned}
& 0.903-8^{+} \\
& (\mathrm{MeV}) \\
& 0.544-6^{+}
\end{aligned}
$$

cf. Rotational energy of a rigid body
(Classical mechanics)

$$
E=\frac{1}{2} \mathcal{J} \omega^{2}=\frac{I^{2}}{2 \mathcal{J}}
$$

$$
(I=\mathcal{J} \omega, \omega=\dot{\theta})
$$

0.267 —— 4^{+}
$0.082={ }^{154} \mathrm{Sm} 0^{+}$

$$
E_{I} \sim \frac{I(I+1) \hbar^{2}}{2 \mathcal{J}}
$$

Effect of collective excitation on $\sigma_{\text {fus }}$ rotational case

Comparison of energy scales

$$
V(r) \sim V_{b}-\frac{1}{2} \mu \Omega^{2} r^{2}
$$

Tunneling motion: $E_{\text {tun }} \sim \hbar \Omega \sim 3.5 \mathrm{MeV}$ (barrier curvature)
Rotational motion: $E_{\text {rot }} \sim E_{2+} \sim 0.08 \mathrm{MeV}$

$$
\begin{aligned}
& E_{\text {tun }} \gg E_{\mathrm{rot}}=I(I+1) \hbar^{2} / 2 \mathcal{J} \rightarrow 0 \\
& \Longleftrightarrow \mathcal{J} \rightarrow \infty
\end{aligned}
$$

The orientation angle of ${ }^{154} \mathrm{Sm}$ does not change much during fusion (note)
Ground state ($0+$ state) when reaction starts

Mixing of all orientations with an equal weight

$$
\sigma_{\mathrm{fus}}(E)=\int_{0}^{1} d(\cos \theta) \sigma_{\mathrm{fus}}(E ; \theta)
$$

Effect of collective excitation on $\sigma_{\text {fus }}$ rotational case

Ω The orientation angle of ${ }^{154} \mathrm{Sm}$ does not change much during fusion

The barrier is lowered for $\theta=0$ because an attraction works from large distances.

The barrier increases for $\theta=\pi / 2$. because the rel. distance has
to get small for the attraction to work

$$
\sigma_{\text {fus }}(E)=\int_{0}^{1} d(\cos \theta) \sigma_{\text {fus }}(E ; \theta)
$$

Def. Effect: enhances $\sigma_{\text {fus }}$ by a factor of $10 \sim 100$

Fusion: interesting probe for nuclear structure

Two effects of channel couplings

\checkmark energy loss due to inelastic excitations

\checkmark dynamical modification of the Coulomb barrier
large enhancement of fusion cross sections

cf. 2-level model: Dasso, Landowne, and Winther, NPA405(‘83)381

More quantal treatment: Coupled-Channels method

Coupling between rel. and intrinsic motions

$$
\begin{aligned}
& H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V_{0}(r)+H_{0}(\xi)+V_{\text {coup }}(\boldsymbol{r}, \xi) \\
& H_{0}(\xi) \phi_{k}(\xi) \\
& =\epsilon_{k} \phi_{k}(\xi)
\end{aligned}
$$

$$
\Psi(\boldsymbol{r}, \xi)=\sum_{k} \psi_{k}(\boldsymbol{r}) \phi_{k}(\xi)
$$

$$
\begin{aligned}
& H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V_{0}(r)+H_{0}(\xi)+V_{\text {coup }}(\boldsymbol{r}, \xi) \\
& \boldsymbol{\psi}(\boldsymbol{r}, \xi)=\sum_{k} \psi_{k}(\boldsymbol{r}) \phi_{k}(\xi) \quad H_{0}(\xi) \phi_{k}(\xi)=\epsilon_{k} \phi_{k}(\xi)
\end{aligned}
$$

Schrodinger equation: $(H-E) \Psi(\boldsymbol{r}, \xi)=0$
$\left\langle\phi_{k}\right| \Longrightarrow$

$$
\left\langle\phi_{k}\right| H-E|\Psi\rangle=0
$$

or

$$
\left[-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V_{0}(r)+\epsilon_{k}-E\right] \psi_{k}(\boldsymbol{r})+\sum_{k^{\prime}}\left\langle\phi_{k}\right| V_{\text {coup }}\left|\phi_{k^{\prime}}\right\rangle \psi_{k^{\prime}}(\boldsymbol{r})=0
$$

Coupled-channels equations

$$
\underbrace{\left[-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V_{0}(r)+\epsilon_{k}-E\right] \psi_{k}(r)}_{\text {equation for } \psi_{\mathrm{k}}}+\underbrace{\sum_{k^{\prime}}\langle\underbrace{}_{k}| V_{\text {coup }}\left|\phi_{k^{\prime}}\right\rangle \psi_{k^{\prime}}(\boldsymbol{r})=0}_{\text {transition from } \phi_{\mathrm{k}} \text { to } \phi_{\mathrm{k}^{\prime}}}
$$

boundary condition:

$$
\left.\begin{array}{rlr}
\hline \psi_{n}(r) \rightarrow & e^{-i k_{0} r}-S_{0} e^{i k_{0} r} & (n=0) \\
& -S_{n} e^{i k_{n} r} & (n \neq 0)
\end{array}\right] .
$$

Angular momentum coupling

$$
H_{0}(\xi) \phi_{n m_{I}}(\xi)=\epsilon_{n I} \phi_{n m_{I}}(\xi)
$$

Total gang. mom.: $\boldsymbol{I}+\boldsymbol{l}=\boldsymbol{J}$
$0.903-I^{\pi=}=8^{+}$
(MeV)
$0.544 \longrightarrow 6^{+}$
$0.267 \longrightarrow 4^{+}$
$0.082={ }^{154} \mathrm{Sm} 0^{{ }^{+}}$

$$
\boldsymbol{\psi}(\boldsymbol{r}, \xi)=\sum_{k} \psi_{k}(\boldsymbol{r}) \phi_{k}(\xi)=\sum_{n, l, I} \frac{u_{n l I}(r)}{r}\left[Y_{l}(\widehat{\boldsymbol{r}}) \phi_{n I}(\xi)\right]^{(J M)}
$$

$$
\left\langle\left[Y_{l} \phi_{n I}\right]^{(J M)}\right| H-E|\Psi\rangle=0
$$

$$
\begin{aligned}
& {\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}+V_{0}(r)-E+\epsilon_{n I}\right] u_{n l I}(r)} \\
& \quad+\sum_{n^{\prime} l^{\prime} I^{\prime}}\left\langle\left[Y_{l} \phi_{n I}\right]^{(J M)}\right| V_{\text {coup }}(r)\left|\left[Y_{l^{\prime}} \phi_{\left.n^{\prime} I^{\prime}\right]^{\prime}}\right]^{(J M)}\right\rangle u_{n^{\prime} l^{\prime} I^{\prime}}(r)=0
\end{aligned}
$$

Boundary condition

 (with and. mom. coupling)

$$
\Psi(\boldsymbol{r}, \xi)=\sum_{n, l, I} \frac{u_{n l I}(r)}{r}\left[Y_{l}(\widehat{\boldsymbol{r}}) \phi_{n I}(\xi)\right]^{(J M)}
$$

$$
u_{n l I}(r) \rightarrow H_{l}^{(-)}\left(k_{n I} r\right) \delta_{n, n_{i}} \delta_{l, l_{i}} \delta_{I, I_{i}}-\sqrt{\frac{k_{0}}{k_{n} I}} S_{n l I} H_{l}^{(+)}\left(k_{n I} r\right)
$$

$$
P_{l}(E)=1-\sum_{n I}\left|S_{n l I}\right|^{2}
$$

$$
\sigma_{\mathrm{fus}}(E)=\frac{\pi}{k^{2}} \sum_{l}(2 l+1) P_{l}(E)
$$

Excitation structure of atomic nuclei

Excite the target nucleus via collision with the projectile nucleus

$$
\sqrt{\text { How does the targ. respond to }} \text { the interaction with the proj.? }
$$

Standard approach: analysis with the coupled-channels method
$>$ Inelastic cross sections
$>$ Elastic cross sections
$>$ Fusion cross sections

S-matrix $\quad S_{n I I}$

How to perform coupled-channels calculations?

1. Modeling: selection of excited states to be included

S. Raman et al., PRC43(‘91)521

typical excitation spectrum: electron scattering data

- Giant Resonances: high E_{x}, smooth mass number dependence \longrightarrow adiabatic potential renormalization \bullet Low-lying collective excitations: barrier distributions,
strong isotope dependence
- Non-collective excitations: either neglected completely or implicitly treated through an absorptive potential

2. Nature of collective states: vibration? or rotation?

a) Vibrational coupling

excitation operator: $\hat{O}=\frac{\beta}{\sqrt{4 \pi}}\left(a+a^{\dagger}\right)$

$$
\begin{aligned}
|n\rangle & =\frac{1}{\sqrt{n!}}\left(a^{\dagger}\right)^{n}|0\rangle \\
\epsilon_{n} & =(n+1 / 2) \hbar \omega
\end{aligned}
$$

$$
\begin{aligned}
\langle n| O\left|n^{\prime}\right\rangle & =\frac{\beta}{\sqrt{4 \pi}}\left(\sqrt{n^{\prime}} \delta_{n, n^{\prime}-1}+\sqrt{n^{\prime}+1} \delta_{n, n^{\prime}+1}\right) \\
& =\left(\begin{array}{ccc}
0 & F & 0 \\
F & \epsilon & \sqrt{2} F \\
0 & \sqrt{2} F & 2 \epsilon
\end{array}\right)
\end{aligned}
$$

Vibrational excitations

Bethe-Weizacker formula: Mass formula based on Liquid-Drop Model

$$
B(N, Z)=a_{v} A-a_{s} A^{2 / 3}-a_{C} \frac{Z^{2}}{A^{1 / 3}}-a_{\mathrm{sym}} \frac{(N-Z)^{2}}{A}
$$

\Longrightarrow For a deformed shape,

$$
\begin{aligned}
& a=R \cdot(1+\epsilon) \\
& \quad \begin{array}{l}
a=R \cdot(1+\epsilon)^{-1 / 2} \\
E_{\text {surf }}=E_{\text {surf }}^{(0)}\left(1+2 \epsilon^{2} / 5+\cdots\right) \\
E_{C}=E_{C}^{(0)}\left(1-\epsilon^{2} / 5+\cdots\right)
\end{array}
\end{aligned}
$$

In general $\quad R(\theta, \phi)=R_{0}\left(1+\sum_{\lambda, \mu} \alpha_{\lambda \mu} Y_{\lambda \mu}^{*}\right)$

$$
V=\frac{1}{2} \sum_{\lambda, \mu} C_{\lambda}\left|\alpha_{\lambda \mu}\right|^{2}
$$

Harmonic oscillation

$\lambda=2$: Quadrupole vibration

Movie: Dr. K. Arita (Nagoya Tech. U.) http://www.phys.nitech.ac.jp/~arita/

In general $\quad R(\theta, \phi)=R_{0}\left(1+\sum_{\lambda, \mu} \alpha_{\lambda \mu} Y_{\lambda \mu}^{*}\right)$

$$
V=\frac{1}{2} \sum_{\lambda, \mu} C_{\lambda}\left|\alpha_{\lambda \mu}\right|^{2}
$$

Harmonic oscillation

$\lambda=3$: Octupole vibration

Movie: Dr. K. Arita (Nagoya Tech. U.) http://www.phys.nitech.ac.jp/~arita/

図3．3 偶々核の第1励起 3^{-}状態の励起エネルギー

Microscopic description
\Rightarrow Random phase approximation（RPA）

Double phonon states

0.558 MeV
\qquad

図3．2 偶々核の第1励起 2^{+}状態の励起エネルギー
0^{+}
2. Nature of collective states: vibration? or rotation?

b) Rotational coupling

excitation operator: $\hat{O}=\beta Y_{20}(\theta)\left(+\beta_{4} Y_{40}(\theta)+\cdots\right)$

$$
\begin{aligned}
\langle I| O\left|I^{\prime}\right\rangle & =\sqrt{\frac{5 \cdot(2 I+1)\left(2 I^{\prime}+1\right)}{4 \pi}}\left(\begin{array}{ccc}
I & 2 & I^{\prime} \\
0 & 0 & 0
\end{array}\right)^{2} \\
& =\left(\begin{array}{ccc}
0 & F & 0 \\
F & \epsilon+\frac{2 \sqrt{5}}{7} F & \frac{6}{7} F \\
0 & \frac{6}{7} F & \frac{10 \epsilon}{3}+\frac{20 \sqrt{5}}{77} F
\end{array}\right)
\end{aligned}
$$

Vibrational coupling

$$
\hat{O}=\frac{\beta}{\sqrt{4 \pi}}\left(a+a^{\dagger}\right)
$$

Rotational coupling

$$
\widehat{O}=\beta Y_{20}(\theta)
$$

$$
\left(\begin{array}{ccc}
0 & F & 0 \\
F & \epsilon & \sqrt{2} F \\
0 & \sqrt{2} F & 2 \epsilon
\end{array}\right)
$$

$$
F=\frac{\beta}{\sqrt{4 \pi}}
$$

3. Coupling constants and coupling potentials

Deformed Woods-Saxon model:

$$
\begin{aligned}
V_{W S}(r) & =-\frac{V_{0}}{1+\exp \left[\left(r-R_{0}\right) / a\right]} \\
& =-\frac{V_{0}}{1+\exp \left[\left(r-R_{P}-R_{T}\right) / a\right]}
\end{aligned}
$$

$$
\left.R_{T} \rightarrow R_{T}\left(1+\sum_{\mu} \widehat{\bigcap}_{\lambda \mu}\right) y_{\lambda \mu}^{*}(\theta, \phi)\right)
$$

excitation operator

$$
V_{W S}(\boldsymbol{r})=-\frac{V_{0}}{1+\exp \left[\left(r-R_{0}-R_{T} \alpha_{\lambda} \cdot Y_{\lambda}(\hat{\boldsymbol{r}})\right) / a\right]}
$$

Coupling Potential: Collective Model

$R(\theta, \phi)=R_{T}\left(1+\sum_{\mu} \alpha_{\lambda \mu} Y_{\lambda \mu}^{*}(\theta, \phi)\right)$
$>$ Vibrational case

$$
\alpha_{\lambda \mu}=\frac{\beta_{\lambda}}{\sqrt{2 \lambda+1}}\left(a_{\lambda \mu}^{\dagger}+(-)^{\mu} a_{\lambda \mu}\right)
$$

$>$ Rotational case
Coordinate transformation to the body-fixed rame

$$
\alpha_{\lambda \mu}=\sqrt{\frac{4 \pi}{2 \lambda+1}} \beta_{\lambda} Y_{\lambda \mu}\left(\theta_{d}, \phi_{d}\right) \quad \text { (for axial symmetry) }
$$

In both cases $\quad \beta_{\lambda}=\frac{4 \pi}{3 Z_{T} R_{T}^{\lambda}} \sqrt{\frac{B(E \lambda) \uparrow}{e^{2}}}$
(note) coordinate transformation to the rotating frame ($\widehat{\boldsymbol{r}}=0$)

$$
\sum_{\mu} \alpha_{\lambda \mu} Y_{\lambda \mu}^{*}(\theta, \phi) \rightarrow \sqrt{\frac{2 \lambda+1}{4 \pi}} \alpha_{\lambda 0}
$$

Deformed Woods-Saxon model (collective model)

CCFULL

K.H., N. Rowley, and A.T. Kruppa,

Comp. Phys. Comm. 123('99)143

CCFULL Home Page

K. Hagino, N. Rowley, and A.T. Kruppa

A FORTRAN77 program for coupled-channels calculations with all order couplings for heavy-ion fusion reactions

- Publication

A program for coupled-channe/s ca/culations with all order couplings for heavy-ion fusion reactions
K. Hagino, N. Rowley, and A.T. Kruppa, Comput. Phys. Comm 123 (1999) 143 - 152 (e-print: nucl-th/9903074)

- Program (the latest version)

Sample input and output files

- The original version published in CPC
- A version with two different modes of excitation both in the proj. and in the targ. (but with a simple harmonic oscillator coupling)

Sample input and output files

- A version with an imaginary potential

Sample input and output files

CCFULL

K.H., N. Rowley, and A.T. Kruppa, Comp. Phys. Comm. 123('99)143
i) all order couplings

$$
V_{\text {coup }}(r, \widehat{O})=V_{\text {coup }}^{(N)}(r, \widehat{O})+V_{\text {coup }}^{(C)}(r, \widehat{O})
$$

Nuclear coupling:

$$
V_{\text {coup }}^{(N)}(r, \widehat{O})=-\frac{V_{0}}{1+\exp \left[\left(r-R_{0}-R_{T} \hat{O}\right) / a\right]}
$$

Coulomb coupling:

$$
V_{\text {coup }}^{(C)}(r, \widehat{O})=\frac{3}{2 \lambda+1} Z_{P} Z_{T} e^{2} \frac{R_{T}^{\lambda}}{r^{\lambda+1}} \hat{O}
$$

CCFULL

K.H., N. Rowley, and A.T. Kruppa, Comp. Phys. Comm. 123('99)143
i) all order couplings

$$
\begin{aligned}
V_{\text {coup }}^{(N)}(r, \widehat{O}) & =-\frac{V_{0}}{1+\exp \left[\left(r-R_{0}-R_{T} \widehat{O}\right) / a\right]} \\
& \sim V_{N}(r)-R_{T} \widehat{O} \frac{d V_{N}(r)}{d r}
\end{aligned}
$$

i) all order couplings

$$
\begin{aligned}
V_{\mathrm{COup}}^{(N)}(r, \widehat{O}) & =-\frac{V_{0}}{1+\exp \left[\left(r-R_{0}-R_{T} \hat{O}\right) / a\right]} \\
& \sim \frac{V_{N}(r)=R_{T} \hat{O} \frac{d V_{N}(r)}{d r}}{}
\end{aligned}
$$

K.H., N. Takigawa, M. Dasgupta, D.J. Hinde, and J.R. Leigh, PRC55('97)276

CCFULL

ii) isocentrifugal approximation

K.H., N. Rowley, and A.T. Kruppa, Comp. Phys. Comm. 123('99)143

Iso-centrifugal approximation: λ : independent of excitations

$$
\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}} \rightarrow \frac{J(J+1) \hbar^{2}}{2 \mu r^{2}}
$$

$$
V_{\text {coup }}(\boldsymbol{r}, \xi)=f(r) Y_{\lambda}(\widehat{r}) \cdot T_{\lambda}(\xi)
$$

transform to
the rotating frame $\rightarrow \sqrt{\frac{2 \lambda+1}{4 \pi}} f(r) T_{\lambda 0}(\xi)$
"Spin-less system"
${ }^{16} \mathrm{O}+{ }^{144} \mathrm{Sm}\left(2^{+}\right)$

K.H. and N. Rowley, PRC69('04)054610

CCFULL

K.H., N. Rowley, and A.T. Kruppa, Comp. Phys. Comm. 123('99)143 iii) incoming wave boundary condition (IWBC)

$$
\sigma_{\text {fus }}=\frac{\pi}{k^{2}} \sum_{l}(2 l+1) P_{l} \quad\left(P_{l}=1-\left|S_{l}\right|^{2}\right)
$$

(1) Complex potential

$$
V(r)=V_{R}(r)-i W(r)
$$

(2) IWBC

limit of large W (strong absorption)

$$
u_{l}(r)=T_{l} \exp \left(-i \int_{r_{a b s}}^{r} k_{l}\left(r^{\prime}\right) d r^{\prime}\right)^{\frac{\sqrt[3]{2}}{2}}
$$

(Incoming Wave Boundary Condition)

$$
k_{l}(r)=\sqrt{2 \mu / \hbar^{2}\left[E-V_{R}(r)-l(l+1) \hbar^{2} / 2 \mu r^{2}\right]}
$$

- Only Real part of Potential
- More efficient at low energies $P_{l}=\left|T_{l}\right|^{2}$
cf. $\left|S_{l}\right| \sim 1$ at low E

CCFULL

K.H., N. Rowley, and A.T. Kruppa, Comp. Phys. Comm. 123('99)143

CCFULL Home Page

K. Hagino, N. Rowley, and A.T. Kruppe

A FORTRAN77 program for coupled-channels calculations with all order couplings for heavy-ion fusion reactions

- Publication

A program for coupled-channe/s ca/culations with all order couplings for heavy-ion fusion reactions
K. Hagino, N. Rowley, and A.T. Kruppa, Comput. Phys. Comm 123 (1999) 143 - 152 (e-print: nucl-th/9903074)

- Program (the latest version)

Sample input and output files

- The original version published in CPC
- A version with two different modes of excitation both in the proj. and in the targ. (but with a simple harmonic oscillator coupling)

Sample input and output files

- A version with an imaginary potential

Sample input and output files

ccfull.inp

$$
\begin{array}{l|l}
\hline 16 ., 8 ., 144 ., 62 . & \begin{array}{l}
\text { reaction system } \\
\left(\mathrm{A}_{\mathrm{p}}=16, \mathrm{Z}_{\mathrm{p}}=8, \mathrm{~A}_{\mathrm{t}}=144, \mathrm{Z}_{\mathrm{t}}=62\right)
\end{array} \\
1.2,-1,1.06,0 & \mathrm{r}_{\mathrm{p}}, \text { Ivibrot }, \mathrm{r}_{\mathrm{t}}, \text { Ivibrot }{ }_{\mathrm{t}} \\
\text { (inert projectile, and vib. for targ.) } \\
1.81,0.205,3,1 & \\
1.66,0.11,2,0 & \\
6.13,0.733,3,1 & \\
0,0 ., 0.3 & \\
105.1,1.1,0.75 & \\
55 ., 70 ., 1 . & \\
30,0.05 &
\end{array}
$$

ccfull.inp

16.,8.,144.,62.	reaction system $\left(\mathrm{A}_{\mathrm{p}}=16, \mathrm{Z}_{\mathrm{p}}=8, \mathrm{~A}_{\mathrm{t}}=144, \mathrm{Z}_{\mathrm{t}}=62\right)$
1.2,-1,1.06,0	r_{p}, Ivibrot $_{p}, r_{t}$, Ivibrot $_{t}$ (inert projectile, and vib. for targ.)
1.81,0.205,3,1	$V_{\text {coup }}^{(N)}(r, \hat{O})$
1.66,0.11,2,0	$=-\frac{V_{0}}{1+\exp \left[\left(r-R_{0}-R_{T} \hat{O}\right) / a\right]}$
6.13,0.733,3,1	$R_{T}=r_{t} \Psi_{t}^{1 / 3} \quad(\mathrm{fm})$
0,0., 0.3	
105.1,1.1,0.75	$\begin{aligned} & \text { If } \text { Ivibrot }_{t}=0: O=O_{\text {vib }} \\ & \text { Ivibrot }_{t}=1: O=O_{\text {rot }} \\ & \text { Ivibrot }_{t}=-1: O=0 \text { (inert) } \end{aligned}$
55.,70.,1.	
30,0.05	similar for the projectile

ccfull.inp

16.,8.,144.,62.	$\left(\mathrm{A}_{\mathrm{p}}=16, \mathrm{Z}_{\mathrm{p}}=8, \mathrm{~A}_{\mathrm{t}}=144, \mathrm{Z}_{\mathrm{t}}=62\right)$
1.2,-1,1.06,0	(inert projectile, and vib. for targ.)
$1.81,0.205,3,1 \leftarrow$	properties of the targ. excitation
1.66,0.11,2,0	$\begin{aligned} & E_{1 s t}=1.81 \mathrm{MeV} \\ & \beta=0.205 \end{aligned}$
6.13,0.733,3,1	$\begin{aligned} & \lambda=3 \\ & \mathrm{~N}_{\text {phonon }}=1 \end{aligned} \quad 0 \frac{-}{{ }^{144} \mathrm{Sm}} 0^{+}$
$0,0 ., 0.3$ 105.11	coupling to 3^{-}vibrational state in the target with def. parameter $\beta=0.205$
$105.1,1.1$ $55 ., 70 ., 1$.	$\alpha_{\lambda \mu}=\frac{\beta_{\lambda}}{\sqrt{2 \lambda+1}}\left(a_{\lambda \mu}^{\dagger}+(-)^{\mu} a_{\lambda \mu}\right)$
30,0.05	$\beta_{\lambda}=\frac{4 \pi}{3 Z_{T} R_{T}^{\lambda}} \sqrt{\frac{B(E \lambda) \uparrow}{e^{2}}}$

ccfull.inp

16.,8.,144.,62.	$\left(A_{p}=16, Z_{p}=8, A_{t}=144, Z_{t}=62\right)$
1.2,-1,1.06,0	(inert projectile, and vib. for targ.)
$1.81,0.205,3,1$	properties of the targ. excitation
$1.66,0.11,2,0$ $6.13,0.733,3,1$	$\begin{aligned} (\text { note }) \text { if } \mathrm{N}_{\text {phonon }}= & 2: \text { double phonon } \\ & \text { excitation } \end{aligned}$
0,0.,0.3	$1.81 \times 2 \sim\left(3^{-}\right)^{2}$
	$\mathrm{E}_{1 \mathrm{st}}=1.81 \mathrm{MeV}$
105.1,1.1,0.75	$\beta=0.205 \quad 1.81+{ }^{\text {r }}$
	$\lambda=3 \quad \beta_{3}$
55.,70.,1.	$\mathrm{N}_{\text {phonon }}=2 \quad 0 \frac{1}{{ }^{144} \mathrm{Sm}} 0^{+}$
30,0.05	

ccfull.inp

16.,8.,144.,62.	$\left(\mathrm{A}_{\mathrm{p}}=16, \mathrm{Z}_{\mathrm{p}}=8, \mathrm{~A}_{\mathrm{t}}=144, \mathrm{Z}_{\mathrm{t}}=62\right)$
1.2,-1,1.06,0	(inert projectile, and vib. for targ.)
1.81,0.205,3,1	properties of the targ. excitation
1.66,0.11,2,0	(note) if Ivibrott = 1 (rot. coup.)
6.13,0.733,3,1	the input line would look like: $0.08,0.306,0.05,3$ instead of $1.81,0.205,3,1$
0,0.,0.3	$\begin{array}{lllll} \mathrm{E}_{2+} & \beta_{2} & \beta_{4} & \mathrm{~N}_{\mathrm{rot}} \end{array}$
105.1,1.1,0.75	3 excitated $\quad\left[6 \times 7 \times 0.08 / 6-6^{+}\right.$
55.,70.,1.	$\begin{aligned} & \text { states }\left(\mathrm{N}_{\mathrm{rov}}=3\right) \\ & + \text { g. } \mathrm{Fs} . \end{aligned}\left[\begin{array}{cc} 4 \times 5 \times 0.08 / 6 & 4^{+} \\ 0.08= & 2^{+} \\ 0 & 0^{+} \end{array}\right.$
30,0.05	

ccfull.inp

16.,8.,144.,62.	$\left(\mathrm{A}_{\mathrm{p}}=16, \mathrm{Z}_{\mathrm{p}}=8, \mathrm{~A}_{\mathrm{t}}=144, \mathrm{Z}_{\mathrm{t}}=62\right)$
1.2,-1,1.06,0	(inert projectile, and vib. for targ.)
1.81,0.205,3,1	properties of the targ. excitation
1.66,0.11,2,0	same as the previous line, but the second mode of excitation in the
6.13,0.733,3,1	target nucleus (vibrational coupling only)
0,0.,0.3	$\mathrm{N}_{\text {phonon }}=0 \rightarrow$ no second mode
105.1,1.1,0.75	
55.,70.,1.	
30,0.05	

ccfull.inp

ccfull.inp

16.,8.,144.,62.	$\left(\mathrm{A}_{\mathrm{p}}=16, \mathrm{Z}_{\mathrm{p}}=8, \mathrm{~A}_{\mathrm{t}}=144, \mathrm{Z}_{\mathrm{t}}=62\right)$
1.2,-1,1.06,0	(inert projectile, and vib. for targ.)
1.81,0.205,3,1	properties of the targ. excitation
1.66,0.11,2,1	second mode in the targ.
6.13,0.733,3,1	properties of the proj. excitation (similar as the third line)
0,0.,0.3	(will be skipped for an inert
105.1,1.1,0.75	projectile)
55.,70.,1.	
30,0.05	

ccfull.inp

16.,8.,144.,62.	$\left(\mathrm{A}_{\mathrm{p}}=16, \mathrm{Z}_{\mathrm{p}}=8, \mathrm{~A}_{\mathrm{t}}=144, \mathrm{Z}_{\mathrm{t}}=62\right)$
1.2,-1,1.06,0	(inert projectile, and vib. for targ.)
1.81,0.205,3,1	properties of the targ. excitation
1.66,0.11,2,1	second mode in the targ.
6.13,0.733,3,1	properties of the proj. excitation (similar as the third line)
0,0., 0.3	transfer coupling (g.s. to g.s.)
105.1,1.1,0.75	$\left(\mathrm{A}_{\mathrm{p}}+\mathrm{A}_{\mathrm{t}}\right) \quad \mathrm{Q}_{\mathrm{tr}}=+3 \mathrm{MeV}$
55.,70.,1.	$F_{t r}(r)=F \frac{d V_{N}}{d r} \quad\left(\mathrm{~A}_{\mathrm{p}}{ }^{\prime}+\mathrm{A}_{\mathrm{t}}{ }^{\prime}\right)$
30,0.05	* no transfer coup. for $F=0$

ccfull.inp

16.,8.,144.,62.	$\left(\mathrm{A}_{\mathrm{p}}=16, \mathrm{Z}_{\mathrm{p}}=8, \mathrm{~A}_{\mathrm{t}}=144, \mathrm{Z}_{\mathrm{t}}=62\right)$
1.2,-1,1.06,0	(inert projectile, and vib. for targ.)
1.81,0.205,3,1	properties of the targ. excitation
1.66,0.11,2,1	second mode in the targ.
6.13,0.733,3,1	properties of the proj. excitation (similar as the third line)
0,0., 0.3	transfer coupling (g.s. to g.s.)
105.1,1.1,0.75	potential parameters
55.,70.,1.	$V_{N}(r)=-\frac{V_{0}}{1+\exp \left[\left(r-R_{0}\right) / a\right]}$
30,0.05	$\begin{aligned} & V_{0}=105.1 \mathrm{MeV}, a=0.75 \mathrm{fm} \\ & R_{0}=1.1 *\left(\mathrm{~A}_{\mathrm{p}}^{1 / 3}+\mathrm{A}_{\mathrm{t}}^{1 / 3}\right) \mathrm{fm} \end{aligned}$

ccfull.inp

16.,8.,144.,62.	$\left(\mathrm{A}_{\mathrm{p}}=16, \mathrm{Z}_{\mathrm{p}}=8, \mathrm{~A}_{\mathrm{t}}=144, \mathrm{Z}_{\mathrm{t}}=62\right)$
1.2,-1,1.06,0	(inert projectile, and vib. for targ.)
1.81,0.205,3,1	properties of the targ. excitation
1.66,0.11,2,1	second mode in the targ.
6.13,0.733,3,1	properties of the proj. excitation (similar as the third line)
0,0.,0.3	transfer coupling (g.s. to g.s.)
105.1,1.1,0.75	potential parameters
55.,70.,1.	$E_{\text {min }}, E_{\text {max }}, \Delta E$ (c.m. energies)
30,0.05	$R_{\text {max }}, \Delta r$

ccfull.inp

16.,8.,144.,62.
1.2,-1,1.06,0
1.81,0.205,3,1
1.66,0.11,2,1
6.13,0.733,3,1

0,0.,0.3
105.1,1.1,0.75
55.,70.,1.

30,0.05

OUTPUT

$16 \mathrm{O}+144 \mathrm{Sm}$ Fusion reaction

Phonon Excitation in the targ.: beta_N $=0.205$, beta_C $=0.205$, $\mathrm{r} 0=1.06(\mathrm{fm})$, omega $=1.81(\mathrm{MeV})$, Lambda $=3, \mathrm{Nph}=1$

Potential parameters: $\mathrm{V} 0=105.10(\mathrm{MeV}), \mathrm{r} 0=1.10(\mathrm{fm})$, $a=0.75(\mathrm{fm})$, power $=1.00$
Uncoupled barrier: $\mathrm{Rb}=10.82(\mathrm{fm}), \mathrm{Vb}=61.25(\mathrm{MeV})$,
Curv=4.25(MeV)

Ecm (MeV) sigma (mb) <l>

55.00000	$0.97449 \mathrm{E}-02$	5.87031
56.00000	0.05489	5.94333
57.00000	0.28583	6.05134
58.00000	1.36500	6.19272
59.00000	5.84375	6.40451

69.00000	427.60179	17.16365
70.00000	472.46037	18.08247

In addition, "cross.dat" : fusion cross sections only

Coupled-channels equations and barrier distribution

$$
\begin{gathered}
{\left[\begin{array}{c}
\left.-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{J(J+1) \hbar^{2}}{2 \mu r^{2}}+V_{0}(r)-E+\epsilon_{n}\right] u_{n}(r) \\
\left.\left.+\sum_{n^{\prime}}\left\langle\phi_{n}\right| V_{\text {coup }}(r, \xi) \mid \phi_{n^{\prime}}\right]\right\rangle u_{n^{\prime}}(r)=0
\end{array}\right.} \\
u_{n}(r) \rightarrow H_{J}^{(-)}\left(k_{n} r\right) \delta_{n, n_{i}}-\sqrt{\frac{k_{0}}{k_{n}}} S_{n} H_{J}^{(+)}\left(k_{n} r\right)
\end{gathered}
$$

Calculate $\sigma_{\text {fus }}$ by numerically solving the coupled-channels equations
\square Let us consider a limiting case in order to understand (interpret) the numerical results

$$
\begin{cases}\bullet \varepsilon_{\mathrm{nI}}: \text { very large } & \text { Adiabatic limit } \\ \bullet \varepsilon_{\mathrm{nI}}=0 & \text { Sudden limit }\end{cases}
$$

Comparison of two time scales
similar related example: spring on a moving board

move very slowly? or move instantaneously?

Two limiting cases: (i) adiabatic limit

$H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V_{0}(r)+H_{0}(\xi)+V_{\text {coup }}(\boldsymbol{r}, \xi)$
much slower rel. motion than the intrinsic motion

much larger energy scale for intrinsic motion than the typical energy scale for the rel. motion

$$
\hbar \Omega \ll \epsilon
$$

(Barrier curvature v.s. Intrinsic excitation energy)

$$
\left[H_{0}(\xi)+V_{\text {coup }}(\boldsymbol{r}, \xi)\right] \varphi_{0}(\xi ; \boldsymbol{r})=\epsilon_{0}(r) \varphi_{0}(\xi ; \boldsymbol{r})
$$

$$
H_{0}(\xi)+V_{\text {coup }}(\boldsymbol{r}, \xi) \rightarrow \epsilon_{0}(r)
$$

c.f. Born-Oppenheimer approximation for hydrogen molecule

$$
\left[T_{R}+T_{r}+V(r, R)\right] \Psi(r, R)=E \Psi(r, R)
$$

1. Consider first the electron motion for a fixed R

$$
\left[T_{r}+V(r, R)\right] u_{n}(r ; R)=\epsilon_{n}(R) u_{n}(r ; R)
$$

2. Minimize $\varepsilon_{n}(R)$ with respect to R

Or 2^{\prime}. Consider the proton motion in a potential $\varepsilon_{n}(R)$

$$
\left[T_{R}+\epsilon_{n}(R)\right] \phi_{n}(R)=E \phi_{n}(R)
$$

Adiabatic Potential Renormalization
$H=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V_{0}(r)+H_{0}(\xi)+V_{\text {coup }}(\boldsymbol{r}, \xi)$
When ε is large,

$$
H_{0}(\xi)+V_{\text {coup }}(\boldsymbol{r}, \xi) \rightarrow \epsilon_{0}(r)
$$

where

$$
\begin{aligned}
& {\left[H_{0}(\xi)+V_{\text {coup }}(\boldsymbol{r}, \xi)\right] \varphi_{0}(\xi ; \boldsymbol{r})} \\
& \quad=\epsilon_{0}(r) \varphi_{0}(\xi ; \boldsymbol{r})
\end{aligned}
$$

Fast intrinsic motion
\Longrightarrow Adiabatic potential renormalization

$$
V_{\mathrm{ad}}(r)=V_{0}(r)+\epsilon_{0}(r)
$$

Giant Resonances, ${ }^{16} \mathrm{O}\left(3^{-}\right)[6.31 \mathrm{MeV}]$

K.H., N. Takigawa, M. Dasgupta,
D.J. Hinde, J.R. Leigh, PRL79('99)2014

Two limiting cases: (ii) sudden limit

 $\epsilon \rightarrow 0$

$$
\epsilon_{I}=I(I+1) \hbar^{2} / 2 \mathcal{J}
$$

$$
\mathcal{J} \rightarrow \infty
$$

$$
\sigma_{\mathrm{fus}}(E)=\int_{0}^{1} d(\cos \theta) \sigma_{\mathrm{fus}}(E ; \theta)
$$

Coupled-channels:

$$
\left(\begin{array}{ccc}
0 & f(r) & 0 \\
f(r) & \frac{2 \sqrt{5}}{7} f(r) & \frac{6}{7} f(r) \\
0 & \frac{6}{7} f(r) & \frac{20 \sqrt{5}}{77} f(r)
\end{array}\right) \xrightarrow{\text { diagonalize }}\left(\begin{array}{ccc}
\lambda_{1}(r) & 0 & 0 \\
0 & \lambda_{2}(r) & 0 \\
0 & 0 & \lambda_{3}(r)
\end{array}\right)
$$

$$
\rightleftarrows P(E)=\sum_{i} w_{i} P\left(E ; V_{0}(r)+\lambda_{i}(r)\right)
$$

Slow intrinsic motion
\Longrightarrow Barrier Distribution

Barrier distribution

$$
P(E)=\sum_{i} w_{i} P\left(E ; V_{0}(r)+\lambda_{i}(r)\right)
$$

Barrier distribution: understand the concept using a spin Hamiltonian

Hamiltonian (example 1): $H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{0}(x)+\widehat{\sigma}_{z} \cdot V_{s}(x)$

$$
\hat{\sigma}_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

For Spin-up

$$
V_{1}(x)=V_{0}(x)+V_{s}(x)
$$

For Spin-down

$V_{2}(x)=V_{0}(x)-V_{s}(x)$
$H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{0}(x)+\widehat{\sigma}_{z} \cdot V_{1}(x)$
Wave function $\Psi(x)=\psi_{1}(x)|\uparrow\rangle+\psi_{2}(x)|\downarrow\rangle$ (general form)

$$
=\binom{\psi_{1}(x)}{\psi_{2}(x)}
$$

The spin direction does not change during tunneling:

$$
\begin{aligned}
P(E)=w_{\uparrow} P_{1}(E)+w_{\downarrow} P_{2}(E) \\
w_{\uparrow}+w_{\downarrow}=1
\end{aligned}
$$

$P(E)=w_{\uparrow} P_{1}(E)+w_{\downarrow} P_{2}(E)$

Tunneling prob. is a weighted sum of tunnel prob. for two barriers

$>$ Tunnel prob. is enhanced at $E<V_{b}$ and hindered $E>V_{b}$ $>d P / d E$ splits to two peaks \longrightarrow "barrier distribution"
$>$ The peak positions of $d P / d E$ correspond to each barrier height $>$ The height of each peak is proportional to the weight factor

$$
\begin{aligned}
P(E) & =w_{\uparrow} P_{1}(E)+w_{\downarrow} P_{2}(E) \\
\frac{d P}{d E} & =w_{\uparrow} \frac{d P_{1}}{d E}+w_{\downarrow} \frac{d P_{2}}{d E}
\end{aligned}
$$

$$
\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+V_{l}(r)+\left(\begin{array}{cc}
0 & F \\
F & \epsilon
\end{array}\right)-E\right]\binom{u_{0}(r)}{u_{1}(r)}=0
$$

$\square\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+V_{l}(r)+\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)-E\right]\binom{\phi_{0}(r)}{\phi_{1}(r)}=0$

$$
\left\{\begin{array}{l}
\phi_{0}(r)=\alpha \cdot u_{0}(r)+\beta \cdot u_{1}(r) \\
\phi_{1}(r)=\beta \cdot u_{0}(r)-\alpha \cdot u_{1}(r)
\end{array}\right.
$$

simple 2-level model (Dasso, Landowne, and Winther, NPA405(‘83)381)

Fig. 1. Illustration of how channel coupling increases transmission at energies below the barrier and decreases it above. Parts (a) and (b) indicate the classieal limits for no coupling and coupling, respectively, while parts (c) and (d) indicate how quantum mechanical effects modify the corresponding curves.

Sub-barrier Fusion and Barrier distribution method

$$
\sigma_{\mathrm{fus}}(E)=\frac{\hbar \Omega}{2 E} R_{b}^{2} \log \left[1+\exp \left(\frac{2 \pi}{\hbar \Omega}\left(E-V_{b}\right)\right)\right]
$$

$$
\frac{d\left(E \sigma_{\mathrm{fus}}\right)}{d E}=\frac{\pi R_{b}^{2}}{1+\exp \left[\frac{2 \pi}{\hbar \Omega}\left(V_{b}-E\right)\right]}=\pi R_{b}^{2} \cdot P_{l=0}(E)
$$

$$
D_{\mathrm{fus}}(E) \equiv \frac{d^{2}\left(E \sigma_{\mathrm{fus}}\right)}{d E^{2}} \simeq \pi R_{b}^{2} \frac{d P_{l=0}}{d E}
$$

(Fusion barrier distribution)

N. Rowley, G.R. Satchler,
P.H. Stelson, PLB254('91)25

> N. Rowley, G.R. Satchler, P.H. Stelson, PLB254('91)25

$$
\begin{aligned}
\frac{d}{d E}\left[E \sigma_{\text {fus }}(E)\right] & \propto P(E) \\
\frac{d^{2}}{d E^{2}}\left[E \sigma_{\text {fus }}(E)\right] & \propto \frac{d P}{d E}
\end{aligned}
$$

$$
\text { centered on } E=V_{\mathrm{b}}
$$

Barrier distribution measurements

Fusion barrier distribution $\quad D_{\text {fus }}(E)=\frac{d^{2}(E \sigma)}{d E^{2}}$
Needs high precision data in order for the $2^{\text {nd }}$ derivative to be meaningful

Experimental Barrier Distribution

Requires high precision data

$$
\sigma_{\text {fus }}(E)=\int_{0}^{154} d\left(\cos \theta_{T}\right) \sigma_{\mathrm{fus}}\left(E ; \theta_{T}\right)
$$

Annu. Rev. Nucl. Part. Sci. 48('98)401

Investigate nuclear shape through barrier distribution

$$
\mathrm{E}_{\mathrm{cm}}(\mathrm{MeV})
$$

Nuclear shapes
$R(\theta)=R_{0}\left(1+\beta_{2} Y_{20}(\theta)+\beta_{4} Y_{40}(\theta)+\cdots\right)$

By taking the barrier distribution, one can very clearly see the difference due to β_{4} !
\Longrightarrow Fusion as a quantum tunneling microscope for nuclei

Advantage of fusion barrier distribution

Fusion Cross sections

I

Very strong exponential energy dependence
\longrightarrow Difficult to see differences due to details of nuclear structure

Plot cross sections in a different way: Fusion barrier distribution

$$
D_{\text {fus }}(E)=\frac{d^{2}(E \sigma)}{d E^{2}}
$$

N. Rowley, G.R. Satchler,
P.H. Stelson, PLB254('91)25
\longrightarrow Function which is sensitive to details of nuclear structure

Example for spherical vibrational system

Anharmonicity of octupole vibration

Quadrupole moment:
$Q\left(3^{-}\right)=-0.70 \pm 0.02 b$
K.Hagino, N. Takigawa, and S. Kuyucak, PRL79('97)2943

Barrier distribution

K.Hagino, N. Takigawa, and S. Kuyucak, PRL79('97)2943

Coupling to excited states \longrightarrow distribution of potential barrier multi-dimensional potential surface
 single barrier
$\longrightarrow \underset{\text { many barriers }}{\text { a collection of }}$

$$
\begin{aligned}
& P(E)=P[E, V(r)] \\
& \rightarrow P(E)=\sum_{\alpha} w_{\alpha} P\left[E, V_{\alpha}(r)\right]
\end{aligned}
$$

relative distance

(intrinsic coordinate)

Representations of fusion cross sections

i) $\sigma_{\underline{f u s}} \underline{\operatorname{vs~} 1 / \mathrm{E}(\sim 70 ’ s)}$

Classical fusion cross section is proportional to $1 / E$:

$$
\sigma_{\mathrm{fus}}^{c l}(E)=\pi R_{b}^{2}\left(1-\frac{V_{b}}{E}\right)
$$

Taken from J.S. Lilley, "Nuclear Physics"

ii) barrier distribution (~ 90 's)

M. Dasgupta et al.,

Annu. Rev. Nucl. Part. Sci. 48('98)401
iii) logarithmic derivative (~ 00 's)

$$
\begin{aligned}
\sigma_{\mathrm{fus}}(E) & =\frac{\hbar \Omega}{2 E} R_{b}^{2} \log \left[1+\exp \left(\frac{2 \pi}{\hbar \Omega}\left(E-V_{b}\right)\right)\right] \\
& \sim \frac{\hbar \Omega}{2 E} R_{b}^{2} \exp \left(\frac{2 \pi}{\hbar \Omega}\left(E-V_{b}\right)\right) \quad\left(E \ll V_{b}\right)
\end{aligned}
$$

$$
\frac{d}{d E} \log (E \sigma)=\frac{(E \sigma)^{\prime}}{E \sigma}=\frac{2 \pi}{\hbar \Omega}
$$

$$
\text { cf. } D_{\text {fus }}=(E \sigma)^{\prime \prime}
$$

R. Vandenbosch, Ann. Rev. Nucl. Part. Sci. 42(‘92)447

M. Dasgupta et al., PRL99(‘07) 192701

deep subbarrier hindrance of fusion cross sections

C.L. Jiang et al., PRL89('02)052701; PRL93('04)012701

Systematics of the touching point energy and deep subbarrier hindrance

Center-of-Mass Distance r
mechanism of deep subbarrier hindrance:
not yet been fully understood
how to model the dynamics after touching?

T. Ichikawa, K.H., A. Iwamoto, PRC75('07) 064612 \& 057603

Quantum reflection and quasi-elastic scattering

In quantum mechanics, reflection occurs even at $E>V_{b}$

$$
P(E)+R(E)=1
$$

\longrightarrow Quantum Reflection
Reflection prob. carries the same information as penetrability, and barrier distribution can be defined in terms of reflection prob.

Quasi-Elastic Scattering

A sum of all the reaction processes other than fusion (elastic + inelastic \lesssim + transfer $+\ldots \ldots$)

Detect all the particles which reflect at the barrier and hit the detector
In case of a def. target......

Related to reflection 15
Complementary to fusion
$\left\{\begin{array}{l}\sigma_{\mathrm{fus}}(E)=\int_{0}^{1} d\left(\cos \theta_{T}\right) \sigma_{\mathrm{fus}}\left(E ; \theta_{T}\right) \\ \sigma_{\mathrm{qeI}}(E, \theta)=\sum_{I} \sigma(E, \theta)=\int_{0}^{1} d\left(\cos \theta_{T}\right) \sigma_{\mathrm{el}}\left(E, \theta ; \theta_{T}\right)\end{array}\right.$

Subbarrier enhancement of fusion cross sections

$\sigma_{\mathrm{fus}}(E)=\int_{0}^{1} d(\cos \theta) \sigma_{\mathrm{fus}}(E ; \theta)$

$$
\sigma_{\mathrm{qel}}(E, \theta)=\int_{0}^{1} d\left(\cos \theta_{T}\right) \sigma_{\mathrm{el}}\left(E, \theta ; \theta_{T}\right)
$$

Quasi-elastic barrier distribution

$$
\begin{aligned}
& \sigma_{\text {fus }}(E)=\int_{0}^{1} d\left(\cos \theta_{T}\right) \sigma_{\text {fus }}\left(E ; \theta_{T}\right) \\
& D_{\text {fus }}(E)=\frac{d^{2}\left(E \sigma_{\text {fus }}\right)}{d E^{2}}
\end{aligned}
$$

$$
\sigma_{\mathrm{qel}}(E, \theta)=\sum_{I} \sigma(E, \theta)=\int_{0}^{1} d\left(\cos \theta_{T}\right) \sigma_{\mathrm{el}}\left(E, \theta ; \theta_{T}\right)
$$

Quasi-elastic barrier distribution:

$$
D_{\mathrm{qeI}}(E)=-\frac{d}{d E}\left(\frac{\sigma_{\mathrm{qel}}(E, \pi)}{\sigma_{R}(E, \pi)}\right) \quad \begin{aligned}
& \text { H. Timmers et al.., } \\
& \text { NPA584('95)190 }
\end{aligned}
$$

(note) Classical elastic cross section in the limit of strong Coulomb field:

$$
\begin{aligned}
& \sigma_{\mathrm{el}}^{c l}(E, \pi)=\sigma_{R}(E, \pi) \theta\left(V_{b}-E\right) \\
& \overparen{\Re} \frac{\sigma_{\mathrm{el}}^{c l}(E, \pi)}{\sigma_{R}(E, \pi)}=\theta\left(V_{b}-E\right)=R(E)
\end{aligned}
$$

Quasi-elastic test function

Classical elastic cross section (in the limit of a strong Coulomb):

$$
\sigma_{\mathrm{el}}^{c l}(E, \pi)=\sigma_{R}(E, \pi) \theta\left(V_{b}-E\right)
$$

$$
\begin{aligned}
\frac{\sigma_{\mathrm{el}}^{c l}(E, \pi)}{\sigma_{R}(E, \pi)} & =\theta\left(V_{b}-E\right)=R(E) \\
-\frac{d}{d E}\left(\frac{\sigma_{\mathrm{el}}^{c l}(E, \pi)}{\sigma_{R}(E, \pi)}\right) & =\delta\left(E-V_{b}\right)
\end{aligned}
$$

Nuclear effects \Longleftarrow Semi-classical perturbation theory

$$
\frac{\sigma_{\mathrm{el}}(E, \pi)}{\sigma_{R}(E, \pi)} \sim\left(1+\frac{V_{N}\left(r_{c}\right)}{k a} \frac{\sqrt{2 a \pi k \eta}}{E}\right) \cdot R(E)
$$

S. Landowne and H.H. Wolter, NPA351('81)171
K.H. and N. Rowley, PRC69('04)054610

Scaling property

Expt.: impossible to perform at $\theta=\pi$
\longrightarrow Relation among different θ ?

Effective energy:

$$
\begin{aligned}
E_{\mathrm{eff}} & \sim E-\frac{\lambda_{c}^{2} \hbar^{2}}{2 \mu r_{c}^{2}} \\
& =2 E \frac{\sin (\theta / 2)}{1+\sin (\theta / 2)} \\
D_{\mathrm{qel}}(E, \theta) & \sim D_{\mathrm{qel}}\left(E_{\mathrm{eff}}, \pi\right)
\end{aligned}
$$

$$
\lambda_{c}=\eta \cot (\theta / 2)
$$

Comparison of $\mathrm{D}_{\text {fus }}$ with $\mathrm{D}_{\text {qel }}$

Fusion

$$
D_{\mathrm{fus}}(E)=\frac{d^{2}\left(E \sigma_{\mathrm{fus}}\right)}{d E^{2}}
$$

Quasi-elastic

$$
\stackrel{\text { i-elastic }}{D_{\mathrm{qel}}(E)}=-\frac{d}{d E}\left(\frac{\sigma_{\mathrm{qel}}(E, \pi)}{\sigma_{R}(E, \pi)}\right)
$$

H. Timmers et al., NPA584('95)190

A gross feature is similar to each other
K.H. and N. Rowley, PRC69('04)054610

Experimental barrier distribution with QEL scattering

$$
D_{\mathrm{qel}}(E)=-\frac{d}{d E}\left(\frac{\sigma_{\mathrm{qel}}(E, \pi)}{\sigma_{R}(E, \pi)}\right)
$$

${ }^{70} \mathrm{Zn}: \mathrm{E}_{2}=0.885 \mathrm{MeV}, 2$ phonon, ${ }^{208} \mathrm{~Pb}: \mathrm{E}_{3}=2.614 \mathrm{MeV}, 3$ phonon
Muhammad Zamrun F., K. H., S. Mitsuoka, and H. Ikezoe, PRC77('08)034604. Experimental Data: S. Mitsuoka et al., PRL99('07)182701

Experimental advantages for $\mathrm{D}_{\mathrm{qel}}$

$$
D_{\mathrm{qel}}(E)=-\frac{d}{d E}\left(\frac{\sigma_{\mathrm{qel}}(E, \pi)}{\sigma_{R}(E, \pi)}\right) \quad D_{\mathrm{fus}}(E)=\frac{d^{2}\left(E \sigma_{\mathrm{fus}}\right)}{d E^{2}}
$$

- less accuracy is required in the data ($1^{\text {st }}$ vs. $2^{\text {nd }}$ derivative)
- much easier to be measured

Qel: a sum of everything
\longrightarrow a very simple charged-particle detector
Fusion: requires a specialized recoil separator to separate ER from the incident beam
ER + fission for heavy systems

- several effective energies can be measured at a single-beam energy \leftrightarrow relation between a scattering angle and an impact parameter

$$
E_{\mathrm{eff}}=2 E \sin (\theta / 2) /[1+\sin (\theta / 2)]
$$

Deep subbarrier fusion and diffuseness anomaly

Scattering processes:

Double folding pot.
Woods-Saxon (a ~ 0.63 fm)
\longrightarrow successful

A. Mukherjee, D.J. Hinde, M. Dasgupta, K.H., et al., PRC75('07)044608
Fusion process: not successful

- Expt

$$
---\mathrm{a}=0.63 \mathrm{fm}
$$

$$
-\mathrm{a}=1.12 \mathrm{fm}
$$

$$
\mathrm{E}_{\mathrm{cm}}(\mathrm{MeV})
$$

$\longrightarrow a \sim 1.0 \mathrm{fm}$ required (if WS)

-How reliable is the DFM/WS?
-What is an optimum potential?
deduction of fusion barrier from exp. data? (model independent analysis?)

Quasi-elastic scattering at deep subbarrier energies?

K.H., T. Takehi, A.B. Balantekin, and N. Takigawa, PRC71('05) 044612
K. Washiyama, K.H., M. Dasgupta, PRC73('06) 034607

QEL at deep subbarrier energies: sensitive only to the surface region

$$
\begin{aligned}
\frac{\sigma_{\mathrm{el}}(E, \pi)}{\sigma_{R}(E, \pi)} & \sim\left(1+\frac{V_{N}\left(r_{c}\right)}{k a} \frac{\sqrt{2 a \pi k \eta}}{E}\right) \cdot R(E) \\
& \sim 1+\frac{V_{N}\left(r_{c}\right)}{k a} \frac{\sqrt{2 a \pi k \eta}}{E}
\end{aligned}
$$

Heavy-Ion Fusion Reactions around the Coulomb Barrier

\diamond Fusion and quantum tunneling
Fusion takes place by tunneling
\diamond Basics of the Coupled-channels method
Collective excitations during fusion
\diamond Concept of Fusion barrier distribution
Sensitive to nuclear structure

$$
D_{\mathrm{fus}}(E)=\frac{d^{2}\left(E \sigma_{\mathrm{fus}}\right)}{d E^{2}}
$$

\diamond Quasi-elastic scattering and quantum reflection
Complementary to fusion

Computer program: CCFULL
http://www.nucl.phys.tohoku.ac.jp/~hagino/ccfull.html

References

Nuclear Reaction in general

- G.R. Satchler, "Direct Nuclear Reactions"
- G.R. Satchler, "Introduction to Nuclear Reaction"
- R.A. Broglia and A. Winther, "Heavy-Ion Reactions"
- "Treatise on Heavy-Ion Science", vol. 1-7
- D.M. Brink, "Semi-classical method in nucleus-nucleus collisions"
- P. Frobrich and R. Lipperheide, "Theory of Nuclear Reactions"

Heavy-ion Fusion Reactions

- M. Dasgupta et al., Annu. Rev. Nucl. Part. Sci. 48('98) 401
- A.B. Balantekin and N. Takigawa, Rev. Mod. Phys. 70('98) 77
- Proc. of Fusion03, Prog. Theo. Phys. Suppl. 154('04)
- Proc. of Fusion97, J. of Phys. G 23 ('97)
- Proc. of Fusion06, AIP, in press.

Hamiltonian (example 3): more general cases

$$
\begin{gathered}
H=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{0}(x)-\epsilon \sigma_{z}+\widehat{\sigma}_{x} \cdot F(x) \\
=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{0}(x)+\left(\begin{array}{cc}
-\epsilon & F(x) \\
F(x) & \epsilon
\end{array}\right) \\
U(x)\left(\begin{array}{cc}
-\epsilon & F(x) \\
F(x) & \epsilon
\end{array}\right) U^{\dagger}(x)=\left(\begin{array}{cc}
\lambda_{1}(x) & 0 \\
0 & \lambda_{2}(x)
\end{array}\right) \\
P(E)=\sum_{i} w_{i}(E) P\left(E ; V_{0}(x)+\lambda_{i}(x)\right) \\
E \text { dependent }
\end{gathered}
$$

K.H., N. Takigawa, A.B. Balantekin, PRC56('97)2104 $w_{i}(E) \sim$ constant
(note) Adiabatic limit: $\in \longrightarrow \infty \Longrightarrow w_{i}(E)=\delta_{i, 0}$

