Large Deviations for Weakly Interacting Particle Systems

Kavita Ramanan Brown University

ICTS Colloquium Bangalore, Dec 3 2018

Outline of Talk

- PART I: Gibbs measures on *n*-particle configurations
 - Problem Description and Motivation
 - Background on Large Deviations
 - Results
- PART II: Random Projections of High-dimensional measures
 - Random Projections
 - The CLT for Convex Sets
 - Large Deviations for Random Projections of Gibbs Measures

PART I

Gibbs measures on *n*-particle configurations

Gibbs measures on *n*-particle configurations

- configuration $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ of n particles in \mathbb{R}^d
- subject to
 - a confining potential $V : \mathbb{R}^d \mapsto (-\infty, \infty]$
 - a symmetric pairwise interaction potential $W: \mathbb{R}^d \times \mathbb{R}^d \mapsto (-\infty, \infty]$
- Probability distribution on n-particle configurations

$$P_n(d\mathbf{x}_1,...,d\mathbf{x}_n) \doteq \frac{\exp(-\gamma_n H_n(\mathbf{x}_1,...,\mathbf{x}_n))}{Z_n} \ell(d\mathbf{x}_1) \cdots \ell(d\mathbf{x}_n),$$

where ℓ is a non-atomic, σ -finite measure on \mathbb{R}^d (e.g., Lebesgue measure) and Z_n is the normalizing constant or partition function

Gibbs measures on *n*-particle configurations

Recall

$$P_n(d\mathbf{x}_1,...,d\mathbf{x}_n) =: \frac{\exp(-\gamma_n H_n(\mathbf{x}_1,...,\mathbf{x}_n))}{Z_n} \ell(d\mathbf{x}_1) \cdots \ell(d\mathbf{x}_n),$$

where H_n is the Hamiltonian defined by

$$H_n(\mathbf{x}^n) \equiv H_n(\mathbf{x}_1,...,\mathbf{x}_n) =: \frac{1}{n} \sum_{i=1}^n V(\mathbf{x}_i) + \frac{1}{2n^2} \sum_{i,j=1,i\neq i}^n W(\mathbf{x}_i,\mathbf{x}_j)$$

which can be rewritten as

$$H_{n}(\mathbf{x}^{n}) = \int_{\mathbb{R}^{d}} \mathbf{V}(\mathbf{x}) L_{n}(\mathbf{x}^{n}; d\mathbf{x}) + \frac{1}{2} \int_{\neq} \mathbf{W}(\mathbf{x}, \mathbf{y}) m_{\mathbf{x}^{n}}^{n}(d\mathbf{x}) m_{\mathbf{x}^{n}}^{n}(d\mathbf{y}).$$

Gibbs measures on *n*-particle configurations

Recall

$$P_n(d\mathbf{x}_1,...,d\mathbf{x}_n) =: \frac{\exp(-\gamma_n H_n(\mathbf{x}_1,...,\mathbf{x}_n))}{Z_n} \ell(d\mathbf{x}_1) \cdots \ell(d\mathbf{x}_n),$$

where H_n is the Hamiltonian defined by

$$H_n(\mathbf{x}^n) \equiv H_n(\mathbf{x}_1, ..., \mathbf{x}_n) =: \frac{1}{n} \sum_{i=1}^n V(\mathbf{x}_i) + \frac{1}{2n^2} \sum_{i,j=1, i \neq j}^n W(\mathbf{x}_i, \mathbf{x}_j)$$

which can be rewritten as

$$H_{n}(\mathbf{x}^{n}) = \int_{\mathbb{R}^{d}} \mathbf{V}(\mathbf{x}) L_{n}(\mathbf{x}^{n}; d\mathbf{x}) + \frac{1}{2} \int_{\neq} \mathbf{W}(\mathbf{x}, \mathbf{y}) \, m_{\mathbf{x}^{n}}^{n}(d\mathbf{x}) \, m_{\mathbf{x}^{n}}^{n}(d\mathbf{y}).$$

where $m_{\mathbf{x}^n}^n(\cdot)$ is the empirical measure:

$$m_{\mathbf{x}^n}^n(\cdot) =: \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}(\cdot),$$

where $\delta_{\mathbf{y}}$ denotes the Dirac delta mass at $\mathbf{y} \in \mathbb{R}^d$, and \int_{\neq} represents the integral over $\mathbb{R}^d \times \mathbb{R}^d \setminus \{(x, x) : x \in \mathbb{R}^d\}$

Motivation: where P_n arises – I

$$P_n(d\mathbf{x}_1,...,d\mathbf{x}_n) =: \frac{\exp(-\gamma_n H_n(\mathbf{x}_1,...,\mathbf{x}_n))}{Z_n} \ell(d\mathbf{x}_1) \cdots \ell(d\mathbf{x}_n),$$

ullet Equilibrium distribution of n interacting Brownian particles at inverse temperature γ_n

If V, W are sufficiently smooth, then P_n (with ℓ as Lebesgue measure) is the invariant distribution of the Markovian (reversible) diffusion on $(\mathbb{R}^d)^n$:

$$dX_t^n = \nabla H_n(X_t^n) dt + dB_t^n$$

where $B^n = (B_1, \dots, B_n)$, with B_1, \dots, B_n are independent standard d-dimensional Brownian motions

Motivation: where P_n arises – II

Recall

$$P_n(d\mathbf{x}_1,...,d\mathbf{x}_n) =: \frac{\exp(-\gamma_n H_n(\mathbf{x}_1,...,\mathbf{x}_n))}{Z_n} \ell(d\mathbf{x}_1) \cdots \ell(d\mathbf{x}_n),$$

- When d=1, $V(x)=|x|^2$, and $W(x,y)=\beta\log\frac{1}{|x-y|}$ with $\beta>0$, then P_n is the law of the β -ensemble in Random Matrix Theory. Specifically, for
 - $\beta = 1$, P_n is the law of the eigenvalues of the Gaussian Orthogonal Ensemble (GOE) of random symmetric matrices
 - $\beta = 2$, P_n is the law of the eigenvalues of the Gaussian Unitary Ensemble (GUE) of random Hermitian matrices

Motivation: where P_n arises – II contd.

$$P_n(d\mathbf{x}_1,...,d\mathbf{x}_n) =: \frac{\exp(-\gamma_n H_n(\mathbf{x}_1,...,\mathbf{x}_n))}{Z_n} \ell(d\mathbf{x}_1) \cdots \ell(d\mathbf{x}_n),$$

• When d=2, and $\mathbb{R}^d\equiv\mathbb{C}$, $\gamma_n=n^2$, $V(x)=|x|^2$ and $W(x,y)=2\log\frac{1}{|x-y|}$ then P_n is the law of the (complex) eigenvalues of a random $n\times n$ matrix with iid complex Gaussian entries with covariance $\mathbb{I}_2/2n$, where \mathbb{I}_2 is the 2×2 identity matrix.

Motivation: where P_n arises – II contd.

$$P_n(d\mathbf{x}_1,...,d\mathbf{x}_n) =: \frac{\exp(-\gamma_n H_n(\mathbf{x}_1,...,\mathbf{x}_n))}{Z_n} \ell(d\mathbf{x}_1) \cdots \ell(d\mathbf{x}_n),$$

- When d=2, and $\mathbb{R}^d\equiv\mathbb{C}$, $\gamma_n=n^2$, $V(x)=|x|^2$ and $W(x,y)=2\log\frac{1}{|x-y|}$ then P_n is the law of the (complex) eigenvalues of a random $n\times n$ matrix with iid complex Gaussian entries with covariance $\mathbb{I}_2/2n$, where \mathbb{I}_2 is the 2×2 identity matrix.
- In the last example if V is non-quadratic, then P_n is the law of the spectrum of random normal matrices (Ameur, Y., Hedenmalm, H. and Makarov, N., 2011)

Law of the Empirical Measure

• "Mean-field" symmetries of the model suggest the study of Q_n , the empirical distribution of the particles

$$m_{\mathbf{x}^n}^n(\cdot) =: \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}(\cdot),$$

under the distribution

$$P_n(d\mathbf{x}_1,...,d\mathbf{x}_n) =: \frac{\exp(-\gamma_n H_n(\mathbf{x}_1,...,\mathbf{x}_n))}{Z_n} \ell(d\mathbf{x}_1) \cdots \ell(d\mathbf{x}_n),$$

Note that under P_n , $m_{\mathbf{x}^n}^n$ is a random element taking values in $\mathcal{P}(\mathbb{R}^d)$, the space of probability measures on \mathbb{R}^d So Q_n is a probability measure on $\mathcal{P}(\mathbb{R}^d)$

Objective: Large Deviations

Goal:

Given a suitable sequence $\gamma_n \to \infty$, establish a large deviation principle (LDP) for $\{Q_n\}$: that is, identify a corresponding suitable sequence $\alpha_n \to \infty$ and function $I: \mathcal{P}(\mathbb{R}^d) \mapsto [0, \infty]$ such that

Objective: Large Deviations

Goal:

Given a suitable sequence $\gamma_n \to \infty$, establish a large deviation principle (LDP) for $\{Q_n\}$: that is, identify a corresponding suitable sequence $\alpha_n \to \infty$ and function $I: \mathcal{P}(\mathbb{R}^d) \mapsto [0, \infty]$ such that

$$Q_n(A) = P_n(m_{X^n}^n \in A) \approx e^{-\alpha_n I(A)}$$

for all nice subsets $A \subset \mathcal{P}(\mathbb{R}^d)$, where

$$I(A) = \inf_{x \in A} I(x)$$

Objective: Large Deviations

Goal:

Given a suitable sequence $\gamma_n \to \infty$, establish a large deviation principle (LDP) for $\{Q_n\}$: that is, identify a corresponding suitable sequence $\alpha_n \to \infty$ and function $I : \mathcal{P}(\mathbb{R}^d) \mapsto [0, \infty]$ such that

$$Q_n(A) = P_n(m_{X^n}^n \in A) \approx e^{-\alpha_n I(A)}$$

for all nice subsets $A \subset \mathcal{P}(\mathbb{R}^d)$, where

$$I(A) = \inf_{x \in A} I(x)$$

 $\{\alpha_n\}$ is called the speed of the LDP and / is called the rate function

Large Deviations Principles

- Let (S, S) be a topological space, and $\mathcal{P}(S)$ the space of Borel probability measures on that space.
- Given a sequence of measures $\{\theta_n\} \subset \mathcal{P}(S)$, let $\{\alpha_n\}$ be a sequence of positive real numbers such that $\lim_{n \to \infty} \alpha_n = \infty$, and let $\mathcal{H}: S \to [0, \infty]$ be a rate function (lowersemicontinuous with compact level sets). The sequence $\{\theta_n\}$ is said to satisfy a large deviation principle (LDP) with speed $\{\alpha_n\}$ and rate function \mathcal{H} if for each $E \in \mathcal{B}(S)$,

$$-\inf_{x\in E^o} \mathcal{H}(x) \leq \liminf_{n\to\infty} \alpha_n^{-1} \log(R_n(E)) \leq \limsup_{n\to\infty} \alpha_n^{-1} \log(R_n(E))$$
$$\leq -\inf_{x\in \bar{E}} \mathcal{H}(x).$$

Why Large Deviations Principles?

$$Q_n(A) = P_n(m_{X^n}^n \in A) \approx e^{-\alpha_n I(A)}$$

where

$$I(A) = \inf_{x \in A} I(x)$$

- Large deviations is an asymptotic theory that estimates probabilities of rare events (those with exponentially small probability) and represents them as the solution of a variational problem
- In many cases (when the rate function is strictly convex) the minimizer of the variational representation identifies the limit of the empirical measures
- Large deviations principles often provide information on the behavior of the distribution, conditioned on the rare event

Why the Topology Matters

Contraction Principle

"One gets LDPs for continuous functionals for free" If $\{X_n\}$ satisfies an LDP at a speed $\{\alpha_n\}$ on a topological space (S,\mathcal{S}) with rate function I, and the map $F:(S,\mathcal{S})\mapsto (S',\mathcal{S}')$ is continuous, then $\{F(X_n)\}$ also satisfies an LDP at a speed $\{\alpha_n\}$ with rate function $J:T\mapsto [0,\infty]$ given by

$$J(y) = \inf\{I(x) : F(x) = y, x \in S\}, \quad y \in T$$

Recall our Goal

To establish LDPs for the sequence $\{Q_n\}$ of the law of the (random) empirical measures

$$m_{\mathbf{x}^n}^n(\cdot) =: \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{x}_i}(\cdot),$$

under

$$P_n(d\mathbf{x}_1,...,d\mathbf{x}_n) =: \frac{\exp(-\gamma_n H_n(\mathbf{x}_1,...,\mathbf{x}_n))}{Z_n} \ell(d\mathbf{x}_1) \cdots \ell(d\mathbf{x}_n),$$

where

$$H_n(\mathbf{x}^n) \equiv H_n(\mathbf{x}_1,...,\mathbf{x}_n) =: \frac{1}{n} \sum_{i=1}^n V(\mathbf{x}_i) + \frac{1}{2n^2} \sum_{i,j=1,i\neq j}^n W(\mathbf{x}_i,\mathbf{x}_j)$$

Topologies on the Space $\mathcal{P}(\mathbb{R}^d)$

Recall we are interested in LDPs for the sequence of probability measures Q_n on $\mathcal{P}(\mathbb{R}^d)$

• Let $\mathcal{P}(\mathbb{R}^d)$ be the space of probability measures on \mathbb{R}^d , equipped with the weak topology; recall μ_n converges to μ in the weak topology if and only if

$$\forall f \in C_b(\mathbb{R}^d), \int_{\mathbb{R}^d} f(\mathbf{x}) \mu_n(d\mathbf{x}) \to \int_{\mathbb{R}^d} f(\mathbf{x}) \mu(d\mathbf{x}),$$

Let d_W denote the so-called Lévy-Prohorov metric on $\mathcal{P}(\mathbb{R}^d)$ that induces this topology.

Stronger Topologies on the Space $\mathcal{P}(\mathbb{R}^d)$

Fix a positive, continuous function $\psi:\mathbb{R}^d\to\mathbb{R}^+$ that satisfies the growth condition

$$\lim_{c \to \infty} \inf_{\mathbf{x}: \|\mathbf{x}\| = c} \psi(\mathbf{x}) = \infty.$$

Stronger Topologies on the Space $\mathcal{P}(\mathbb{R}^d)$

Fix a positive, continuous function $\psi:\mathbb{R}^d\to\mathbb{R}^+$ that satisfies the growth condition

$$\lim_{c\to\infty}\inf_{\mathbf{x}:\|\mathbf{x}\|=c}\psi(\mathbf{x})=\infty.$$

Define

$$\mathcal{P}_{\psi}(\mathbb{R}^{d}) \doteq \left\{ \mu \in \mathcal{P}(\mathbb{R}^{d}) : \int_{\mathbb{R}^{d}} \psi(\mathbf{x}) \, \mu(d\mathbf{x}) < +\infty \right\}.$$

and endow it with the metric

$$d_{\psi}(\mu,
u) \doteq d_{w}(\mu,
u) + \left| \int_{\mathbb{R}^{d}} \psi(\mathbf{x}) \mu(d\mathbf{x}) - \int_{\mathbb{R}^{d}} \psi(\mathbf{x})
u(d\mathbf{x})
ight|,$$

where d_w is the Lévy-Prohorov metric that topologizes weak convergence.

Stronger Topologies on the Space $\mathcal{P}(\mathbb{R}^d)$

Fix a positive, continuous function $\psi:\mathbb{R}^d\to\mathbb{R}^+$ that satisfies the growth condition

$$\lim_{c\to\infty}\inf_{\mathbf{x}:\|\mathbf{x}\|=c}\psi(\mathbf{x})=\infty.$$

Define

$$\mathcal{P}_{\psi}(\mathbb{R}^{d}) \doteq \left\{ \mu \in \mathcal{P}(\mathbb{R}^{d}) : \int_{\mathbb{R}^{d}} \psi(\mathbf{x}) \, \mu(d\mathbf{x}) < +\infty \right\}.$$

and endow it with the metric

$$d_{\psi}(\mu,
u) \doteq d_{w}(\mu,
u) + \left| \int_{\mathbb{R}^{d}} \psi(\mathbf{x}) \mu(d\mathbf{x}) - \int_{\mathbb{R}^{d}} \psi(\mathbf{x})
u(d\mathbf{x})
ight|,$$

where d_w is the Lévy-Prohorov metric that topologizes weak convergence.

Note: The choice of $\psi(\mathbf{x}) = ||\mathbf{x}||^p$ for some $p \in [1, \infty)$ coincides with the p-Wasserstein topology

Results for Case 1: $\gamma_n/n \to \infty$

Dupuis, Laschos and R '15

Under suitable boundedness and growth conditions on V and W, and an additional approximability assumption, the sequence $\{Q_n\}$ satisfies an LDP on $\mathcal{P}(\mathbb{R}^d)$ (respectively $\mathcal{P}^{\psi}(\mathbb{R}^d)$) with rate function \mathcal{J}_* (respectively, \mathcal{J}_*^{ψ}), where

$$\mathcal{J}_* := \mathcal{J}(\mu) - \inf_{\mu \in \mathcal{P}(\mathbb{R}^d)} \mathcal{J}(\mu),$$

and

$$\mathcal{J}_*^{\psi} := \mathcal{J}(\mu) - \inf_{\mu \in \mathcal{P}^{\psi}(\mathbb{R}^d)} \mathcal{J}(\mu),$$

with $\mathcal{J}: \mathcal{P}(\mathbb{R}^d) \to (-\infty, \infty]$, given by

$$\mathcal{J}(\mu) \doteq \frac{1}{2} \int_{\mathbb{R}^{d} \times \mathbb{S}^{d}} \left(\mathbf{V}(\mathbf{x}) + \mathbf{V}(\mathbf{y}) + \mathbf{W}(\mathbf{x}, \mathbf{y}) \right) \mu(d\mathbf{x}) \mu(d\mathbf{y})$$

Results for Case 2: $\gamma_n = n$

Classical Special Case: W = 0

$$P_n(d\mathbf{x}_1,...,d\mathbf{x}_n) =: \frac{\exp(-\gamma_n H_n(\mathbf{x}_1,...,\mathbf{x}_n))}{Z_n} \ell(d\mathbf{x}_1) \cdots \ell(d\mathbf{x}_n),$$

Particles are iid with marginal distribution

$$\theta(d\mathbf{x}) \propto \exp(-\gamma_n \mathbf{V}(\mathbf{x}))$$

Sanov's Theorem

Then $\{Q_n\}$ satisfies an LDP with rate function \mathbb{R} , where $\mathbb{R}(\cdot|\theta)$ is the relative entropy functional: for $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$,

$$\frac{\mathcal{R}(\mu|\nu) \doteq \begin{cases} \int_{\mathbb{R}^d} \frac{d\mu}{d\nu}(\mathbf{x}) \log\left(\frac{d\mu}{d\nu}(\mathbf{x})\right) \nu(d\mathbf{x}), & \text{if } \mu \ll \nu, \\ \infty, & \text{otherwise,} \end{cases}$$

where $\mu \ll \nu$ denotes that μ is absolutely continuous with respect to ν .

Results II: $\gamma_n = n$

Theorem (Dupuis, Laschos and R '15)

Under suitable boundedness and growth conditions on V and W, and an additional approximability assumption, the sequence $\{Q_n\}$ satisfies an LDP with rate function \mathcal{I}_* (respy, \mathcal{I}_*^{ψ} on $\mathcal{P}(\mathbb{R}^d)$ (respy, $\mathcal{P}^{\psi}(\mathbb{R}^d)$), where

$$\mathcal{I}_*(\mu) = \mathcal{I}(\mu) - \inf_{\mu \in \mathcal{P}(\mathbb{R}^d)} \mathcal{I}(\mu),$$

and

$$\mathcal{I}_*^{\psi}(\mu) = \mathcal{I}(\mu) - \inf_{\mu \in \mathcal{P}^{\psi}(\mathbb{R}^d)} \mathcal{I}(\mu),$$

with

$$\mathcal{I}(\mu) \doteq \mathcal{R}\left(\mu|\mathbf{e}^{-\mathbf{V}}\ell\right) + \mathcal{W}(\mu),$$

where $\mathcal{R}(\cdot|\cdot)$ is the relative entropy functional and

$$W(\mu) = \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} W(\mathbf{x}, \mathbf{y}) \mu(d\mathbf{x}) \mu d\mathbf{y}.$$

Prior Work

- Specific results for random matrices were obtained by Ben-Arous-Guionnet (1997), Ben-Arous-Zeitouni (1998), Petz and Hievi (2998) and A. Hardy (2012)
- In this generality, LDPs with respect to the weak topology were obtained when ℓ is Lebesgue measure and $\gamma_n/n\log n \to \infty$ in work by Chafaï, Gozlan and Zitt (2014).
- Our work significantly extends this work by allowing for
 - ullet (i) more general measures ℓ
 - (ii) arbitrary $\gamma_n/n \to \infty$
 - (iii) considering stronger topologies
- Our methodology is also different (based on weak convergence methods for large deviations) and based on a common framework

PART II

Random Projections of High-Dimensional Measures

Motivation and Context

Theme:

Study high-dimensonal objects by looking at their (random) lower-dimensional projections

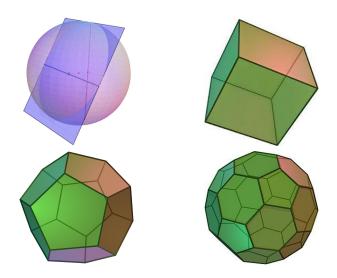
First Motivation

- Asymptotic (Convex) Geometry: study of the geometry of convex bodies in high dmensions
- The presence of high dimensions forces certain regularity on the geometry of convex bodies that has a probabilistic flavor

High Dimension Imposes Regularity

Picture Credit: R. Vershynin

Asymptotic Convex Geometry



Motivation and Context:

Theme:

Study high-dimensonal objects by looking at their (random) lower-dimensional projections

Second Motivation

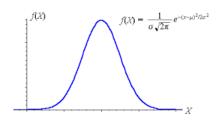
High-dimensional Probability and Statistics low-dimensional projections are of relevance in e.g., sparse recovery, information retrieval, statistics (although will not discuss these applications)

A Striking Result

Conjectured by Anttila, Ball and Perissanski (2003); Brehm and Voigt (2000); (Diaconis & Freedman, Klartag, Meckes-Meckes, Bobkov, ...)

The CLT for Convex Sets

Let $X^{(n)}$ be uniformly distributed on a convex body in \mathbb{R}^n Then $\langle X^{(n)}, \theta^{(n)} \rangle_n$ is approximately Gaussian for almost all $\theta^{(n)}$ on S^{n-1}



A Precise Statement of one such result

• A probability measure μ^n (or its density) on \mathbb{R}^n is said to be isotropic if it satisfies

$$\int_{\mathbb{R}^n} x \mu(\mathit{d} x) = 0 \text{ and } \int_{\mathbb{R}^n} x_i x_j \mu(\mathit{d} x) = \delta_{ij}.$$

 A convex body K is said to be isotropic if the normalized uniform measure on the body is isotropic

Theorem (CLT for Convex Sets; Klartag '07)

There exist sequences $\varepsilon_n \downarrow 0$, $\delta_n \downarrow 0$ for which the following holds: if $K \subset \mathbb{R}^n$ is an isotropic convex body and $X^{(n)}$ is the random vector that is distributed uniformly in K, then there exists a subset $\mathbb{S} \subset \mathcal{S}^{n-1}$ with $\sigma_{n-1}(\mathbb{S}) \geq 1 - \delta_n$ such that

$$d_{TV}\left(\langle X^{(n)}, \theta^{(n)} \rangle_n, Z\right) \leq \varepsilon_n$$

for all $\theta^{(n)} \in \mathbb{S}$, where $Z \sim \mathcal{N}(0,1)$ and σ_{n-1} is the inv. measure on S^{n-1}

Several Extensions of the CLT

- CLT can be extended to high-dimensional measures that satisfy a certain concentration condition (Meckes-Meckes)
- And it can also be extended to multidimensional projections (Klartag, Meckes, etc.)

An Implication of Such a Result

Projection-Pursuit Algorithm Kruskal (1969) Friedman and Tukey (1974) Diaconis and Friedman (1987)

- Finding the "most interesting" possible projections in high-dimensional data
- "Most interesting" are those that deviate more from a normal distribution

A Natural Question

- Fluctuation analysis suggests that "Typical projections of certain high-dimensional measures that satisfy a geometric condition behave like sums of i.i.d. random variables"
- We know from a classical result called Cramér's theorem that sums of i.i.d. random variables satisfy large deviations principles (LDP).

A Natural Question

- Fluctuation analysis suggests that "Typical projections of certain high-dimensional measures that satisfy a geometric condition behave like sums of i.i.d. random variables"
- We know from a classical result called Cramér's theorem that sums of i.i.d. random variables satisfy large deviations principles (LDP).

Question

Can we establish LDPs for random projections of high-dimensional measures?

A Natural Question

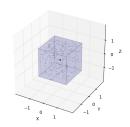
- Fluctuation analysis suggests that "Typical projections of certain high-dimensional measures that satisfy a geometric condition behave like sums of i.i.d. random variables"
- We know from a classical result called Cramér's theorem that sums of i.i.d. random variables satisfy large deviations principles (LDP).

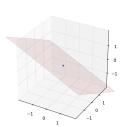
Question

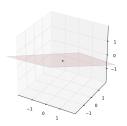
Can we establish LDPs for random projections of high-dimensional measures?

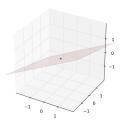
May more easily distinguish the high-dimensional objects Would lead to an LDP of a geometric flavour

Random Orthonormal Bases









The Stiefel Manifold

The Stiefel manifold of orthonormal k-frames in \mathbb{R}^n , k < n,

$$\mathbb{V}_{n,k} \doteq \{ A \in \mathbb{R}^{n \times k} : A^T A = I_k \},$$

where I_k is the $k \times k$ identity matrix.

Random orthonormal frames/bases are chosen with respect to the invariant measure on the (compact) Stiefel manifold.

Random Projections onto Random subspaces

• Suppose $X^{(n)}$ is a random vector in \mathbb{R}^n and

$$\mathbf{A}_{n,k} = [\mathbf{A}_{n,k}(i,j)]_{i=1,...,n;j=1,...,k}$$

is an $n \times k$ matrix drawn from the Haar measure on the Stiefel manifold $\mathbb{V}_{n,k}$, independent of $X^{(n)}$.

• Then the coordinates of the projection of $X^{(n)}$ onto the k-dimensional subspace with basis determined by $\mathbf{A}_{n,k}$ is given by

$$W_A^{(n)} \doteq A_{n,k}^T X^{(n)}.$$

Results on Multidimensional Projections

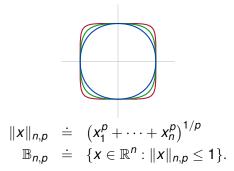
Assumption: The ATS (Asymptotic Thin-Shell) Condition

Suppose $||X^{(n)}||_2/\sqrt{n}$ satisfies an LDP in \mathbb{R} with speed n and rate function $J_X : \mathbb{R} \mapsto [0, \infty)$.

Theorem (Kim and R '17)

Suppose the sequence $\{X^{(n)}\}$ satisfies the ATS condition. Then $W_A^{(n)}$, $n \in \mathbb{N}$, where recall $W_A^{(n)} \doteq A_{n,k}^T X^{(n)}$, satisfies an LDP at speed n with a rate function that can be written explicitly in terms of J_X .

A natural sequence $-\ell^p$ Balls in \mathbb{R}^n



Let $\mathbf{X}^{(\mathbf{n},\mathbf{p})}$ be uniformly distributed on the ℓ^p ball $\mathbb{B}_{\mathbf{n},\mathbf{p}}$. Then the renormalized scalar projection is given by

$$\mathfrak{W}^{(n,p)}_{\Theta} \doteq \frac{n^{1/p}}{n^{1/2}} \langle \mathbf{X}^{(\mathbf{n},\mathbf{p})}, \Theta^{(n)} \rangle_{n}.$$

Scaling rationale: "typical" coordinate of $\mathbf{X}^{(\mathbf{n},\mathbf{p})}$ is $\sim n^{-1/\mathbf{p}}$ and "typical" coordinate of $\Theta^{(n)}$ is $\sim n^{-1/2}$.

Results: Examples that verify the ATS Condition

 ℓ_p -balls (Kim and R '17)

I. $X^{(n)}$ uniformly distributed on a suitably normalized ℓ_p ball in \mathbb{R}^n for $p \geq 2$

The Gibbs Case (Kim and R '17) II.
$$X^{(n)} \sim P_n$$
 (with $d = 1$, $\gamma_n = n$)

The Gibbs Case (Kim and R '17) II.
$$X^{(n)} \sim P_n$$
 (with $d = 1, \gamma_n = n$)

Comments on the Proof

- Recall that the ATS condition entails showing that $\{||X^{(n)}||_2/\sqrt{n}\}$ satisfies an LDP
- Note $||x^{(n)}||_2/\sqrt{n}$ can be written in terms of the empirical measure:

$$\frac{||\mathbf{x}^{(n)}||_2}{\sqrt{n}} = \left(\int y^2 m_{\mathbf{x}^n}^n(dy)\right)^{1/2}.$$

The Gibbs Case (Kim and R '17) II.
$$X^{(n)} \sim P_n$$
 (with $d = 1$, $\gamma_n = n$)

Comments on the Proof

- Recall that the ATS condition entails showing that $\{||X^{(n)}||_2/\sqrt{n}\}$ satisfies an LDP
- Note $||x^{(n)}||_2/\sqrt{n}$ can be written in terms of the empirical measure:

$$\frac{||\mathbf{x}^{(n)}||_2}{\sqrt{n}} = \left(\int y^2 m_{\mathbf{x}^n}^n(dy)\right)^{1/2}.$$

The map $m_{\mathbf{x}^n}^n \mapsto \frac{||\mathbf{x}^n||_2}{\sqrt{n}}$ is continuous in the 2-Wasserstein topology.

• The ATS condition then follows from the LDP for the law Q_n of $m_{\mathbf{X}^{(n)}}^n$ (with $\gamma_n = n$) in the 2-Wasserstein topology and the contraction principle.

The Gibbs Case (Kim and R '17) II.
$$X^{(n)} \sim P_n$$
 (with $d = 1$, $\gamma_n = n$)

Comments on the Proof

- Recall that the ATS condition entails showing that $\{||X^{(n)}||_2/\sqrt{n}\}$ satisfies an LDP
- Note $||x^{(n)}||_2/\sqrt{n}$ can be written in terms of the empirical measure:

$$\frac{||\mathbf{x}^{(n)}||_2}{\sqrt{n}} = \left(\int y^2 m_{\mathbf{x}^n}^n(dy)\right)^{1/2}.$$

The map $m_{\mathbf{x}^n}^n \mapsto \frac{||\mathbf{x}^n||_2}{\sqrt{n}}$ is continuous in the 2-Wasserstein topology.

• The ATS condition then follows from the LDP for the law Q_n of $m_{\mathbf{X}^{(n)}}^n$ (with $\gamma_n = n$) in the 2-Wasserstein topology and the contraction principle.

This justifies the need for establishing the LDP in stronger topologies!!

Summary

- Laws of interacting particles (equivalently, non-product measures in high-dimensions) arise in many applications, ranging from statistics to statistical mechanics
- The study of their large deviations behavior is of general interest and leads to the study of certain associated variational problems
- The rate function in large deviations provides interesting qualitative information about the system