Virtual Knot Invariants and
Virtual Knot Cobordism

Louis H. Kauffman, UIC
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Figure 2 - The Reidemeister Moves.

Reidemeister Moves
reformulate knot theory in
terms of graph
combinatorics.




Virtual Knot Theory
studies stabilized knots in thickened surfaces.
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Figure 4: Surfaces and Virtuals







v-e+L = 2-2¢g
4v=2e

g =1 Hence

g = 1+(v L)/2.

Euler — 5 g =1+ (v - L)/2

v = # classical crossings FACT: g is invariant
under Reidemeister
L = # loops on boundary | and Il moves.

g = genus of surface obtained by
attaching disks to the loops.
This surface is the least genus surface
associated with the diagram, but not
always with the virtual knot.
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Generalized Reidemeister Moves for
Virtual Knots and Links

<>

planar
isotopy

—

C

!
u

«—> —

e
R [

mixed
RII

=
- — |

I = D0C | K=
PR

B
C




D

\V
D
\V
D\
YV

Detour Move

D
\V

oD

\V

D

YV




W ) e X

Figure 3. Forbidden Moves




VKT
=Virtual Knot Theory
=Virtual Diagrams up to Virtual Equivalence
= Oriented Gauss Codes up to Reidemeister Moves
= Links in Thickened Surfaces up to |-handle stabilization




Kuperberg showed that |-handle surgery gives unique knot
type in the minimal genus surface.

min = min’
— —
/\/\ (by common
descent)

From Kuperberg it follows that one only need descend
by surgery from any given surface to reach
the minimal surface.




Combinatorial Descent to Minimal Surface

|. Given a virtual diagram, form the
standard band surface.

2.Add 2-cells to the boundary.

3.Allow Reidemeister moves on the diagram
in the surface constructed in 2.

4.Cut out a band surface neighborhood
of the link diagram in the surface.

5.Go to 2.







Bracket polynomial model
for the Jones polynomial
extends to virtuals by counting all
loops the same way.

(X)=A0)+ 47O ()




Conjecture: (Modification of a conjecture of
Jozef Przytycki) If K in a surface S is in
minimal genus, then this fact is detected by
the surface bracket polynomial.




Bracket Polynomial is Unchanged
when smoothing flanking virtuals.
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Figure 7. Switch and Virtualize
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q <Virt(K)> = <Switch(K)>
Q and

< 1Q(Virt(K)) = IQ(K).

There exist infinitely many non-trivial
Virt(K) with unit Jones polynomial.




There exist infinitely many non-trivial K
with unit Jones polynomial.

Bracket Polynomial is Unchanged
when smoothing flanking virtuals.

Z-Equivalence

N\




Conjecture:

If K is a classical knot (known to be
knotted) andVirt(K) is a virtual knot
obtained from K by virtualizing a set of
crossings that unknot K, then the minimal
surface genus of Virt(K) is > 0.




Approachable Conjecture:

A virtualization (corresponding to
an unknotting choice) of a reduced
alternating diagram has minimal
surface genus > 0.




Classical knot theory embeds in virtual knot theory.

Open Question:
Does classical knot theory embed in virtual knot theory
modulo Z-equivalence!

Z-Knot Theory

Open Question:
Are all the virtual knots with unit Jones
polynomial made by the virtualization
process non-classical?




Parity The Odd Writhe

Bare Gauss Code
1 ) 1212

Crossings 1 and 2 are
odd.

A crossing is odd
if it flanks an odd
number of symbols
in the Gauss code.

The odd writhe of K, J(K).
J{K) = Sum of signs of the odd crossings of K.
Here J(K) = -2.

Facts: J(K) is an invarant of vitual isotopy.
J{K) = 0is K is classical.
J{Mirror Image of K) = -J(K).

Hence this example is not classical and is
not isotopic to its mirror image.




Parity
Manturov Parity Bracket
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The Parity Bracket provides the simplest proof that
the Kishino diagram is non-trivial.




Determining Genus for Odd Knots
2 1

All classical nodes are odd.
Graph is irreducible.

One parity bracket state.
Genus g = 2.




The Knot S3 (found with Slavik Jablan) has unit Jones
polynomial. It is not Z-equivalent to a classical knot.

Proof via
Parity
Bracket.

The standard surface
construct has
g=2

A[S3] = -2K172 + K2 + A (1 - 2K172 + K2)
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G

O This state graph G

has g = 2 and does not reduce under

graphical Z move.

N1

The Parity bracket of S3 has only two terms and
includes the graph G.The virtual graph G cannot be reduced
by Reidemeister Two moves on its nodes.

Conclusion: The knot S3 has surface genus g = 2.




ARROW POLYNOMIAL

The arrow polynomial is a
generalization of the Jones polynomial
(bracket polynomial) that takes into
account the state structure of oriented diagrams.
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Figure 1: Oriented Bracket Expansion.
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Zig-zags survive in higher genus.




Affine Index Polynomial

c= b+1 d=a-1

W+
W -

a
b -

1
o O

Pi(t) = 3 sgn(e)(t" — 1)

C

b a

No change at a
virtual crossing.

a b
B

C K
sgn(A) = sgn(B) = +1
sgn(C) = -1
wr(K) = 1

2 2

PK(t)= t +t -2







This one is not detected
by the Affine Index Poly.




T2 (KT 1-26 HK2)
4 At ({{ll[[sz{L{’K‘D)
4_(1_5@4‘4,,{,“‘(%%637




\/WJ“"“/ cho‘]— Co \a@v\é‘sw\, @

(CC) | wo (O’VICW'\-@&) V V“l’w\ ‘ (Vo ks (< \'<
ayve <o b@»’écwof &— \< ! c @ b e
O ‘o ‘&‘ct\ v&.aé —g—ﬂ/om \“< \Q )l v (\("\‘(ch\ fSO‘Lof’i‘

%T@ . T _%AA\J(

b(f"\—\/‘ deﬂ

{ (/l,e d/(og'\‘Q&o+ Sc/tiewwu < -g— = cc,c/(/L, e ) |

CO(@OV‘({(SY&/D LS Ji 5‘

___f%: K e c = O )

C:csm,co\ﬂ M/t—_

A \/’W’“&WA [/u/ocf\f‘ < slice ‘g_
_ \“‘" (S Cc%CO¢‘AMl}4Y_+O Qﬂ




The virtual stevedore’s knot
VS is slice.




VS

VS on a torus.




AAAA AAAB AABA AABB
. ; Virtual Stevedore
@ is not
ABAA ABAS ABBA ABEB classical.
BAAA BAAB BABA BABB

BBAA BBAB BBBA BBBB
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VS | E

<VS>=<I>=<E>=A_8 -A_4+1 -A4 +A8

The knot VS has bracket polynomial equal to the
bracket polynomial of the classical figure eight

knot diagram E. This implies that VS is not a
connected sum.
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a b
=

C b 4
d

dlad=b,dbd ' =c,b b =d,bdb" " = a

Whence, a = c. Thus
©(VS) = (a,d|d 'ad = b,b" "ab = d)

= (a,blaba™" = bab").

Since in the original presentation, a = ¢, we see that this is the group of the corresponding virtual

2 — sphere in four-space.




Equivalence of Virtual Surfaces via the Yoshikawa Moves
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And Virtual Moves -- Next Slide

I
\J
e B
H
\\Xm%\/\]

I
!
I

e
AN

N
1A

T

Plus Detour Moves for

virtual crossings.




1. Reidemeister Moves and Virtual Moves (Detour).
2. Moves on Markers

K= T—»%
S K == XK
SCK == XK
WK = XX
K == XX
?;%(aw;Movg B
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dbd '=c
b-leb =d
bdb 1=a

Therefore ¢ = a and

dbd 1=bdb’

Fundamental Group (VS) = (dbldbd ' =bdb ).
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FundGrp(S) = FundGrp(VS)

FundGrp(S') = Z.




Advantage of using Yoshikawa moves is
computability and formulation of invariants.

Fundamental group or quandle via movies is an invariant.

Bracket generalizations of S.Y. Lee will generalize to virtual
surfaces.

Does the Yoshikawa move definition for virtual surfaces
correspond to Jonathan Schneider and
Yasushi Takeda definitions via generalizations of
Roseman moves!

There is more to come.




