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a b s t r a c t

Erwin Schrödinger pointed out in his 1944 book “What is Life” that one defining attribute of biolog-

ical systems seems to be their tendency to generate order from disorder defying the second law of

thermodynamics. Almost parallel to his findings, the science of complex systems was founded based

on observations on physical and chemical systems showing that inanimate matter can exhibit com-

plex structures although their interacting parts follow simple rules. This is explained by a process

known as self-organization and it is now widely accepted that multi-cellular biological organisms are

themselves self-organizing complex systems in which the relations among their parts are dynamic,

contextual and interdependent. In order to fully understand such systems, we are required to com-

putationally and mathematically model their interactions as promulgated in systems biology. The

preponderance of network models in the practice of systems biology inspired by a reductionist, bottom-

up view, seems to neglect, however, the importance of bidirectional interactions across spatial scales

and domains. This approach introduces a shortcoming that may hinder research on emergent phenom-

ena such as those of tissue morphogenesis and related diseases, such as cancer. Another hindrance

of current modeling attempts is that those systems operate in a parameter space that seems far

removed from biological reality. This misperception calls for more tightly coupled mathematical and

computational models to biological experiments by creating and designing biological model systems

that are accessible to a wide range of experimental manipulations. In this way, a comprehensive

understanding of fundamental processes in normal development or of aberrations, like cancer, will be

generated.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fifty years ago at the dawn of the molecular biology revolu-

tion, unprecedented enthusiasm was generated by the idea that

biology was finally reduced to chemistry and consequently, the

proposed way to understand organisms was to study them from

the bottom up. Central to this view was genetic determinism, i.e.

the perception that the organism was determined by a genetic pro-

gram. The origin of systems biology, in contrast, attributed to von

Bertalanffy, a biologist and philosopher, and Paul Alfred Weiss,

a biologist, emphasized an organicist view where both bottom-

up and top-down causation are considered. These two opposed

views are represented by two discrete approaches in a new ver-

sion of the systems biology discipline. O’Malley and Dupre call the

genetic approach ‘pragmatic systems biology,’ which is centered
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around large-scale molecular interactions, such as gene networks,

while the organicist approach, called ‘systems-theoretic biology’,

is centered on system principles [1]. The differences between both

approaches are not technical but rather philosophical, given that

both are committed to mathematical modeling.

Philosophy is central to all scientific endeavors, including exper-

imental and systems biology. Although many biologists ignore it,

their research is guided by unstated ontological and epistemolog-

ical stances. The inescapable fact is that, whether biologists like it

or not, there are no theory-free data. As put by the philosopher

Daniel C. Dennett: “There is no such thing as philosophy-free sci-

ence; there is only science whose philosophical baggage is taken

on board without examination” ([2], p. 21). Hence, in this review

we will address the philosophical underpinnings of systems biol-

ogy and of the science of complex systems. The incorporation of

network models in the practice of systems biology over the theoret-

ical framework of an interacting bottom-up and top-down system

suggest a reductionist slant that hinders research on emergent phe-

nomena. In addition, we are proposing a systems biology approach

beyond networks.

1044-579X/$ – see front matter © 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.semcancer.2011.04.004
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2. Philosophical underpinnings

2.1. Reductionism

There are three types of reductionisms, namely, ontological,

methodological, and epistemic [3]. Ontological reductionism, also

called physicalism, claims that organisms are made up by molecules

and their interactions. This form of reductionism represents the

worldview of the practitioners of the other two kinds of reduction-

ism. Epistemic reduction claims that higher order phenomena can

be reduced to another more basic level. This line of thought entails

a ‘hard-core’ view, whereby biology could be reduced to chemistry

and physics and, hence, biology would not be an independent sci-

ence. According to the Stanford Encyclopedia of Philosophy [4],

“methodological reduction is the idea that biological systems are

most fruitfully investigated at the lowest possible level, and that

experimental studies should be aimed at uncovering molecular and

biochemical causes.” This is another way of saying that molecular

biology can, in principle, fully explain all biological facts. This type

of reductionism is also pervasive in other fields of biology where

causality is sought using a bottom-up approach. A great number

of biologists insist that explanations should always be sought for

at the gene and/or gene product level, regardless of the level of

organization at which the phenomenon of interest is observed.

Thus, genetic reductionism together with its twin, genetic deter-

minism, predicates that everything in biology may be reduced to

genes because the genome is the exclusive repository of transmis-

sible information. It then follows that genes are the only units of

selection [5] and development is just the unfolding of a genetic pro-

gram. In sum, genes would be the building units of the organism

and have a privileged metaphysical status (for an extended analysis

of this subject, see [6]).

A main obstacle to the success of reductionism is the historic-

ity of the organism, i.e. evolution and ontogeny. As François Jacob

noted, nature is not an engineer, but a tinker—a given molecule

is put to different uses [7]. Evolutionary history confronts us with

the fact that these transformations were lost with the extinction

of over 95% of the species that once existed. We are then forced

to reconstruct this history from the organisms that exist today.

This reconstruction is further hampered by evidence pointing to

the fact that even in the same organism a protein may have differ-

ent functions in different cells. For example, lactate dehydrogenase

and crystalline are the same molecule; the former is an enzyme in

muscle while the latter plays a structural role in the eye’s lens. Beta-

catenin is both a transcription factor and a cell-adhesion protein [8].

Also, a signal pathway effector may lead to the induction of different

gene products and therefore distinct differentiation programs in

different cell lineages [9]. This lack of a unique correlation between

a given protein and its function was addressed by Hull as the

problem of “the many and the many” [10]. In other words, one phe-

notype may result from several different molecular mechanisms,

while a single molecule may be involved in different phenotypes.

A clear example of this divergence is polyphenism, where a sin-

gle genotype produces different phenotypes. These examples of

diversity make reduction difficult, if not impossible.

2.2. Organicism and emergentism

Organicism is a philosophical stance that, contrary to reduction-

ism, considers both bottom-up and top-down causation. It claims

that “. . .Wholes are so related to their parts that not only does

the existence of the whole depend on the orderly cooperation and

interdependence of their parts, but the whole exercises a mea-

sure of determinative control over its parts” [11]. Implicit in this

description is the concept of emergence, meaning that at each

level of biological organization new properties manifest, which

could not have been predicted from the analysis of the lower

levels.

The existence of emergent properties is dismissed by physical-

ists because in their metaphysical stance, the belief on the causal

closure of the physical word precludes the existence of emergents.

However, as organisms are open systems, external constraints

are always operating on them. The internal constraints defining

a system are always disturbed by external ones; thus, in order to

understand what is going on in a system, we must jump simultane-

ously to multiple levels on which this system is integrated [12]. For

instance, a cell is integrated in a more complex system, the tissue.

Organisms and their cells are ontogenetically linked. For example,

a zygote is a cell as well as an organism. It divides, producing more

cells, which are organized in a three-dimensional pattern. When

gastrulation takes place, cells dramatically change their positions

relative to one another followed by the formation of germ layers

and a new series of rearrangements, local cell proliferation, cell

movement, cell migration and cell specialization resulting in the

emergence of tissues and organs. Even in a simpler system, like a

muscle cell in the heart, its components are proteins that channel

calcium and potassium ions, and they carry currents that change the

cell voltage, which in turn changes the ion channels [13]. Thus, the

components alter the behavior of the heart and the heart alters the

behavior of the components, yet both components and the heart

are integrated in a higher multi-cellular structure, the organism.

This means that the working of such systems is never defined by

initial internal constraints. When dealing with open systems, new

systemic properties emerge as time elapses which can modify the

initial properties. Thus what is described at an early time point

(T1) is not the essence of the system. In other words, when one

states that the biological facts at T1 cause physical facts at a later

time point T2, and that they compete with the explanation of these

facts as purely physical ones, we are making a mere idealization.

At T2, the system is not the same as the one at T1, because it has

acquired new properties that were absent at T1. Therefore, a sys-

tem’s description of natural events is not a complete description of

what this system does. Diachronic emergence then means that in

specific natural or formal systems the initial relations and proper-

ties of elements cannot teach us how they would be applied as the

system evolves. Thus, the historical way by which a system of nat-

ural events operates is not a consequence of its description. It acts

and it produces novelty in the real world (novel qualities and novel

structures). In conclusion, emergence has an ontological meaning

[14] and is not a simple epistemic property [15].

2.3. Complex systems

The last half of the 20th century and the first decade of the

current one were characterized by the dominance of reduction-

ist approaches to biology which were mainly driven by molecular

biology. This type of reductionism was inspired by the influen-

tial 1944 book “What is life” by Erwin Schrödinger [16] who

postulated that the chromosome formed an “aperiodic crystal”

that is durable, an important prerequisite for hereditary matter.

Schrödinger called it the “material carrier of life”. Parts of the chro-

mosomes are formed by genes, which themselves are large, durable

and responsible for the observed inheritance mechanism, thus

making animate matter unique. Schrödinger’s ideas were driven by

quantum mechanical reasoning applied to biology and were sem-

inal in triggering the molecular biology revolution and lead to an

increasingly gene-centric view of nature, a view further extended

by another influential book, “The selfish gene” by Richard Dawkins

[5]. However, now that the human genome has been decoded (see

e.g. [17]), one may ask whether (a) knowing all parts of the system,

can we fix or repair it if something goes wrong, and (b) can we put

the parts back together?
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The first question has been addressed by Yuri Lazebnik in sev-

eral entertaining public lectures at systems biology conferences

(e.g. ICSB Conference in Heidelberg, 2004) and is summarized in

his paper “Can a biologist fix a radio?” [18]. Lazebnik, an engineer,

concludes that a more systematic and quantitative approach has

to be adopted in modern biology while referring to general sys-

tems theory (GST) developed by Ludwig von Bertalanffy and others

contemporaneous of Schrödinger [19]. The latter already pointed

out that living organisms must have developed ways that let them

defy the second law of thermodynamics constructing ‘order from

disorder’ and allowing them to decrease their entropy by adding

‘negative entropy’ to the environment ([16], p. 79ff). von Bertalanffy

took this idea further and argued that living systems are “open sys-

tems having a steady state” ([19], pp. 39–40) and opened the door

to an organicist view of biology. But only in recent years, accrued

evidence is telling us that by understanding the parts of a system

we do not necessarily understand the overall systems behavior (see

diverse examples on complexity in [20]).

This realization brings us back to the second question about

reassembling the system even when knowing all its parts. Stay-

ing with the radio metaphor of Lazebnik, one would conclude that

if we identified and carefully disassembled all parts of the system

and recorded all their connections and positions we should obtain

a blueprint of the radio. Next, we should be able to reassemble the

system. This, however, does not imply that from the knowledge

gained we would be able to repair or even modify the radio such

that we would e.g. improve its reception. To accomplish this, the

engineer would have to find, first, functional units that could be

subsequently analyzed in isolation and in concert with other com-

ponents to which it is connected. He might then find out that by

enlarging the antenna, the reception of the radio might be sub-

stantially improved. Biological systems, however, are much more

intricate than a man-made and designed apparatus like a radio,

where all of its component can be studied in isolation under equi-

librium conditions. Biological systems operate in non-equilibrium

conditions and “comprise many interacting parts with the ability

to generate a new quality of macroscopic collective behavior the

manifestations of which are the spontaneous formation of distinc-

tive temporal, spatial or functional structures. . .” thus matching the

most commonly found definitions of complex systems (as defined

by the editors of the Springer series “Understanding Complex Sys-

tems”, see also [20] for similar definitions). This has remarkable

consequences and implications for the question “Can we put the

parts back together?” which we will attempt to elucidate next.

Interpretations of ideas about complex systems have been dis-

cussed since the 1940s. Several new fields and theories carrying

different names emerged from these discussions (e.g. Synergetics,

Dynamic Systems Theory, Chaos Theory, Cybernetics, Tensegrity).

A common denominator in all these areas is that even a system

that consists of very simple parts that interact with each other in a

non-linear fashion can exhibit complex systems-level or emergent

properties, such as structure and organization. These properties are

quite surprising and unexpected when one examines the proper-

ties of the individual parts alone. In other words, the system itself is

more than just the sum of its parts [20]. Denis Noble, who followed

up on the second question “Can we put the parts back together?”

in his book “The Music of Life,” relates a telling anecdote about

his attempts to mathematically model the oscillatory behavior of

the heart. He was asked: “Mr Noble, where is the oscillator in your

equations? What is that you expect to drive the rhythm?” Only

decades later, he found the answer to this question: “Indeed, it

is an eminently necessary question, if we are talking about some

man-made, mechanical systems. But we are not. Instead, we can

have a system that operates rhythmically and yet contains no spe-

cific ‘oscillator’ component. There is no need for one. The reason is

that the rhythm is an integrative activity that emerges as a result

of the interactions of a number of protein (channel) mechanisms”

(see p. 60 [13]).

This explanation implies that the key to emergent phenom-

ena and system-level properties of complex systems must lie in

the interaction between the elements comprising the system. It is

therefore intrinsically difficult to predict the future behavior of such

systems as the interactions between the system parts are shielding

their specific individual features from the system-level properties.

Due to the lack of derivable laws, computational and mathematical

tools are indispensable for complex system scientists, in general,

or the systems biologist, in particular.

3. Networks and graphs

The above definition of complex systems consisting of interact-

ing parts leads naturally to the use of mathematical tools based on

networks or graphs where the individual parts translate to nodes

and the interactions translate to edges or links. In his book “Linked”

Barabási summarizes the most common properties found among

numerous naturally formed networks ranging from the Internet to

social and gene regulatory networks [21]. When analyzing the net-

work topology of these diverse complex systems, some important

overarching rules emerge. It is not completely surprising that these

networks deviate substantially from randomly built networks as

studied by Erdős and Rényi [22]. We therefore do not observe a

bell-shaped frequency distribution of the number of links per node

as expected from randomly formed networks; instead, we observe

a power-law distribution, which is characteristic of small world or

scale-free networks [23]. This implies that a large majority of nodes

have only a few links, whereas very few nodes have a large number

of links. Those nodes are called hubs or connectors [21] and play a

vital role in our understanding of, for instance, how diseases spread

and epidemics can be stopped by targeting hubs identified in the

network (e.g. [24]).

A scale-free network topology can be reproduced when dynami-

cally constructing a network by adding nodes iteratively and linking

them preferentially to already well connected (or fit) nodes in the

existing network. This concept was termed “Rich get richer” by

Barabási [21] and works analogous to increasing returns in econ-

omy, an idea hatched in the early 1980s by Belfast-born economist

William. Brian Arthur to describe high technology. In such net-

works, two randomly picked nodes are usually connected by a quite

short path (sequence of links to neighbors) which is another charac-

teristic of small world networks (“Six degrees of separation” [21]).

Although the underlying topology makes the network vulnerable to

direct attacks to hubs, the resulting network is very robust against

random perturbations [25]. Many naturally growing networks also

exhibit various level of modularity where sub-clusters are more

strongly connected with each other (e.g. cortical networks, see e.g.

[26]) describing a hierarchy of scale-free networks where hubs

connect the different modular layers thus conserving the overall

scale-free network topology [27].

The above-referred observations contributed to the fast rise of

systems biology. However, we are skeptic of the view voiced by

Barabási in [21] that by establishing the “map of life” that describes

the complete metabolic (biochemical), regulatory (gene or protein

interaction) and cellular networks of an organism, we will hold the

keys to an understanding of how an organism works despite the fact

that scale-free networks are an emerging feature of various com-

plex systems or networks. We share the concern of Yaneer Ban-Yam

who says that “[t]he biggest current danger to the field [of com-

plexity] is that it will be hijacked by people who don’t understand

the essence of the field. Many are adopting the terminology with-

out understanding what complex systems are really about. Systems

biology, systems engineering and other systems related fields are

often (but not always) just using the words but continuing a reduc-
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tionist approach” ([21], p. 15ff). It is reductionist to believe that by

understanding the interactions between the molecules contained

in a cell we will be able to understand how the cell works, a tis-

sue is formed or cancer arises; these assumptions are only driven

by upward causation in the “map of life”. The upward causation

assumption completely neglects the contribution of the environ-

ment and of the emergent structure itself (by downward causation).

Although scale-freeness emerges in complex networks like the

Internet, the World Wide Web, social and biological networks as

well as larger parts of the modern, globalized economy, it is not a

universal feature of complex systems [28]. Other network topolo-

gies emerge also naturally not showing small world properties. One

prominent example is a road network connecting cities. In this

case, each node is not only a point but has a certain size, cannot

freely move and roads themselves (or edges) are restricted by the

topographic and geological settings. This implies that having spatial

constraints limiting the dynamic construction process can yield dif-

ferent network topologies. Therefore, it seems important to include

spatial localization information when building gene regulatory net-

works or protein–protein interaction maps given that a substance

can only react with another substance when both reside in the same

spatial compartment [29].

So how do domain boundaries emerge in complex systems?

Could these boundaries relate to the individual modules found

in hierarchical networks? Is there a correlation between func-

tional units and compartmentalization? Is there a form–function

relationship to be found in living systems? Although we are yet

unable to answer these questions, it is worth making a sim-

ple thought-experiment by revisiting Lazebnik’s radio example

described above. We can ask ourselves whether it makes sense to

decompose the whole radio down to its molecular constituents so

to understand its workings. Going back to Schrödinger’s ‘order from

disorder’ principle, we would certainly suspect that there might be

a correlation between spatial domains and functional units. Next,

one might consider looking at the apparent, spatial patterns visible

in the radio and hope that these units can be studied in isola-

tion. In the case of an individual cell, this would mean that the

cell’s anatomy should be taken into account, looking at sub-cellular

compartments [30] and the protein interactions therein giving rise

to protein clusters potentially describing functional regions (the

toponome, see [31]). In the case of tissues or organs, we could first

try to focus, for instance, on understanding how typically found

patterns in glandular tissues are formed (e.g. acini and ducts, see

[32]).

4. Self-organization

So, how are complex spatial patterns formed? Suppose that we

can find an explanation for at least one complex system that is

exclusively composed of simple, inanimate compounds such as

atoms or molecules where, obviously, no overall blueprint exists

nor can be executed. In this case, one will have to accept that the

‘order from disorder’ principle is also applicable to systems con-

sisting of much more complex parts, like those found in biological

systems ranging from bacteria to multicellular organisms, where

interactions are not only governed by physical laws, but by more

complex physiological and behavioral responses [33]. The simple

answer to the above question is. . .through self-organization.

Although rather unknown and not well studied when

Schrödinger wrote his book, several very simple self-organizing

systems have been since discovered not only in physics and chem-

istry showing stunning emerging spatial patterns (see e.g. the rock

formation of the Giant’s Causeway in Fig. 1, soap bubbles that build

when a flask of dish-washing detergent is shaken, the well-known

Benard convection [33] or some more recent finding on the physics

of Type-I superconductors [34]) underpinning the fact that self-

organization might also be present in more complex systems (as

is shown in [33]). As physical laws rule the interactions between

the parts in physical systems, we can exclude alternative explana-

tions of pattern formation that require intervention from outside

the system, such as (i) the presence of a leader, (ii) the existence

of a blueprint, (iii) the execution of a recipe, or (iv) the use of a

template [33]. Although (i)–(iv) are relevant to biological systems,

self-organization is certainly an option when it comes to explain-

ing biological pattern formation where “the rules in self-organizing

systems can be quite economical in the physiological and behav-

ioral machinery needed to implement them” ([33], p. 63). This

simplicity might give self-organization an evolutionary advantage

over the alternative solutions (i)–(iv), making it more prevalent in

biological systems. Having said this, it is certainly possible that a

mixture of these mechanisms is present in the same system.

Let us consider the alternative explanations (i)–(iv) first and

then, see if they are applicable when it comes to tissue (or organ)

morphogenesis: the presence of a leader (i) can almost certainly be

excluded as we are not aware of any molecular mechanisms that

would enable a single entity to receive all the information signaled

from all other cells and instructing them to perform certain actions

as a result of processing the incoming information. The first math-

ematical model proving that an aggregation of single-celled units

into larger cooperative entities can be explained without requir-

ing a leader, such as a founder or pacemaker cell, was published

by Keller and Segel in 1970 [35] for the slime mould (Dictyostelium

discoideium). Furthermore, it seems unlikely that a template (iv)

is used when cells aggregate to form tissues since tissues can be

grown in vitro without the presence of any template structure. This

brings us to the alternative explanation requiring the existence of

a blueprint (ii) that describes the parts and the spatial layout of the

tissue to be built. Such blueprint does not, however, describe how

Fig. 1. Example of self-organization of inanimate matter: left panel shows an overview of the rock formation found at the Giant’s Causeway in County Antrim, Northern

Ireland. The right panel shows a close-up photographed downwards onto the rock formation showing a regular, polygonal structure that emerged from volcanic activity.



Please cite this article in press as: Saetzler K, et al. Systems biology beyond networks: Generating order from disorder through self-organization.

Semin Cancer Biol (2011), doi:10.1016/j.semcancer.2011.04.004

ARTICLE IN PRESSG Model

YSCBI-926; No. of Pages 10

K. Saetzler et al. / Seminars in Cancer Biology xxx (2011) xxx–xxx 5

tissue is to be built and consequently requires each cell to have

a global picture of the tissue being formed at any point in time.

This seems very unlikely as there is no known molecular mecha-

nism conveying such information to each individual cell. This then

leaves the remaining option that each cell is following a strict recipe

(iii) describing a set of instructions to be carried out. Although such

set of instructions might explain how an individual like a spider

builds a cocoon for its eggs [36], it is unlikely that each cell can

follow and execute each of the encoded rules independently of the

crowded environment present in a tissue or organ. Since cells can

only sense their local environment, the emergence of tissues can

only be driven by rules governed by coordinated interactions with

the local environment of each cell. This leads to the conclusion that

the dynamic process of tissue formation must mainly be governed

by self-organization.

How does self-organization work? First, the components need

to be able to interact with or get feedback from other neighbor-

ing components, but also from the local environment or from the

emerging structure itself (stigmergy ([33], p. 56)). In the case of

tissues, this would correspond to interactions with other cells,

nutrients and the extracellular matrix. This feedback can be either

negative or positive. It turns out that positive feedback is preva-

lent in self-organizing systems as it leads to aggregation, but bears

the risk of overamplification. In order to control and stabilize

positive feedback mechanisms, negative feedback is needed. This

feedback can either be built into the system (e.g. cells get quies-

cent) or be offered through physical constraints (e.g. cell-migration

depends on forces exerted by the extracellular matrix). Compo-

nents of such system can interact with each other using either cues

that specifically convey information (e.g. like ants when leaving a

trail of pheromones leading to their food source) or cues that con-

vey information incidentally (e.g. like a deer leaving a trail when

walking through the wood, see also [33]). In cellular systems, we

observe biochemical (e.g. morphogen gradients generate diverse

cell types in distinct spatial regions) as well as biomechanical cues

(e.g. fibroblasts degrading collagen fibers giving way to epithelial

cell-migration).

Self-organizing systems are usually very stable over a large

range of parameters, but can exhibit sudden and abrupt changes

in the emergent pattern due to minimal changes of one or more

parameters thus moving from one stable state to another or show-

ing criticality at the edge of chaos (see [37] for a biological example).

If we now classify phenotypes for one species according to the

emergent patterns observed, we can observe a change in phenotype

close to the bifurcation by altering only the parameters governed

by the environment (e.g. the raid patterns of army ants [38]). This

implies that the same genotype can exhibit different phenotypes

depending on the environment.

Environmental determination of the phenotype was first doc-

umented at the end of the 19th century in Lepidoptera. The

European map butterfly exhibits strikingly different wing pheno-

types depending on the season of eclosion of the butterflies: while

the spring morph shows orange wings with black spots, the sum-

mer morph is black with a white band. This dimorphism misled

Carl Linnaeus, the father of taxonomy, to classify the morphs as

distinct species. In 1875, by incubating the caterpillars in differ-

ent conditions, August Weissman found that the seasonal pattern

of the wings of certain butterflies is temperature-induced. Indeed,

the discipline of Ecological Developmental Biology deals with this

phenomenon, called polyphenism, and other aspects of environ-

mental determination of the phenotype [39]. These phenomena

were mostly ignored by mainstream biologists under the spell

of genetic determinism. However, the discoveries of hormonally

active man-made chemicals and that human adult diseases often

have their origins during fetal life has greatly contributed to the

revival of the eco-devo tradition [40].

4.1.1. Modeling tissue morphogenesis

The findings published in 1952 in Alan Turing’s seminal paper

about the chemical basis of morphogenesis [41] offered a possible

mathematical explanation of patterns forming in developing bio-

logical systems which can be seen as yet another manifestation of

self-organization. This theory of temporarily emerging stationary

waves starting from homogeneously distributed reactants (or mor-

phogens) was influential in developmental biology as explained

by Wardlaw [42], who remarked “That diffusion-reaction systems

are present in all growing regions, indeed in all living matter, is

basic to studies of metabolism. What is novel in Turing’s theory is

his demonstration that, under suitable conditions, many different

diffusion-reaction systems will eventually give rise to stationary

waves; in fact, to a patternized distribution of metabolites. Thus,

in the present writer’s view, the theory would appear to afford an

explanation of the inception of the symmetrical, radiate histological

pattern that appears adjacent to the embryonic region of the root

apex. Not all kinds of pattern, however, are referable to the devel-

opment of stationary waves—the major feature of Turing’s theory

as thus far developed—but all may eventually be related to some

kind of diffusion-reaction system. The inception of polarity in an

embryo, i.e. of axiate development, is probably due to a particu-

lar distribution of metabolites in an initially homogeneous system;

this could be regarded as a very simple case of a stationary wave.”

This success might also explain the prevalence of partial differ-

ential equations being used as mathematical tools for the analysis

of spatially distributed dynamic systems and for the exploration

of self-organization mechanisms under the influence of positive

and negative feedbacks that give rise to patterns in plant and ani-

mal morphology or to electrostatic waves in the heart [43]. There

are, however, several tools available to the modeler of biological

systems, which have been summarized by Bassingthwaighte et al.

under the following application areas [44]:

1. Evolutionary biology and genetics: quantitative, model based

mathematical or statistical analysis studying mutation, selec-

tion, genotype-phenotype mapping as well as morphogenesis

using agent-based or individual based modeling.

2. Biophysics and electrophysiology: signal transduction across

membranes through channels using combinations of ordinary

differential (ODE), partial differential (PDE), algebraic and differ-

ential algebraic equations (DAE) as well as Markov state models

for channel gating.

3. Mathematical biology: DAEs, ODEs and PDEs based on reaction-

diffusion systems applied to cancer modeling, cell cycle and

pattern formation in embryogenesis.

4. Computational physiology: biophysical models based on solid

and fluid mechanics applied at the levels of cells, tissues, organs

using conservation laws, continuum mechanics and finite ele-

ment methods.

5. Computational chemistry: applying quantum mechanics

and molecular dynamics to investigate protein–protein and

protein–ligand interactions as well as protein-(un)folding at the

atomic level.

6. Network systems biology: DAEs or ODEs are applied to gene

regulatory, signal transduction and metabolic networks using

mainly the biophysics encapsulated in mass balance equations

of chemical species. Analytical tools include bifurcation theory,

non-linear control theory, Bayesian statistics and linear algebra.

7. Systems physiology: DAEs applied to study physiological func-

tion at the organ system level such as blood pressure control or

exocrine signaling at the cell level.

Furthermore, Bassingthwaighte et al. state that “[o]ne of the cen-

tral principles is that complex systems like the heart are inevitably
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Fig. 2. Whole mounts of MCF10A cells (left panel) and MCF10A cells and RMF grown for three weeks within a matrix made of 1 mg col-I-50% Matrigel. Note that ducts only

formed in the presence of fibroblasts. Scale bar 200 �m (taken form [32]).

multiscalar, composed of elements of diverse nature, constructed

spatially in a hierarchical fashion” which “requires linking together

different types of modeling at the various levels”, but noting that

“[i]n multiscalar systems with feedback and feedforward loops

between the scale levels, there may be no privileged level of cau-

sation” [44]. This implies that it is important that a successful

model of a complex system has to include relevant scales and only

subsequent system analysis might reveal at which level biological

function might be integrated [44].

4.2. Emerging structures in glandular tissues

Before starting to model tissue morphogenesis it is therefore

important to take a closer look at emergent structures and the

potential scales involved. For this review, we would like to focus on

prominent structures found in glandular tissues and on the ques-

tion how these might be formed through self-organization. It is

widely acknowledged that cells cultured in 2D have different pat-

terns of gene expression from their 3D counterparts [45]. This is

increasingly stimulating interest in 3D tissue models such as the

one we have developed [32]. We summarize below some results

concerning factors that may influence epithelial structure forma-

tion that concern the main structures found in glandular tissues,

which are round, hollow acini and tubular branching structures

called ducts (see Fig. 2). These fundamental structures only com-

prise a few hundred cells and depend on the composition of the

extracellular matrix (ECM).

ECM compliance and mechanical force: human breast MCF10A

cells formed branching ducts or rounded structures (acini) depend-

ing on the rigidity and isotropy of the extracellular matrix [46].

Stromal cells: when cultured alone, the epithelial cells formed

acini in an isotropic matrix; however, when co-cultured with nor-

mal breast fibroblasts (RMF, see Fig. 2) or with pre-adipocytes [32],

epithelial structures elongated forming branching ducts.

Fig. 3. MCF10A + RMF co-culture in floating gel at the 10th day in culture. Whole mount picrosirius red staining; images were taken under polarized (left) and non-polarized

light (right). (A) Acini in the lower layer of the gel (arrow). (B) Acini loosing the spherical symmetry (gray arrow) and interacting with neighboring structures through

modified collagen fibers (white arrows). (C) Elongating structures interacting via modified collagen fibers (white arrow) and fusing with each other into tubular structures

(black arrow). Notice the absence of modified collagen fibers nearby the non-elongating acini in lower left corner (gray arrow). (D) Bundle of thick collagen fibers formed

between two structures along their elongation axis. (E) Collagen bundle (white arrow) formed along the elongation axis of a duct. (F) Tubular structure interacting with

neighboring structure though collagen fibers (white arrow) and forming branching sprout. Scale bars 20 �m (taken form [47]).
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Fig. 4. Schematic representation of contracted floating gel: (i) periphery zone, (ii)

intermediate area and (iii) central area. Circular and rectangular shapes denote the

distribution of acinar and ductal structures, respectively (taken from [47]).

ECM fiber organization: in acellular gels, collagen formed thin

fibers without any defined organizational pattern. Both epithelial

and stromal cells organized the collagen fibers, a phenomenon evi-

dent during the first 24 h of culture. As epithelial structures formed

later on, small and short collagen fibers organized radially were

found in the vicinity of the acini, while long fibers were found

parallel to the long axis of the ducts. Branching appeared to occur

through the formation of a projecting sprout from an existing duct

and was usually associated with the development of a collagen bun-

dle along the branch axis extending to a nearby epithelial structure

(see Fig. 3).

Culture dish topology and epithelial organization: in addition to

the matrix composition the shape and rigidity of the culture dish

also influence the organization of epithelial structures. In float-

ing 1 mg/ml Col-I gels, ducts appeared mainly in the upper layers,

while the lower layers contained almost exclusively acini, suggest-

ing that factors that promote tubulogenesis are heterogeneously

localized along the Z axis (see Fig. 4). Thus, an asymmetrical spatio-

temporal distribution of biomechanical and/or biochemical factors

appears to regulate tubulogenesis within the floating gel during

matrix reorganization.

In summary, perhaps the most remarkable finding of our stud-

ies has been the plasticity of the 3D tissue model as revealed by the

local and temporal changes observed both in the distribution of

epithelial structures, their phenotype, and in collagen fiber organi-

zation. These dynamic changes became apparent by the systematic

observation of the whole-mounted gels. This plasticity suggests a

dynamic process initiated by the cell-mediated collagen organi-

zation that resulted in reciprocal interaction between the newly

organized and biomechanically enabled fibers and the emerging

epithelial structures. Once fibers start to form elongated bundles

they, in turn, exert forces upon the epithelial structures. Hence, the

heterogeneity resulting from the local interplay of fibers and cells

generate forces that shape and remodel the epithelial structures

[47].

5. Agent-based modeling of tissue morphogenesis

Discrete computational simulation methods are often used

when complex spatial arrangements are less amenable to abstrac-

tion and a more mechanistic model is required. The agent-based

model is currently being eagerly adopted in the life sciences,

because it is well-suited for modeling tissue morphogenesis as

they allow for intra-cellular decision processes [48]. Agent-based

or individual-based modeling is a computational method in which

a complex system is decomposed into a number of discrete entities

called agents. The agents’ movement in virtual space, their behav-

ior and interactions with other agents and the temporal evolution

of their internal state are determined by a single rule set, that is,

repeatedly applied independently for each agent. Agents are either

restricted to sites on a regular lattice (cellular automaton) or are

lattice-free allowing more realistic, quantitative models [48].

This rule-set can be seen as a formal description of the processes

that underlie the emergent phenomena observed in simulation or,

by analogy, in an experiment. Thus, derivation of the rule-set is

the central task in modeling, and the rule-set itself typically repre-

sents a major piece of knowledge gained in the modeling process.

This explains the fact that the empirical process used to identify

the rule-set requires tight coupling with experimental observations

[49]. Early models of tissue morphogenesis only considered cell

proliferation rates and apoptosis to model cell population kinetics,

but ignored the fact that cells are volumetric objects that interact

with their environment, which in turn impacts on model parame-

ters such as migration, proliferation, “differentiation” and apoptosis

[50,51]. Later individual modeling attempts included these feed-

back components as biomechanical properties.

In simple agent-based models, isolated cells are described as

elastic spheres of variable volume [48]. When cells get in contact

with the substrate or other cells, they exhibit an adhesive energy

that is proportional to the contact area formed, but they also get

deformed and compressed all adding to a total internal energy. If

no external stimulus is applied, cells migrate randomly in a friction

dominated environment. The cell cycle is simplified into an inter-

phase where cells stochastically increase in size up to twice their

original volume and a mitotic phase where the cell divides into two

daughter cells of equal size. Different proliferation, apoptotic and

migratory behavior can be simulated depending on the cell type,

and on cell–cell, cell–substrate and cell–matrix contact areas. Such

models are mostly used to reproduce growth colony dynamics and

morphology in 2D, but also 3D in vitro assays.

For reliably modeling the emergence of stable acinar structures

from epithelial cells, a more realist model of the cellular shape

had been introduced, as encapsulated in the immersed boundary

framework used by Rejniak [52]. This model “captures interactions

between immersed elastic tumor cells and a viscous incompressible

fluid, representing the cytoplasm inside the cells and the extracel-

lular matrix outside the tumor tissue. The fluid flow is influenced

by sources of fluid located inside the growing cells, as well as by

forces generated by the immersed, elastic boundaries, while at the

same time the elastic structures move at the local fluid velocity.

The cell cycle and cell processes are related to the concentration of

external factors, such as oxygen, sensed by the cell from its local

environment” [53]. The underlying temporal distributions of nutri-

ents and other molecular constituents are usually modeled using

PDEs and are combined with the agent-based system into a hybrid

model (or hybrid discrete-continuum model (HDC) [54,55]). HDC

systems make it possible to model collagen fiber orientation as a

continuous vector field while other cell types such as fibroblast

remain discrete entities that interact with the collagen matrix and

alter the underlying PDEs [56].

The work by Rejniak and Anderson [57] assumes that acinar

structures originate from a single mother cell which self-organizes

through subsequent proliferation, migration, polarization and apo-

ptosis through nutrient starvation into a hollow structure, the acini,

where the hollow core is formed. The ECM is assumed to be homo-

geneous which allows for a less computational intensive 2D model.

If we envisage the cells being embedded in a heterogeneous 3D ECM

that exhibits different mechanical properties along and perpendic-

ular to local collagen fiber orientation, the Rejniak model [57] could

possibly explain how hollow, tubular ductal structures emerge in

such tissues. It remains to be shown experimentally, which proper-

ties of the microenvironment finally decide on the developmental

faith of branching ducts or acini in the same medium and whether

these structures always originate from one mother cell.

6. Understanding early carcinogenesis using mathematical
modeling

Cancer is diagnosed by pathologists while examining the tissue

level of biological organization. We have proposed that carcinogen-

esis is due to altered tissue organization akin to development gone

awry [58]. Therefore, one would have hoped that by understand-

ing normal tissue development we would have been able to define
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in our model those parameters in normal tissue development that

reach a critical threshold beyond which regular structures found in

healthy glandular tissues such as acini and ducts suddenly disap-

pear (see also above notion of criticality and the edge of chaos). It

seems therefore logical, that the modeling machinery used for tis-

sue morphogenesis can also be used to model cancer development.

Helen Byrne recently summarized the mathematical modeling

approaches to carcinogenesis, avascular and vascular tumor growth

and angiogenesis [59] that span the complete range of multi-

scale, hybrid and three-dimensional models. She states that it can

therefore be difficult to choose the correct model for a particu-

lar question, in particular since different approaches can yield the

same results. In such situation, she thinks it might be appropriate to

appeal to Occam’s razor or the Law of Parsimony using “the philo-

sophical principle that one should not look for multiple causes of

any effect if a single cause can provide a suitable explanation” [60].

Although this approach may be useful as a first approximation, it

negates the fact that in a complex system there is no privileged level

of causality. More importantly, more organic models that facilitate

the collaboration between modelers and experimentalists should

be adopted [59]. This might also explain the increasing popularity

of agent or individual-based modeling approaches towards tumor

growth in recent years [53,54,61,62,63,64]. All models produce

comparable results to those presented by the immersed boundary

framework presented by Rejniak [53]. This model uses a simi-

lar parameter setup as for the computation of the emergence of

acinar structures in healthy tissue [57], but with the main differ-

ence that tumor cells do not polarize and form stable structures

at the growth boundary. Dependent on model parameters such

as proliferation rates and structure of the ECM, more rounded

or more perforated, finger-like structures, are being generated

[65].

6.1. Limitations of current models

Although current models allow us to hypothesize on the effects

of certain model conditions on cancer growth [54,65] they face very

severe limitations. Besides the effect that an increased complex-

ity of the computational model leads to a significant restriction

on the tissue volume and time-frame that can be computation-

ally modeled [64], the most limiting factor is the lack of direct

coupling of the mathematical or computational model to exper-

imental data [59]. This problem manifests itself in the fact that

although numerous models on tumor progression and growth

implicitly assume that “[m]ost tumors in vivo arise from a sin-

gle cell that has escaped the growth-controlling mechanism” [53],

nobody has ever observed a tumor in statu nascendi. The experi-

mental difficulty to do so was already identified by Theodor Boveri

in 1914 as being the main hindrance to study the early events

leading to carcinogenesis. Despite this fact and its incompatibil-

ity with nonmutagenic carcinogenesis, the prevailing paradigm

for carcinogenesis underlying almost all mathematical models

remains the somatic mutation theory [66,67] and alternative expla-

nations such as the tissue organization field theory only slowly

are being introduced [67,68]. Furthermore, without direct coupling

between experiment and mathematical model, most parameters

estimated throughout simulation and validation processes are

difficult to be related to real, biologically relevant entities and

quantities.

An example of a prominent parameter that causes quite contro-

versial debates among biologists relates to cell proliferation. For a

modeler, the default modus operandi of a cell can be both, prolifer-

ation or quiescence. To increase cell proliferation rates, a modeler

either reduces the concentration of an inhibiting substance where

proliferation is seen as the cell’s default or increases the concen-

tration of a stimulating substance where quiescence is seen as

Biological experiment 
in-vitro/in-vivo (wet) 

Mathematical model 
in-silico experiment (dry) 

Biological data 
Data acquisition 

Computed data 
Predictions 

Data analysis Modelling 

Simulation
Validation 

Fig. 5. The systems biology cycle for knowledge discovery shows how biological

experiments are being tightly coupled with mathematical models through data anal-

ysis, modeling, simulation and validation. Only by completing a full cycle, actual

knowledge is generated and our understanding of a biological system is furthered.

default. Both models will yield the same qualitative behavior in

their respective simulation, whereas the biological ‘truth’ is very

likely to be reflected by only one of both scenarios. Unless such

substance is directly found in the experiment itself, both modeling

assumptions have to be seen as equivalent and undistinguishable as

both models validate the same experimental observations (please

note that indirect and intermediate processes might make it experi-

mentally difficult to unequivocally discriminate between inhibitory

and stimulating substances).

To overcome this problem, we not only should have to adopt

an organicist or systems view of biology that makes us aware of

the connectedness of living systems where interactions between

molecules, genes, cells, species and the environment are regu-

lating biological function, but more importantly, we should have

to tightly couple biological experiments with an organic math-

ematical model of an inherently complex and adaptive system.

Such model would allow us to derive quantitative measures and

eventually make predictions about the biological system through

simulation or execution of a computational implementation of the

mathematical model. By relating predicted quantities back to the

real biological system and conducting experiments to validate the

predictions, we close the systems biology cycle for knowledge dis-

covery (see Fig. 5). If the predictions get validated it means that our

mathematical model encapsulated our current knowledge of that

particular system correctly. If not, we should have to go back to the

drawing board and modify our model and rerun the cycle (see also

the introductory section in [69]).

Therefore, as long as mathematical models are not tightly

coupled to biological experiments, most modeling attempts will

remain descriptive in nature giving us only phenomenological

insights into ongoing processes not allowing us to directly predict

experimental outcomes. However, since predictions derived from a

mathematical model that are subsequently validated through novel

biological experiments are the ultimate Holy Grail [33] that would

lead to an understanding of the biological system itself, we might

fall short in our attempts to gain more profound insights into com-

plex biological processes, such as tissue morphogenesis or early

carcinogenesis, in the absence of a highly controllable, observable

and flexible biological model system that can be directly coupled

to a mathematical model.

6.2. In vivo vs. in vitro models

A long standing controversy relates to the choice of the cor-

rect biological model system, where, for obvious reasons, common

sense prefers the in vivo situation. For ethical reasons, this choice

becomes problematic when dealing with human subjects. This then

makes it necessary to use alternative biological model systems.

Are animal models in general more reflective of human physiol-

ogy than in vitro assays? A low percentage of drugs (ranging from
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5 to 20%) found to be effective in the animal model itself (Phase I)

actually proved to be successful in the human trial phase and make

it through registration [70]. This low success rate suggests that this

thought process should be guided by the desire to make a biological

model system tractable and accessible to mathematical modeling

so that both can be tightly coupled through the systems biology

cycle for knowledge discovery. This means that although simpli-

fied models such as the 3D tissue model of the mammary gland

shown above might not be reflective in all details of the human

physiology, they might allow us to generate deeper insights into

microenvironment-dependent cell-cell interactions.

7. Conclusions and future directions

This review intended to highlight the mechanisms underly-

ing self-organization and their importance for the life sciences

in general and for tissue morphogenesis and cancer modeling in

particular. Our journey following the more recent history of sci-

ence and philosophy has revealed that although it is important

to identify the constituents of a system and to study the working

of its individual parts, this approach may not necessarily pro-

vide understanding of the system-level properties. This view is

certainly embraced by systems biology as promoted by Kitano

[71]. The success of network modeling tools applied to gene reg-

ulatory or metabolic networks of individual organisms seems to

convey the message that instead of the reductionist view where

one single gene regulates function, it is now a concert of genes

responsible for the same task. This, however, is still a reductionist

viewpoint as it does not consider the interplay between upward and

downward causation and the role of biomechanics and topology

as determinants of biological structure and function. The domi-

nance of network related modeling in the young field of systems

biology and its inherent focus on the ‘map of life’ as proposed

by Barabási [21], further deviates our attention from the fact that

there are other mechanisms prevalent in complex systems that

can create order from disorder through self-organization, a process

fundamental for living matter [16]. The fact that spatial aggrega-

tion and compartmentalization are prevalent not only in biological

systems does imply that there are form–function relationships

waiting to be uncovered and that spatial organization is indeed an

important parameter that needs to be considered in mathematical

models.

As pointed out by Camazine et al. [33], mathematical modeling

is central to understand complex systems. In particular, computa-

tional models need to be tightly coupled with in vivo or in vitro

models not only to validate the mathematical model, but also

to predict system properties yet unknown. In the modeling field,

this activity currently mostly revolves around agent-based models

[49], which can be computationally expensive, but best reflect the

nature of tissues as self-organizing systems. Experimentally, highly

controllable in vitro model systems are needed for systematic inves-

tigation of the association rules, parameters and processes that

yield biological tissue formation. To this purpose, we have devel-

oped a novel 3D tissue organogenesis model of the mammary gland

that contains both epithelium and stroma (cellular and ECM) [32].

This model is aimed at identifying the key physical processes that

regulate epithelial organization into cylindrical structures (ducts

and branching ducts) and spherical structures (acini), prevalent

structures also found in other glandular tissues. By using time-

lapse microscopy [72], we expect to uncover the local rules that

govern cell proliferation, migration and aggregation depending on

the microenvironment, such as collagen density and collagen fiber

orientation [73,74], as well as the potential cues of which they are

targets. We anticipate that this new methodology that operates in

glandular tissue model systems will bring us closer to the goal of

“putting the parts back together”.

Key points

• Because the physical world is causally open, emergent phenom-

ena are to be expected, where both bottom-up and top-down

causation must be taken into consideration.
• Spatial patterns can emerge through self-organization, which

creates order from disorder.
• Hybrid discrete-continuum based modeling approaches provide

a natural way to computationally describe self-organizing phe-

nomena at the cellular/tissue level.
• Adaptive complex systems are inherently multiscalar and hier-

archical with upward and downward causation across multiple

scales.
• The systems biology knowledge discovery cycle is not limited to

‘network systems biology’ and should embrace the wider frame-

work adopted by the Physiome and the Virtual Human Project.
• When studying tissue morphogenesis and early carcinogenesis,

biological models that can be tightly linked to mechanistic models

which in turn allow us to generate testable predictions and new

insights are hard to come by.
• Because animal models for testing cancer drugs have not proven

to be very efficient in predicting outcomes in humans, the need

for alternative models is urgently desirable.
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