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INTRODUCTION AND MOTIVATION



• Sum rules constrain spectral densities in quantum field
theories. ∫

dω
ωn ρ(ω) = constant

ρ(ω) = ImG(ω)

• In QCD there are sum rules for the bulk spectral density that
depend on one point functions like energy and pressure which
can be determined from lattice calculations.
Thus the sum rule constraints 2-point correlators which is hard
to do in lattice.

• The Ferrell-Glover sum rule in BCS theory determines the
coherence length of the cooper pair in terms of an integral over
frequency dependent conductivities.



• Sum rules result form unitarity and causality of the QFT.
Studying them from holographic duals helps to understand how
these are encoded in the dual geometry.

• Sum rules can constrain QCD/CMT applications of
holography.

• Sum rules relations which involve the entire frequency
domain, they go beyond hydrodynamics.



THE STRUCTURE OF SUM RULES



• Let G(ω,q = 0) be the retarded correlator at temperature T of
the :
stress tensor Txy
R-currents J i

x of the following theories:
N = 4 Yang-Mills
M2-brane theory
M5-brane theory.

• Let ρi
T (ω) = ImGi(ω) be the corresponding spectral density.

i labels either the R-current or the stress tensor .



∫ ∞
−∞

dω
πω

(ρi
T (ω)− ρi

T=0(ω)) = Gi(ω = 0) + Ck
ii 〈Ok 〉T

Ck
ii are the structure constants of certain chiral primaries Ok

which appear in the OPE of the stress tensor/R-currents.

•The first term in the sum rule is determined by hydrodynamics.
The second terms is determined by the short distance
properties of the theory.

• The sum rule connects information of the 1-point , 2-point ,
and the 3-point functions of the theory.

• The sum rule provides an alternative approach to determine
3-point functions. As a consistency check they can be
compared to that obtained from the corresponding Witten
diagrams.



SUM RULE GENERALITIES



• Sum rules are determined by the analytic properties of the
Green’s function in the ω-plane.

• Consider G(ω) with
1. G(ω) is holomorphic in the upper half plane, including the

real axis.
2. lim|ω|→∞G(ω) = 0 if Im(ω) ≥ 0



• By Cauchy’s theorem

G(ω̂ + iε) =
1

2πi

∫ ∞
−∞

G(z)dz
z − ω̂ − iε

, (1)

0 =
1

2πi

∫ ∞
−∞

G(z)dz
z − ω̂ + iε

. (2)

ω̂, ε ∈ R and ε > 0. The contour is chosen as a large
semi-circle in the upper half plane.

• Taking (1) + (2)∗

G(ω̂) = lim
ε→0+

∫ ∞
−∞

dz
π

ρ(z)

z − ω̂ − iε
,

where ρ(z) = ImG(z).



• Setting ω̂ = 0 we obtain

G(0) = lim
ε→0+

∫ ∞
−∞

dω
π

ρ(ω)

ω − iε
.



• Deriving sum rules essentially reduces to proving the analytic
properties of the Green’s function.

• In AdS/CFT the Green’s function of interest is determined by
solving certain differential equations.

• Thus determining the analytic behaviour of the Green’s
function can be cast into a problem of establishing the analytic
behaviour of solutions of the differential equations which
determine the relevant Green’s function.

•We will demonstrate this in detail for the simplest situation.



THE SHEAR SUM RULE



• This sum rule was originally derived and verified numerically
by Romatschke, Son ( 2009).
The proof we will discuss is a variation of the one developed by
Gulotta, Herzog, Kaminski (2010).

• Consider the retarded Green’s function

G̃(t , ~x) = iθ(t)〈[Txy (t , ~x),Txy (0,0)]〉T ,

in N = 4 Yang-Mills.
Txy is the xy component of the stress tensor.
Its Fourier transform

G(ω,0) =

∫
d4xei(ωt)G̃R(t , x).



• To evaluate the shear correlator we consider the non-extremal
D3-brane geometry

ds2 =
r2

L2 (−fdt2 + dx2 + dy2 + dz2) +
L2

r2f
dr2,

f = 1−
r4
+

r4 .



• The stress tensor Txy is dual to the fluctuation

δgxy = φ(r)e−iωt r2

L2 .

This fluctuation obeys the equation of motion of a minimally
coupled massless scalar

∂2
r φ+

(
F ′

F
+

3
r

)
∂rφ+

ω2

F 2φ = 0,

where

F =
r2

L2 f .



• The Green’s function is obtained by imposing ingoing
boundary conditions at the horizon r+ and obtaining the
behaviour of φ at the boundary r →∞.

G(ω,T ) = Ĝ(ω,T )− P(T ) + Gcounter(ω),

Ĝ(ω) = − N2

8π2L6 lim
r→∞

Fr3φ′

φ
,

Gcounter(ω) is the contribution from the counter terms required
to cancel the r2 and log(r) divergences in Ĝ(ω,T ).
P(T ) is the pressure, independent of ω.
Gcounter(ω) is independent of temperature T .

• Essentially the behaviour of the Green’s function is
determined by

g(ω) = lim
r→∞

Fr3φ′

φ
.

• The behaviour of g(ω) in the ω-plane can be obtained by
studying the solution to the differential equation.



• Near the horizon the solutions are wave like and is given by

φ(r) ∼ (r − r+)
± iω

Fh , r → r+,

where
Fh = 4

r+
L2

• At the boundary the two independent solutions are given by

φ(r) → L4ω2

r2 J2(
L2ω

r
) ∼ r−4, r →∞,

φ(r) → L4ω2

r2 K2(i
L2ω

r
) ∼ constant, r →∞.



• The differential equation can be obtained as the equations of
motion of the following action

Sφ =

∫ ∞
rh

drFr3
(
|φ′(r)|2 − ω2

F 2 |φ(r)|2
)
.



No poles in g(ω) for Imω > 0

• Poles/divergences in g(ω) correspond to quasi-normal modes
of the differential equation. They obey the following boundary
conditions.

φ(r) ∼ (r − r+)
−i ω

Fh , r → r+,
φ(r) ∼ r−4, r →∞.

• Quasi-normal modes with Imω > 0 do not exist.
Intuitive reason: from the time dependence exp(−iωt) , we see
such modes are instabilities if they exists.

• A proof from the differential equation:
Let φ(r) be a quasi-normal mode with complex frequency ω.
The coefficients of the differential equation is real.
φ(r)∗ is also a quasi-normal mode with frequency ω∗.



• Consider the identity

0 = Sφ−Sφ

Use equation of motion of φ∗ in first Sφ.
equation of motion of φ in the second Sφ.

0 = Fr3(φ∗′φ−φ∗φ′)|∞rh
+(ω∗2 − ω2)

∫ ∞
rh

dr
r3

F
|φ|2.

• From the boundary conditions and using Imω > 0 can show
the boundary terms vanish. Since the integrand in the second
term is positive definite we have

ω2 = ω∗2



• So if at all a quasi-normal mode exists in for Imω > 0 it is
restricted to the positive imaginary axis.

ω2 < 0

• Evaluating the action for such a mode one obtains

Sφ = Fr3φ∗(r)φ′(r)|∞rh
= 0

• But Sφ is positive definitive for ω2 < 0.
Thus no such quasi-normal mode exists.



No poles for ω real and ω 6= 0

• For real ω, φ, φ∗ are linearly independent and the following is
the Wronskian.

W = −i
2ωr3

+

r3F
.

• The solution for the Wronskian consistent with ingoing
boundary conditions at the horizon

W = −i
2ωr3

+

r3F
.

• r3FW is a non-zero constant. Evaluating it at r →∞ for the
quasi-normal mode indicates that it must vanish.

• Contradiction: No quasi-normal mode and hence poles or
divergences of g(ω) does not exist in this domain.



No poles for ω = 0

• g(ω) admits a power series expansion around the ω = 0.

• Define

g̃(r) =
φ′(r)

ωφ(r)
.

It satisfies

g̃′(r) + ωg̃2(r) +

(
F ′

F
+

3
r

)
g̃(r) +

ω

F 2 = 0.

This admits a solution in terms a power series in ω.

• The leading term in the solution consistent with the ingoing
boundary conditions

g = −iωr3
+ + O(ω2)



Absence of branch cuts for Imω ≥ 0

• A theorem in Ordinary differential equations, Arnold: The
solutions of a differential equation is smooth with respect to
parameter ω provided the differential equation and the
boundary conditions are smooth with respect to ω.

• Applying this for our case we conclude that φ and φ′ is
smooth with respect to ω at r →∞.

• Thus g(ω) is smooth with respect to ω.
The only locations of possible singularities in the n-th order
derivative of g(ω) with respect to ω are if φ vanishes at the
boundary. This can occur at possible quasi-normal modes.
We have shown that they do not occur at Imω ≥ 0.



ω →∞ behaviour

• Define

y = λ
r+
r
, iλ =

L2

r+
ω.

Note the boundary is now at y = 0.
The differential equation:

φ′′(y)− 1
yf (y)

(3 +
y4

λ4 )φ′(y)− 1
f (y)2φ(y) = 0,

f = 1− y4

λ4

• Note that for λ→∞, the equation is that of a minimally
coupled scalar in AdS5.
The solutions are given in terms of Bessel functions.



• A systematic expansion of the solutions around λ→∞
consistent with ingoing boundary condition at the horizon can
be performed.

• The results in the following Green’s function.

lim
λ→∞

g(λ) = −
r4
+

L2

(
lim
y→0

1
y3λ

4g(1)
0 − 6

5
+ O(

1
λ4 )

)
.

g(1)
0 = −K1(y)

K2(y)

• The leading term contains the 1/y2, log(y) divergence.
That will be regulated by Gcounter.
It is independent of temperature and goes as ω4.



• The finite term implies that the Green’s function does not
satisfy the fall off property required for the derivation of the sum
rule.
The presence of the −P(T ), pressure in the Green’s function
also does the same.

• Thus define

δGR(ω) = GR(ω,T )−GR(ω,0)+
N2

8π2L6
r4
+

L2
6
5

+P

This satisfies the required fall off property as ω →∞.

Im δGR(ω) = ImGR(ω,T )− ImGR((ω,0),

= ρ(ω,T )− ρ(ω,0),



• Applying Cauchy’s theorem we obtain shear sum rule

2
5
ε=

1
π

∫ ∞
−∞

dω
ω

(ρ(ω)− ρT=0(ω)) .



Sum rule from OPE

• The constant term resulted from the high frequency analysis
of the Green’s function.
It should be possible to understand it from OPE arguments.

• Consider the OPE of the stress tensor.

Tµν(x)Tρσ(0) ∼ CT
Iµν,ρσ

x8 +Âµνρσαβ(x)Tαβ(0)+Ba
µνρσ(x)Oa(0).

• Taking the Fourier transform, and by a simple scaling
analysis.
Constant terms at high frequency in the Green’s function result
from the presence of the Tµν and operators of dimension ∆ = 4
in the OPE.



• For the uncharged D3-brane, in the dual background there
are no other operators turned on.
The constant term must result from the expectation value of the
stress tensor.

• It can be shown that
2
5
ε

in the sum rule results form this term in the OPE.



R-CHARGE SUM RULES



• Consider the R-charge correlator in N = 4 Yang-Mills.

Gi(t , ~x) = iθ(t)〈[J i
x (t , ~x), J i

x (0,0)]〉,

J i
x is the x component of the i-th R-symmetry current and

i ∈ {1,2,3}.

• Study the Green’s function at finite temperature with the
3-chemical potentials turned on and obtain sum rules.



• The gravity dual is the R-charged black hole in AdS5. The
system is parametrized by:
The radius of the horizon r+; temperature.
The three R-charges ki , chemical potentials.

• The solution also has 2 scalars, ϑ1,2 turned on.
The scalars correspond to chiral primary operators of conformal
dimension ∆ = 2. They are linear combinations of

Tr(ZZ̄ ), Tr(Y Ȳ ), Tr(ZZ̄ )

which excludes the Konishi scalar

Tr(XX̄ ) + Tr(YȲ ) + Tr(ZZ̄ )

Call this as O1,2.



• The expectation values of these scalars from the gravity
solution is

〈O1〉 =
N2

8π2
r2
+

L4
2√
6

(k1 + k2 − 2k3),

〈O2〉 =
N2

8π2
r2
+

L4
2√
2

(k1 − k2).



• To evaluate the Green’s function from gravity consider.

Ai
x = Ai(0)

x + ai
x (r , t), Ai

l = Ai(0)
l ,

gxt = g(0)
xt + hxt (r , t), glt = g(0)

lt ,

glm = g(0)
lm , ϑ1,2 = ϑ

(0)
1,2

Here l ∈ {y , z, t , r} and the superscript (0) refers to the
background values and

ai
x (r , t) = φi(r)eiωt



• One can obtain the coupled equations of motion for the
gauge field fluctuations.

φi′′ +

(
ln(

FH2
i
H

)′ +
1
r

)
φi′ +

ω2H
F 2 φi

−(1 + ki)
mi

H2
i

3∑
j=1

(
4r6

+

r6L2F
(1 + kj)mjφ

j

)
= 0,

mi =
√

ki

3∏
j=1

(1 + kj)
1/2



• The equations of motion can be obtained by a variation of φi∗

on the following action.

Sφ =

∫ ∞
rh

dr
FrH2

i
H

(
dφi∗

dr
δij

dφj

dr

)
+ φ∗i

(
Mij −

ω2H2
i r

F
δij

)
φj ,

Mij =
4r6

+

L2r5H
(1 + ki)mi(1 + kj)mj .



• The retarded Green’s function is obtained by imposing
ingoing boundary conditions

φi(r) ∼ (r − r+)−iαω,

and evaluating

Gi
T (ω) = Ĝi(ω,T ) + Gcounter(ω,T ),

Ĝi(ω,T ) = − N2

8π2L3 lim
r→∞

rFφi′

Lφi

∣∣∣∣
φ

j
∞=0,j 6=i

,

Gcounter(ω,T ) is the counter term needed to cancel the log(r)
divergences.



• By a similar analysis one can show that the conditions
required to derive the sum rule holds for

δG1(ω) = G1(ω,T )−G1(ω,0)− 1
e2

2r2
+

3L3 (−2k1 + k2 + k3).

1
e2 =

N2

8π2L3

A similar definition holds for the other two Green’s functions.



• The sum rules are∫ ∞
−∞

dω
πω

(
ρ1(ω)− ρ1

T=0(ω)
)

= lim
ω→0

ωImσ1(ω)

− 1
e2

2r2
+

3L3 (−2k1 + k2 + k3).

∫ ∞
−∞

dω
πω

(
ρ2(ω)− ρ2

T=0(ω)
)

= lim
ω→0

ωImσ2(ω)

− 1
e2

2r2
+

3L3 (k1 − 2k2 + k3),∫ ∞
−∞

dω
πω

(
ρ3(ω)− ρ3

T=0(ω)
)

= lim
ω→0

ωImσ3(ω)

− 1
e2

2r2
+

3L3 (k1 + k2 − 2k3).



•The high frequency contribution in the sum rule can be
obtained from an OPE analysis.
The OPE of two R-currents is

J i
µ(x)J j

ν(0) ∼
Cδij Iµν(x)

x6 +AµνC k̂
ij Ok̂ (0)+Bij;ρ

µν;kJk
ρ (0) + · · · ,

• Taking the Fourier transform, and by a scaling analyis: The
finite terms at high frequency of the Green’s function arises due
to the presence of operators of ∆ = 2.

lim
ω→∞

Gi
T (ω)−Gi

T=0(ω) =4π2C k̂
ii 〈Ok̂ (0)〉T .

Note that this analysis is entirely based on conformal invariance
and does not involve the gravity dual.



• Comparing this to the high frequency terms in the sum rule
and using the expectation values of the scalars O1,2 we obtain
the following structure constants.

C 1̂
11 = − 1

(2π)2L2
√

6
, C 2̂

11 = − 1
(2π)2L2

√
2
,

C 1̂
22 = − 1

(2π)2L2
√

6
, C 2̂

22 =
1

(2π)2L2
√

2
,

C 1̂
33 =

2
(2π)2L2

√
6
, C 2̂

33 = 0.



• These structure constants can also be directly evaluated
using Witten diagrams from the following cubic coupling in the
supergravity Lagrangian

1
4e2

~ai ·
∫

d5x
√

ggµρgνσ~ϑF i
µνF i

νρ,

where we have organized the two scalars ϑ1, ϑ2 into a two
dimensional vector and the two dimensional vectors ~ai with
i = 1,2,3 are given by

~a1 = 2
(

1√
6
,

1√
2

)
, ~a2 = 2

(
1√
6
,− 1√

2

)
, ~a3 = 2

(
− 2√

6
,0
)
.



• Proceeding with the evaluation of the Witten diagrams and
extracting the structure constants we indeed do recover the
ones obtained from the high frequency contribution to the sum
rule precisely.



SUM RULES IN OTHER SYSTEMS



M2-branes

• The sum rules are similar in form.
The high frequency contribution arises from expectation values
of three chiral primaries of ∆ = 1.
Here there are 12 structure constants that match precisely with
that obtained from the Witten diagrams.



M5-branes

• The high frequency contribution arises from expectation
values of 2 chiral primaries of ∆ = 4. There are 4 structure
constants which agree with that obtained from the Witten
diagrams.



Shear sum rules at finite chemical potential

•We have also obtained the modifications in the shear sum
rule for the case of D3, M2 and M5-branes at finite chemical
potential.
These modifications can also be explained due to the
expectation values of the corresponding scalars in these
background.



CONCLUSIONS



• Sum rules carry important information of the theory.

They can be derived holographically.

The analytic properties of the Green’s function involved can be
extracted from the properties of the corresponding differential
equations.



• It will be interesting to derive sum rules for spectral densities
sensitive to the U(1)3 anomaly present in N = 4 Yang-Mills.
Anomalies are present both at long distances and short
distances.
It will be interesting to see how they occur in the sum rules.

• It will be useful to examine putative holographic duals of QCD
and obtain sum rules.
These sum rules will a-priori be different from that of QCD since
the UV properties of these theories are different form QCD.
This might provide tight constraints on the validity of these
models.


