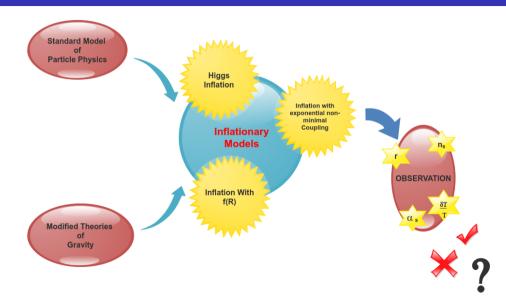
Particle Physics Models of Inflation in Modified Gravity

Jose Mathew

Indian Institute of Science Education and Research
Thiruvananthapuram

February 13, 2018

Theme of the work



Talk is based on the following works:

- J. Mathew and S. Shankaranarayanan, "Low scale Higgs inflation with Gauss-Bonnet coupling," Astropart. Phys. 84, 1 (2016) [arXiv:1602.00411[astro-ph.CO]].
- ② J. Mathew, J. P. Johnson, and S. Shankaranarayanan, "Inflation with $f(R,\phi)$ in Jordan frame," [arXiv:1705.07945 [gr-qc]] (under review in Gen. Rel. Grav.)
- J. P. Johnson, J. Mathew, and S. Shankaranarayanan, "Inflation driven by exponential non-minimal coupling of inflaton with gravity," [arXiv:1706.10150 [gr-qc]](under review in Phy. Rev. D)

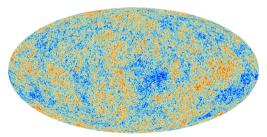
Outline

- Introduction
- Motivation
- Inflationary model realised in Gauss-Bonnet gravity
- ullet Inflationary model realised in f(R) gravity that resembles scalar-tensor theories of gravity
- ullet Inflationary model realised within f(R) gravity, with an exponential non-minimal coupling
- Discussions and conclusions
- Further research interests and prospects

Cosmological Principle

- Cosmological principle states that, viewed on a sufficiently large scale, the properties of the universe are same for all the observers.
- That is, the Universe must be homogeneous and isotropic at large scales.
- What do observations suggest?

Figure: Fluctuations in Cosmic Microwave Background Radiation (CMB).



Credit: ESA

- \bullet CMB fluctuations are of the order of $\frac{\delta T}{T}\approx 10^{-5}.$
- Cosmological principle is consistent with observations.

Friedmann-Robertson-Walker Cosmology

- The mathematical frame work in which cosmological principle is incorporated are metric theories
 of gravity.
- The line element is:

$$ds^2=-dt^2+a(t)^2\left(\tfrac{dr^2}{1-Kr^2}+r^2\left(d\theta^2+\sin^2\theta d\phi^2\right)\right)$$
 where K= -1, 0, 1

Friedmann Equations:

$$\frac{\dot{a}^2 + Kc^2}{a^2} = \frac{8\pi G\rho + \Lambda c^2}{3} \qquad \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3p}{c^2}\right) + \frac{\Lambda c^2}{3}$$

- We have $\rho \propto a^{-3(1+\omega)}$ where $\omega = \frac{P}{\rho}$.
- Within Friedmann-Robertson-Walker cosmology, the evolution of Universe follows:
 - Radiation dominated: $P = \frac{1}{3}\rho$ and $a \propto t^{\frac{2}{3}}$.
 - Matter dominated: P = 0 and $a \propto t^{\frac{1}{2}}$.
 - Λ dominated: $P = -\rho$ and $a \propto e^{Ht}$.

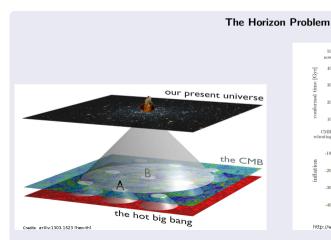
Problems with Standard Cosmology

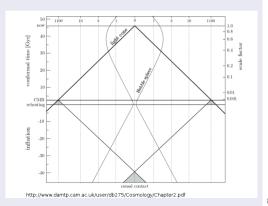
 Standard model of cosmology successfully trace the history of Universe from as early as 1 ns after Big Bang. However, it suffers from problems such as:

- Horizon Problem: The observed CMB radiation confirmed our belief of isotropic and homogeneous Universe. But why at this large scale?
- ullet Fine tuning Problem: K=0 is an unstable point which requires extreme fine tuning of the Universe at early time.
- Structure Formation: Density perturbations could generate structure. But what caused primordial density perturbations.

Cosmological Puzzles and Inflation as a solution

- It can be seen that cosmological puzzles are associated with an increasing comoving horizon.
- Inflation an early phase of Universe where comoving horizon decreases solves these problems





Cosmological Puzzles and Inflation as a solution

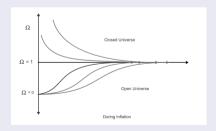
- It can be seen that cosmological puzzles are associated with an increasing comoving horizon.
- Inflation an early phase of Universe where comoving horizon decreases solves these problems

Fine Tuning Problem

• While $\Omega(a) = 1$ is an unstable point during radiation dominated expansion and matter dominated expansion. However, it is an attractor during Inflation.

$$1 - \Omega\left(a\right) = \frac{-K}{(aH)^2}$$

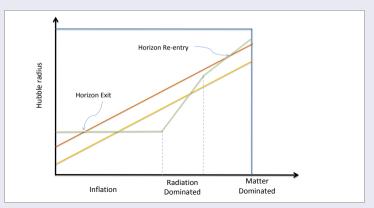
where
$$\Omega(a) = \frac{\rho(a)}{\rho_{crit}(a)}$$
.



Cosmological Puzzles and Inflation as a solution

- It can be seen that cosmological puzzles are associated with an increasing comoving horizon.
- Inflation an early phase of Universe where comoving horizon decreases solves these problems

Solution to the Problem of Density Perturbation



Dynamical Mechanism of Inflation

- The condition for Inflation is $\ddot{a} > 0$.
- Friedmann Equations:

$$\frac{\dot{a}^2 + Kc^2}{a^2} = \frac{8\pi G\rho}{3} \qquad \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho + \frac{3p}{c^2}\right)$$

- From Friedman Equations we can see that inflation demands $P < -\frac{1}{3}\rho$.
- For a scalar field we have:

$$\rho = \frac{1}{2}\dot{\phi}^2 + V(\phi)$$
 $P = \frac{1}{2}\dot{\phi}^2 - V(\phi)$

- Models of Inflation
 - de-Sitter $a = a_0 e^{Ht}$. Driven by cosmoloical constant.
 - Power-law $a = a_0 t^p$. Driven by scalar with potential of form:

$$V(\phi) = \frac{(3p-1)}{2} (\sigma/t_i)^2 e^{-\frac{\phi - \phi_i}{\sigma}} \qquad \text{where } \sigma = \left(\frac{p}{4\pi}\right)^{1/2} M_p$$

However, these exact solutions does not have an exit mechanism, and hence are not viable.

Slow-Roll Infation

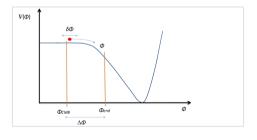
- The widely used frame work of Inflation is of slow-roll, where a scalar field slowly rolls down the
 potential hill inflating the universe.
- During slow-roll the potential remains almost a constant.

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi) \qquad P_{\phi} = \frac{1}{2}\dot{\phi}^2 - V(\phi)$$

• An example- Higgs Inflation, with potential:

$$V(\phi) = M^4 \left(1 - e^{-\sqrt{2/3}\phi/M_{pl}} \right)$$

 The quantum fluctuations of the scalar field act as the seeds of structure formation.



Problems of Inflation

- Inflation is the most successful paradigm that explains early Universe. However Inflation suffers from problems such as:
 - There is no unique mechanism for Inflation.
 - Inflation requires scalar fields with non-standard potentials. Based on canonical scalar field, Inflationary models require potentials of the form

$$V(\phi) = \sum_{n=0}^{N} c_{2n} \phi^{2n}$$

where c_{2n} 's are real numbers and N > 2.

Inflaton has to be light, the eta problem.

Problems of GR

- General relativity is successful. However people consider alternatives where GR is obtained as an approximation.
- The need for modified gravity: Observational aspects:
 - The unsolved problems such as dark energy, dark matter etc.
 - Absence of an unique mechanism for Inflation.
 - **③** ...
- The need for modified gravity: Theoretical aspects:
 - General relativity permits singularities.
 - @ General relativity cannot be conventionally quantized.
 - **6** ...
- Possible modifications to general relativity
 - Scalar field theories.
 - 2 Tensor-theories.
 - Scalar-tensor theories
 - 4 ...

Focus of the work

- What is the scalar field that drives inflation (inflaton)?
 - Scalar fields compatible with Standard Model of Particle Physics. In 4-D, we consider scalar field potentials of form.

$$V = \Lambda + m^2 \phi^2 + \lambda \phi^4$$

- Is General relativity the right theory of gravity at Inflationary scales?
 - General relativity could be a low energy limit of a more fundamental theory such as f(Gauss-Bonnet), f(R), Scalar-tensor theories etc.
- How is Inflaton coupled to gravity?
 - We consider non-minimal Inflaton gravity coupling.

Inflation within Gauss-Bonnet gravity

[JM and SS]

• The Inflaton is Higgs Boson.

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + \frac{1}{2} m^2 \phi^2 - \frac{1}{4} \lambda \phi^4$$

$$\lambda = 0.1291$$

$$m = M_H / \sqrt{2}$$

$$M_H = 125 \ GeV \ [LHC \ Data]$$

Higgs field is non-minimally coupled to gravity through Gauss-Bonnet term.

$$S = \int d^4x \sqrt{-g} \left[\frac{R}{2\kappa} + f(\phi)L_{GB} - \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - V(\phi) \right]$$
$$L_{GB} = R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\rho\delta}R^{\mu\nu\rho\delta}$$

Background Equations

• For FRW metric, $ds^2 = -dt^2 + a(t)^2(dx^2 + dy^2 + dz^2)$ the field equations are

$$0 = -24H^{2}(\dot{H} + H^{2})\dot{f}(\phi) + \dot{\phi}\ddot{\phi} + \dot{V}(\phi) + 3H\dot{\phi}^{2}$$

$$eom\ of\ scalar\ field$$

$$0 = -\frac{3H^{2}}{\kappa} + \frac{1}{2}\dot{\phi}^{2} + V(\phi) - 24H^{3}\dot{f}(\phi)$$

$$0 - 0\ component\ of\ MEE$$

$$0 = -\frac{3H^2}{\kappa} - \frac{2\dot{H}}{\kappa} + V\left(\phi\right) - \frac{1}{2}\dot{\phi}^2 - 16H(\dot{H} + H^2)\dot{f}\left(\phi\right) - 8H^2\ddot{f}\left(\phi\right)$$

$$i - i \ component \ of \ MEE$$

Exact Power-law Solution

Main Equation:

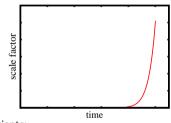
$$-2H^{2} + \kappa \dot{\phi}^{2} - 24 \kappa H^{3} \dot{f}\left(\phi\right) + 2 \frac{\ddot{a}}{a} + 16 \kappa H \frac{\ddot{a}}{a} \dot{f}\left(\phi\right) + 8\kappa H^{2} \ddot{f}\left(\phi\right) = 0$$

We have an exact Solution: Power-law

$$a(t)=a_0\left(rac{t}{t_0}+\Upsilon
ight)^p$$
 , with $\phi(t)=\phi_0\left(rac{t}{t_0}+\Upsilon
ight)^n$ for

$$V(\phi) = A_1 \phi^{-\frac{2}{n}} + A_2 \phi^{2-\frac{2}{n}} + A_3 \phi^{\frac{p-1}{n}}$$

$$f(\phi) = B_1 \phi^{\frac{2}{n}} + B_2 \phi^{2 + \frac{2}{n}} + B_3 \phi^{\frac{p+3}{n}}$$



where 'p>1' and 'n' can be any real number and the co-efficients:

$$A_1 = \frac{3 \left(p-1\right) p^2}{\kappa \left(p+1\right)} \left(\frac{\phi_0^{1/n}}{t_0}\right)^2 \qquad A_2 = \frac{\left(5 n^2 p - n^2 + 2 n^3\right)}{2 \left(1-2 n+p\right)} \left(\frac{\phi_0^{1/n}}{t_0}\right)^2 \qquad A_3 = 24 p^3 C \left(\frac{\phi_0^{1/n}}{t_0}\right)^{1-p} \\ B_1 = \frac{-1}{8 \kappa p (1+p)} \left(\frac{\phi_0^{1/n}}{t_0}\right)^{-2} \qquad B_2 = \frac{n^2}{16 p^2 (1+n) (1-2 n+p)} \left(\frac{\phi_0^{1/n}}{t_0}\right)^{-2} \qquad B_3 = \frac{C}{p+3} \left(\frac{\phi_0^{1/n}}{t_0}\right)^{-(p+3)}$$

Power-law - Special case

- $f(\phi) = \alpha \phi^{-4}$ and $V(\phi) = \frac{1}{4}\lambda \phi^4$ is a special case.
- Our analysis yielded the solution:

$$a(t) = a_0 \left(\frac{t}{t_0} + \left(\frac{\phi(t_0)}{\phi_0} \right)^{-2} - 1 \right)^p$$

$$\phi(t) = \phi_0 \left(\frac{t}{t_0} + \left(\frac{\phi(t_0)}{\phi_0} \right)^{-2} - 1 \right)^{-1/2}$$

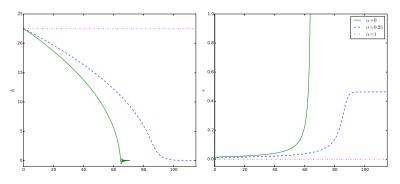
Where the parameters are related by

$$\lambda \alpha = -\frac{3p(p-1)}{2(p+1)^2 \kappa^2}$$

$$\phi_0 = \left(\frac{3p^2(p-1)}{t_0^2 \kappa(p+1)\lambda}\right)^{\frac{1}{4}}$$

An earlier study: Slow roll analysis

- $f(\phi) = \alpha \phi^{-4} = -\frac{1}{2} \xi_0 \phi^{-4}$ and $V(\phi) = \frac{1}{4} \lambda \phi^4 = V_0 \phi^4$.
- A coupling and potential of this form is well studied, but using the slow-roll frame work [Guo and Schwarz, PRD 2009,2010, Jiang and Guo, PRD 2013]
- It was shown that Higgs scalar can't act as the Inflaton with just the pure Gauss-Bonnet coupling under slow-roll. [Bruck and Longden, PRD 2016 March]: They define $\alpha=4V_0\xi_0/3$

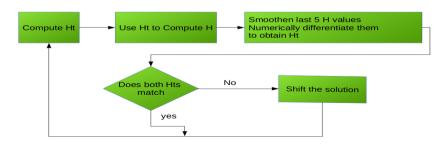


Details of Numerical Analysis

- What happens with $-\frac{1}{2}m^2\phi^2$ term in the potential?
- The field equations are:

$$0 = -24H^{2}(\dot{H} + H^{2})\dot{f}(\phi) + \dot{\phi}\ddot{\phi} + \dot{V}(\phi) + 3H\dot{\phi}^{2} \qquad eom \ of \ scalar \ field$$

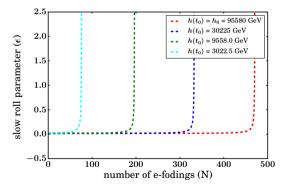
$$0 = -\frac{3H^{2}}{\kappa} + \frac{1}{2}\dot{\phi}^{2} + V(\phi) - 24H^{3}\dot{f}(\phi) \qquad 0 - 0 \ component \ of \ MEE$$



• What happens with $-\frac{1}{2}m^2\phi^2$ term in the potential?

$$V(h) = \frac{\lambda}{4} \left(h^2 - \nu^2 \right)^2$$

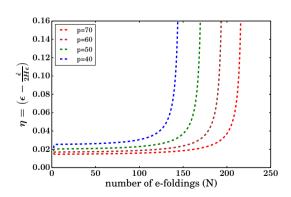
- Evoution of slow roll parameter $\epsilon = -\frac{\dot{H}}{H^2}$ with number of e-foldings for different initial values
- $\epsilon > 1$ corresponds to exit from Inflation.



• What happens with $-\frac{1}{2}m^2\phi^2$ term in the potential?

$$V(h) = \frac{\lambda}{4} \left(h^2 - \nu^2 \right)^2$$

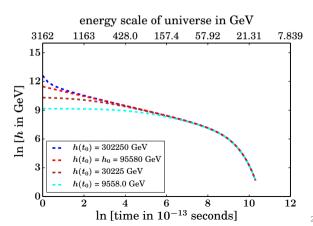
• Evoution of slow roll parameter η with number of e-foldings



• What happens with $-\frac{1}{2}m^2\phi^2$ term in the potential?

$$V(h) = \frac{\lambda}{4} \left(h^2 - \nu^2 \right)^2$$

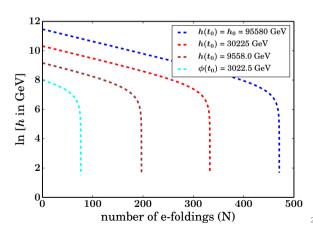
• ln(h) vs ln(t)



• What happens with $-\frac{1}{2}m^2\phi^2$ term in the potential?

$$V(h) = \frac{\lambda}{4} \left(h^2 - \nu^2 \right)^2$$

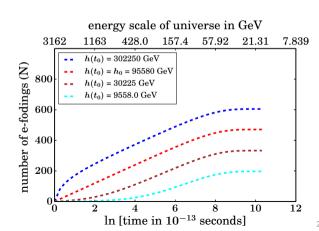
 \bullet In(h) vs N



• What happens with $-\frac{1}{2}m^2\phi^2$ term in the potential?

$$V(h) = \frac{\lambda}{4} \left(h^2 - \nu^2 \right)^2$$

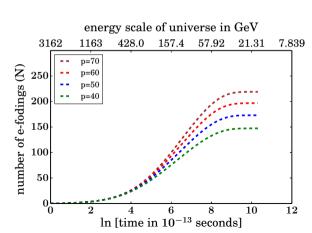
ullet e-foldings for different $h(t_0)$



• What happens with $-\frac{1}{2}m^2\phi^2$ term in the potential?

$$V(h) = \frac{\lambda}{4} \left(h^2 - \nu^2 \right)^2$$

ullet e-foldings vs $\ln(t)$ for different values of p



Key features of our model

- The potential is consistent with standard model
- Exit can happen only with a mass term.
- We cannot have exit at any energy scale, it can only happen close to electroweak scale.
- No fine tuning.

Power spectrum - For approximated power-law soution

The Fourier modes of scalar perturbations obey

$$\nu'' + \left(c_{\mathcal{R}}^2 k^2 - \frac{z_{\mathcal{R}}''}{z_{\mathcal{R}}}\right) \nu = 0$$

where $z_{\mathcal{R}} = a\sqrt{Q}$, Adapting the formulas from [Hwang and Noh, PRD 2000]

$$Q = \frac{\dot{\phi}^2 + \frac{3}{2} \frac{64H^4 \dot{f}^2}{1/\kappa + 8H\dot{f}}}{\left(H + \frac{1}{2} \frac{8H^2 \dot{f}}{1/\kappa + 8H\dot{f}}\right)^2} \qquad c_{\mathcal{R}}^2 = 1 - 8\dot{f} \frac{\frac{1}{2} \left(\frac{64H^2 \dot{f}}{1/\kappa + 8H\dot{f}}\right)^2 \left(\ddot{f}/\dot{f} - H - \dot{H}\frac{1/\kappa + 8H\dot{f}}{2H\dot{f}}\right)}{\dot{\phi}^2 + \frac{3}{2} \frac{64H^4 \dot{f}^2}{1/\kappa + 8H\dot{f}}}$$

• Scalar power spectrum given by $P_{\mathcal{R}} = \frac{k^3}{2\pi^2} |\nu/z_{\mathcal{R}}|^2$ is

$$P_{\mathcal{R}} = k^{3 - 2\nu_{\mathcal{R}}} 2^{2\nu_{\mathcal{R}} - 3} c_{\mathcal{R}}^{-2\nu_{\mathcal{R}}} \left(\frac{\Gamma(\nu_{\mathcal{R}})}{\Gamma(3/2)}\right)^2 \frac{1}{4\pi^2} \left(\frac{a_0(p-1)}{t_0}\right)^{\frac{2p}{p-1}} \frac{1}{a_0^2 Q}$$

where
$$\nu_{\mathcal{R}} = \frac{3p-1}{2(p-1)}$$

Power spectrum - For approximated power-law soution

• The Fourier modes of tensor perturbations obey

$$u'' + \left(c_{\mathcal{T}}^2 k^2 - \frac{z_{\mathcal{T}}''}{z_{\mathcal{T}}}\right) u = 0$$

where $z_T = a\sqrt{Q_q}$ and

$$Q_g = \frac{1}{\kappa} + 8H\dot{f}, \qquad c_T^2 = \frac{\frac{1}{\kappa} + 8\ddot{f}}{\frac{1}{\kappa} + 8H\dot{f}}$$

ullet Tensor power spectrum, given by $P_{\mathcal{T}} = rac{8k^3|u/z_{\mathcal{T}}|^2}{2\pi^2}$ is

$$P_{\mathcal{T}} = 8k^{3-2\nu_T} 2^{2\nu_T - 3} c_{\mathcal{T}}^{-2\nu_T} \left(\frac{\Gamma(\nu_T)}{\Gamma(3/2)}\right)^2 \frac{1}{4\pi^2} \left(\frac{a_0(p-1)}{t_0}\right)^{\frac{2p}{p-1}} \frac{1}{a_0^2 Q_g}$$

where
$$u_{\mathcal{T}} = \frac{3p-1}{2(p-1)}$$

Constraints from Observations

• Scalar spectral index n_s , $P_{\mathcal{R}} \propto k^{n_s-1}$

$$n_s = 3 - \frac{2p}{p-1}$$

- A value of $n_s \approx 0.968$ means $p \approx 60$, which constraints $\alpha = (1.823 M_p)^4$.
- Tensor spectral index n_t , $P_{\mathcal{T}} \propto k^{n_t}$, $n_t = n_s 1$
- Tensor to scalar ratio, r

$$r \equiv \frac{P_{\mathcal{T}}}{P_{\mathcal{R}}} \approx 8 \times \left(\frac{c_{\mathcal{R}}}{c_{\mathcal{T}}}\right)^{2\nu_{\mathcal{R}}} \frac{Q}{Q_g}$$

- Tensor to scalar ratio is 0.012.
- $H_* = 10^{12} \ GeV$, $\phi_* = 10^{16} \ GeV$, $t_* = 8.013 \times 10^{-12} \text{GeV}^{-1} + t_0 60 \sqrt{8|f(h(t_0))|\kappa}$

Conclusion-I

Results

- Higgs field non-minimally coupled to Gauss-Bonnet term can drive Inflation.
- All parameters in the model are fixed.
- No fine tuning.
- Exit of Inflation happens close to electroweak scale.
- It is consistant with Planck data.

• We consider the action of form:

$$\int \sqrt{-g} d^4x \left[\frac{1}{2} f(R,\phi) - \frac{1}{2} g^{ab} \nabla_a \phi \nabla_b \phi - V(\phi) \right],$$

• We are interested in $f(R, \phi)$ of form:

$$f(R,\phi) = h(\phi) \left(R + \alpha R^2\right)$$

• We look for scalar fields that are compatible with standard model, i.e.,

$$V\left(\phi\right) = \Lambda + m^{2}\phi^{2} + \lambda\phi^{4}$$

Background Equations

• For FRW metric, $ds^2 = -dt^2 + a(t)^2(dx^2 + dy^2 + dz^2)$ the field equations are

$$0 = 6\dot{h}H^2 + 72\dot{h}H^4\alpha + 72\dot{h}H^2\alpha\dot{H} + 3\dot{h}\dot{H} + 18\dot{h}\dot{H}^2\alpha - \dot{V} - \omega\,\dot{\phi}\ddot{\phi} - 3\omega H\dot{\phi}^2$$
 equation of motion of scalar
$$0 = -\frac{1}{2}\omega\dot{\phi}^2 + 3hH^2 + 108\alpha hH^2\dot{H} - 18h\dot{H}^2\alpha - V + 3H\dot{h} + 72\dot{h}\alpha H^3 + 36H\dot{h}\alpha\dot{H} + 36Hh\alpha\ddot{H}$$
 0-0 component of MEEs

$$0 = 2h\dot{H} + 108\alpha hH^{2}\dot{H} + 48\dot{h}H^{3}\alpha + 54h\dot{H}^{2}\alpha + 3hH^{2} + \ddot{h} + \frac{1}{2}\omega\dot{\phi}^{2}120H\dot{h}\dot{H}\alpha + \\ 72h\ddot{H}\alpha + 2H\dot{h} - V + 24\alpha H^{2}\ddot{h} + 12\alpha\dot{H}\ddot{h} + 24\alpha\ddot{H}\dot{h} + 12h\alpha\ddot{H} \\ \text{i-i component of MEEs}$$

Exact de-Sitter solution

Main Equation:

$$-2h\dot{H} - 72h\dot{H}^{2}\alpha - \omega\dot{\phi}^{2} - \ddot{h} - 84H\dot{h}\dot{H}\alpha - 36Hh\ddot{H}\alpha + 24\alpha\dot{h}H^{3} + H\dot{h} - 24\ddot{h}H^{2}\alpha - 12\alpha\ddot{h}\dot{H} - 24\alpha\dot{h}\ddot{H} - 12\alpha\dot{h}\ddot{H} = 0$$

• We have an exact solution, de-Sitter: $a=a_0e^{H_Dt}$ with $\phi=\phi_0e^{-pH_Dt}$, for

$$V(\phi) = \lambda_0 + m^2 \phi^2 + \lambda_p \phi^{-p} h(\phi) = \mu_0 + \mu_2 \phi^2 + \mu_p \phi^{-p}$$

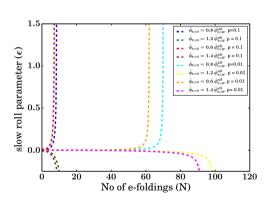
where

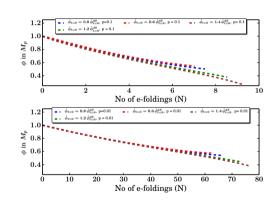
$$\begin{split} \mu_0 &=& \frac{1}{3\,H_D^2}\lambda_0 \\ m^2 &=& \left(3+p(2p-5)(1+24\,\alpha\,H_D^2)\right)\,H_D^2\,\mu_2 \\ \end{split} \qquad \mu_2 = -\frac{\omega\,p}{\left(1+24\,\alpha\,H_D^2\right)\left(2+4\,p\right)} \\ \mu_p = \frac{1}{6\,H_D^2\left(12\,\alpha\,H_D^2+1\right)}\lambda_p\,, \end{split}$$

• λ_0 and λ_p are arbitrary, we use this freedom to set $\lambda_0 = \mu_0 = \lambda_p = \mu_p = 0$.

Natural Exit

The numeric computation shows that the de-Sitter solution obtained is not an attractor.





$$\begin{split} \alpha &= -10^8 M_p^2, \, \alpha_2 = 10^{-4} M_p^{-2} \\ \text{and} \\ m(H_D = 4.17167 \times 10^{-4} M_p, \, p = 0.1) = 5.9437 \times 10^{-5}; \\ m(H_D = 1.4437 \times 10^{-4}, \, p = 0.01) = 3.368 \times 10^{-6} M_p \end{split}$$

Complete analytical solution

- The de-Sitter solution is an unstable equillibrium point.
- We define :

$$\begin{aligned} v &= \begin{pmatrix} H \\ \dot{H} \\ \Delta \end{pmatrix} \quad \text{where} \quad \Delta &= \dot{\phi}/\phi \; ; \quad \text{Also we have} \quad \{v\}_{eq} = \begin{pmatrix} H_D \\ 0 \\ -pH_D \end{pmatrix} \\ \\ \dot{v} &= f(v) = \begin{pmatrix} \dot{H} \\ \ddot{H} \\ \dot{\Delta} \end{pmatrix} = \left\{ \begin{aligned} -4H^2\Delta - 3H\dot{H} - 2\Delta\dot{H} + \frac{1}{72}\frac{\Delta^2}{\alpha\mu_2H} + \frac{1}{2}\frac{\dot{H}^2}{H} + \frac{1}{36}\frac{m^4}{\alpha\mu_2H} - \frac{1}{12}\frac{A}{H} - \frac{1}{6}\frac{\Delta}{\alpha} \\ 144\alpha\mu_2H^4 + 144\alpha\mu_2\dot{H}H^2 + 36\alpha\mu_2\dot{H}^2 - 3H\Delta - \Delta^2 + 12\mu_2H^2 + 6\mu_2\dot{H} - 2m^2 \end{aligned} \right\}$$

• The trajectories with initial conditions close to the equilibrium can be written as $\mathbf{v} = \mathbf{v}_{eq} + \delta \mathbf{v}$ taylor expanding we have $\delta \dot{\mathbf{v}}_i = \{\partial_j f_i\}_{eq} \delta v_j = J_{ij} \delta v_j$.

$$J_{ij} = \begin{bmatrix} 0 & 1 & 0 \\ 1/6 \frac{72 p\alpha H_D^2 + p - 1}{\alpha} & 2 pH_D - 3 H_D & 1/9 \frac{-1 - 24 \alpha H_D^2 + p + 24 p\alpha H_D^2}{\alpha} \\ 3 \frac{(-3 + 2 p)pH_D}{1 + 2 p} & -3 \frac{p}{1 + 2 p} & 2 pH_D - 3 H_D \end{bmatrix}$$

The complete solution is:

$$v_i = \{v_i\}_{eq} + \delta v_i = \{v_i\}_{eq} + \sum_{i=1}^{i=3} c_i u_i e^{(\lambda_i t)}$$

Number of e-foldings

• The approximate expression for the number of e-foldings is:

$$N pprox rac{H_D}{\lambda} ln \left(rac{H_D^2}{\lambda (H_D - H_i)}
ight).$$

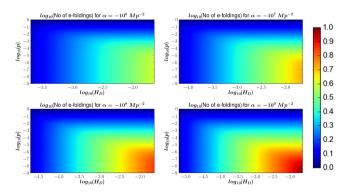


Figure : Contour plot showing the dependence of the number of e-folding on H_D , p and

lpha.

Key features of our model

- The potential is consistent with standard model
- The exact solution is an unstable fixed point solution (saddle point solution).
- Exit depends on the initial conditions
- We have a complete analytical expression for the Inflationary evolution.

Scalar Power Spectrum

• For the metric with most general perturbations:

$$ds^{2} = -(1+2\theta)dt^{2} - a(\beta_{,\alpha} + B_{\alpha})dtdx^{\alpha} + a^{2}[g_{\alpha\beta}^{(3)}(1-2\psi) + 2\gamma_{,\alpha|\beta} + 2C_{\alpha|\beta} + 2C_{\alpha\beta}].$$

• The quantity we need to evaluate inorder to compare with the observations is 3-Curvature perturbation (\mathcal{R}) which is given by:

$$\mathcal{R} = \psi + \frac{H}{\dot{\phi}} \delta \phi$$

- For models where $F=\frac{\partial f(R,\phi)}{\partial R}\equiv F(R,\phi)$, we can't derive the conventional Mukhanov-sasaki equation.
- However, we can derive the following equation using the perturbed field equations using Newtonian gauge, for $\Theta=\theta+\psi$ (Bardeen Potential in Einstein frame):

$$F\ddot{\Theta} + \left(3\dot{F} + HF - -\frac{2F\ddot{\phi}}{\dot{\phi}}\right)\dot{\Theta} + \left(\frac{k^2}{a^2}F - \ddot{F} - \frac{2FH\ddot{\phi}}{\dot{\phi}} + \frac{2\dot{F}\ddot{\phi}}{\dot{\phi}} + H\dot{F} + 4\dot{H}F\right)\Theta = \left(\dot{\phi}^2 + 6F\dot{H} - 3\dot{F}H - 3\ddot{F} + \frac{6\dot{F}\ddot{\phi}}{\dot{\phi}}\right)\theta$$

For the exact analytical solution in the previous section, above equation becomes:

$$\ddot{\Theta} + H_D(1 - 4p)\dot{\Theta} + \frac{k^2}{a^2}\Theta - 4pH_D^2(1 - p)\theta = 0$$

• For $k \gg 1$, we have

$$\ddot{\Theta} + H_D(1 - 4p)\dot{\Theta} + \frac{k^2}{a^2}\Theta \simeq 0$$

Scalar Power Spectrum

• For $p \ll 1$, We can obtain

$$\delta\phi = \frac{\phi_0}{2H_D} e^{-p H_D t} \left(\dot{\Theta} + H_D \Theta \right)$$

We can derive:

$$\psi = \frac{1}{3}\Theta - \frac{2}{3}\frac{1}{\frac{k^2}{a^2}}\ddot{\Theta} - \frac{1}{\frac{k^2}{a^2}}\dot{\Theta}\left(H_D - \frac{1}{12\alpha H_D}\right)$$

$$\theta = \frac{2}{3}\frac{1}{\frac{k^2}{a^2}}\ddot{\Theta} + \frac{1}{\frac{k^2}{a^2}}\dot{\Theta}\left(H_D - \frac{1}{12\alpha H_D}\right) + \frac{2}{3}\Theta$$

$$\delta F = n\phi_0^2 e^{-2pH_Dt}\left(\frac{1}{6}\Theta + \frac{2}{3}\frac{1}{\frac{k^2}{a^2}}\ddot{\Theta} + \frac{1}{\frac{k^2}{a^2}}\dot{\Theta}\left(H_D - \frac{1}{12\alpha H_D}\right)\right)$$

$$\psi = \mathcal{R} - \frac{H}{\dot{\phi}}\delta\phi$$

$$\Theta = e^{(4p-1)H_Dt/2}U_1 \qquad \text{where} \quad U_1 = C_1 H_{\frac{1}{2}-2p}^{(1)} \left(\frac{ke^{-H_Dt}}{a_0H_D}\right) + C_2 H_{\frac{1}{2}-2p}^{(2)} \left(\frac{ke^{-H_Dt}}{a_0H_D}\right)$$

Scalar Power Spectrum

- The perturbed equations can be rewritten in terms of the new variables $\Theta, \ \dot{\Theta}, \ \text{and} \ \mathcal{R}$ or equivalently $U_1, \ \dot{U}_1 \ \text{and} \ \mathcal{R}.$
- Obtain a second order differential eqn for R.

$$\ddot{\mathcal{R}}_{<} + 3H_D \mathcal{R}_{<} + \frac{k^2}{a^2} \mathcal{R}_{<} = 0$$

ullet Solve it and use the Bunch-Davis vacuum solution at early epoch, to get:

$$\mathcal{R}_{<} = \frac{H_D}{2a\sqrt{k}}e^{-ik\eta}$$

• for $\frac{k}{a} \ll 1$ i.e., for large wavelength modes, we have:

$$\mathcal{R}_{>} = C$$
.

• Matching the large wavelength and small wavelength solution at $k\eta=2\pi$, the scalar power spectrum is given by

$$\mathcal{P}_{\mathcal{R}} = H_D^2 \, .$$

Tensor Power Spectrum

• Following [Hwang and Noh, PRD 2000]

$$\ddot{C}^{\alpha}_{\beta} + (3 - 2p) H_D \dot{C}^{\alpha}_{\beta} + \frac{k^2}{a^2} C^{\alpha}_{\beta} = 0.$$

• We can simplify this equation by rewriting $C^{\alpha}_{\beta} = \nu_g/z_g$, where $z_g = ae^{-pH_Dt}$ to get

$$\nu_g^{\prime\prime} + \left(k^2 - \frac{z_g^{\prime\prime}}{z_g}\right)\nu_g = 0.$$

Then solution to the above equation is given by

$$\nu_g = \sqrt{-\eta} \left(C_1 H_{3/2-p}^{(1)}(-k\eta) + C_2 H_{3/2-p}^{(2)}(-k\eta) \right).$$

• At the initial epoch of Inflation, setting the field to be in the Bunch-Davies vacuum, we have

$$\nu_g = \sqrt{\frac{\pi}{4}} \sqrt{-\eta} H_{3/2-p}^{(1)}(-k\eta),$$

Tensor power spectrum is given by

$$\mathcal{P}_g = 8 \left(\frac{k}{k_*}\right)^{2p} \frac{2^{-2p}}{4\pi^2} H_D^2 \left(\frac{\Gamma(3/2 - p)}{\Gamma(3/2)}\right)^2 e^{2pH_D t_*}$$

Conclusion-II

Results

- Inflationary model with $f(R,\phi)$ gravity driven by a massive scalar field is constructed.
- \bullet Calculated the scalar power spectrum for $p\ll 1$ and was able to show that the spectrum is nearly scale invariant.
- Calculated the tensor power spectrum and obtained a blue tilt.
- Exit depends on the initial velocity of the scalar field and initial value of Hubble parameter.

• We consider the action of form:

$$S_J = \int d^4x \sqrt{-g} \left[\frac{1}{2} f(R, \phi) - \frac{\omega}{2} g^{ab} \nabla_a \phi \nabla_b \phi - V(\phi) \right],$$

• We are interested in $f(R, \phi)$ of form:

$$f(R,\phi) = \frac{1}{\kappa} Re^{h(\phi)R} \simeq \frac{1}{\kappa} \left[R + h(\phi)R^2 \right].$$

- The physical motivation for such a scenario comes from the fact that the quantum corrections to the gravity and scalar field can have a scale dependent corrections.
- We look for scalar fields that are compatible with standard model, i.e.,

$$V\left(\phi\right) = \Lambda + m^{2}\phi^{2} + \lambda\phi^{4}$$

Einstein frame calculations

- f(R) gravity is a higher derivative theory, hence field equations are 4th order in Jordan frame.
- However, Physics can be described equivalently in both Jordan frame and in Einstein frame where the field equations are second order, related through a conformal transformation.
- For our model, using the conformal transformation $\tilde{g}^{ab} \to \Omega^2 g^{ab}$, we rewrite the action in the form.

$$S_E = \int \sqrt{-\tilde{g}} dx^4 \left[\frac{1}{2\kappa} \tilde{R} - \frac{\tilde{g}^{ab}}{2e\sqrt{\frac{2\kappa}{3}}\zeta} \partial_a \phi \partial_b \phi - \frac{1}{2} \tilde{g}^{ab} \partial_a \zeta \partial_b \zeta - W \right]$$

where
$$\Omega^2=F=rac{\partial f(R,\phi)}{\partial R}\,,\,\,\zeta=\sqrt{rac{3}{2\kappa}}\ln F\,\,\,$$
 and $W=rac{FR-f}{F^2}+rac{V}{F^2}$

- We verified that the equations in Einstein frame are satisfied by the transformed form of the solution obtained in Jordan frame.
- However, we find it difficult to proceed with our technique in Einstein frame.

Background Equations

• In Jordan frame, for FRW metric, $ds^2=-dt^2+a(t)^2(dx^2+dy^2+dz^2)$, the field equations are

$$0 = \frac{1}{\kappa} 72 H^4 \dot{h} + \frac{1}{\kappa} \dot{H} \dot{h} H^2 + \frac{1}{\kappa} 18 \dot{h} \dot{H}^2 - \dot{V} - \omega \dot{\phi} \ddot{\phi} - 3\omega H \dot{\phi}^2$$
 equation of motion of scalar
$$0 = \frac{1}{\kappa} 108 h \dot{H} H^2 - \frac{1}{\kappa} 18 h \dot{H}^2 + \frac{1}{\kappa} 3 H^2 - V - \frac{1}{2} \omega \dot{\phi}^2 + \frac{1}{\kappa} 72 \dot{h} H^3 + \frac{1}{\kappa} 36 H \dot{h} \dot{H} + \frac{1}{\kappa} 36 H \dot{h} \ddot{H}$$
 0-0 component of MEEs
$$0 = \frac{1}{\kappa} 48 \dot{h} H^3 - V + \frac{1}{\kappa} 72 H \dot{h} \ddot{H} + \frac{1}{\kappa} 120 H \dot{h} \dot{H} + \frac{1}{\kappa} 12 \dot{H} \ddot{h} + \frac{1}{\kappa} 24 \ddot{h} H^2 + \frac{1}{\kappa} 24 \dot{h} \ddot{H} + \frac{1}{\kappa} 12 \dot{h} \ddot{H} + \frac{1}{\kappa} 12 \dot{h} \ddot{H} + \frac{1}{\kappa} 12 \dot{h} \ddot{H}^2 + \frac{1}{\kappa} 54 \dot{h} \dot{H}^2$$
 i-i component of MEEs

Exact de-Sitter solution

Main Equation:

$$0 = -\omega\kappa\dot{\phi}^2 - 72h\dot{H}^2 + 24\dot{h}H^3 - 84H\dot{h}\dot{H} - 36Hh\ddot{H} - 12\dot{H}\ddot{h} - 24\ddot{h}H^2 - 24\dot{h}\ddot{H} - 12h\ddot{H} - 2\dot{H}$$

• We have an exact solution, de-Sitter: $a = a_0 e^{H_D t}$ with $\phi = \phi_0 e^{-nH_D t}$, for

$$h(\phi) = -\lambda \phi^2$$
, $V(\phi) = m^2 \phi^2 + V_0$

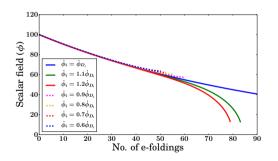
where

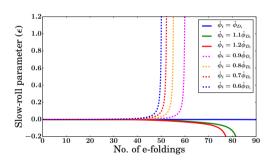
$$\lambda = \frac{1}{48} \frac{\omega n \kappa}{(2n+1)H_D^2}, \qquad m^2 = \frac{\omega n^2 H_D^2}{(2n+1)} \left(\frac{5}{2} - n\right), \quad V_0 = \frac{3H_D^2}{\kappa}.$$

• Here we don't consider the integration constants, which we set to zero.

Natural Exit

- The numeric computation shows that the de-Sitter solution obtained is not an attractor.
- Hence for a wide range of initial conditions there exist an inflationary solution with graceful exit.





$$H_D = 4 \times 10^{-4} M_p$$
, $n = 0.01$, $\phi_0 = 100 M_p$, $m^2 = 3.90588 \times 10^{-11} M_p^2$, $\lambda = 1276.5522$, $V_0 = 4.81 \times 10^{-7} M_p^{-4}$, $\kappa = 1$.

Key features of our model

- The potential is consistent with standard model
- The exact solution is an unstable fixed point solution (saddle point solution).
- Exit depends on the initial conditions

Power spectrum

- We obtained the scalar perturbation following a similar procedure that we used in our earlier work.
- For $n \ll 1$ the scalar power spectrum was obtained to be:

$$\mathcal{P}_{\mathcal{R}} = H_D^2 .$$

- For tensor perturbations, we follow [Hwang and Noh, PRD 2000]
- Here the differential equation is complicated. Hence to simplify we choose the approximation $2h(\phi)R\gg 1$, then the evolution equation is:

$$\ddot{C}^{\alpha}_{\beta} + (3-2n) H_D \dot{C}^{\alpha}_{\beta} + \frac{k^2}{a^2} C^{\alpha}_{\beta} = 0.$$

• The tensor power spectrum is

$$\mathcal{P}_g = 8 \left(\frac{k}{k_*}\right)^{2n} \frac{2^{-2n}}{4\pi^2} H_D^2 \left(\frac{\Gamma(3/2 - n)}{\Gamma(3/2)}\right)^2 e^{2nH_D t}.$$

Conclusion-III

Results

- Inflationary model, within $f(R,\phi)$ gravity with an exponential non-minimal coupling, driven by a massive scalar field is constructed.
- Showed that the exact solution obtained is an unstable solution.
- Showed that exit depends on the initial velocity of the scalar field and initial value of Hubble parameter.
- We showed that the scalar power spectrum obtained is scale invariant for $n \ll 1$.
- We showed that the tensor power spectrum have a blue tilt.

Concluding Remarks

- We were able to show that Higgs scalar can act as the Inflaton when non-minimally coupled with Gauss-Bonnet term leading to exit at electro-weak scale. The tensor to scalar ratio will be lowered by such a coupling. The exit is happening at electro-weak scale also suggests possible implications at LHC.
- We were able to build a successful inflationary model driven by a massive scalar field in $f(R,\phi)$ gravity. We were able to show that the model predicts a blue tilt for tensor power spectrum. We were also able to show that the scalar power spectrum is nearly scale invariant.
- We were able to build an inflationary model in f(R) gravity with an exponential non-minimal coupling with gravity. We were able to show that the model predicts a blue tilt for tensor power spectrum. We were also able to show that the scalar power spectrum is nearly scale invariant.

Future Research

- There are several possibilities for the application of the techniques we have used in our works, also there are scope for detailed analysis of our works and results.
 - I would like to model early universe (focusing on bounce) and late time acceleration in different theories of gravity, using the technique we have used.
 - I would like to see whether the technique we used could be used to obtain the approximate solutions, once we have fixed the model.
 - I would like to see the possibility to obtain the power-spectrum in f(R, ϕ) models of gravity,for slow-roll. Where $F \equiv F(R,\phi)$
 - I am interested in the detailed investigation of Gauss-Bonnet Higgs non-minimal coupling from the particle physics aspect.

THANK YOU!