Automorphisms and Coordinates
 of Polynomial and Free Associative Algebras - 3

Vesselin Drensky
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Sofia, Bulgaria
e-mail: drensky@math.bas.bg
and
Jie-Tai Yu
Department of Mathematics, University of Hong Kong
Hong Kong, China
e-mail: yujt@hku.hk

February 25, 2014

We fix the notation:

All the algebras are over the field \mathbb{C} (although some of the results hold for fields of characteristic 0 and even over an arbitrary field; $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$,
$G\left(X_{n}\right), L\left(X_{n}\right), \mathbb{C}\left\langle X_{n}\right\rangle$ - the free group, the free Lie algebra, and the free associative algebra freely generated by X_{n}.

Abhyankar-Sathaye embedding conjecture

Let A be a commutative ring containing \mathbb{Q} and let $f\left(X_{n}\right) \in A\left[X_{n}\right]$. If the factor algebra $A\left[X_{n}\right] /\left(f\left(X_{n}\right)\right)$ is isomorphic to $A\left[X_{n-1}\right]$, then $f\left(X_{n}\right)$ is a coordinate of $A\left[X_{n}\right]$.
$A=\mathbb{C}, n=2:$
Abhyankar-Moh (1975), also Suzuki(1974):
If $\mathbb{C}[x, y] /(f(x, y)) \cong \mathbb{C}[x]$, then $f(x, y)$ is a coordinate of $\mathbb{C}[x, y]$.

This follows from the famous Abhyankar-Moh theorem: If the polynomials $f(x), g(x) \in \mathbb{C}[x] \backslash \mathbb{C}$ generate the whole algebra $\mathbb{C}[x]$ and $\operatorname{deg}(f)>\operatorname{deg}(g)$, then $\operatorname{deg}(g)$ divides $\operatorname{deg}(f)$. As a consequence one easily obtain a new proof of the Jung-van der Kulk theorem.

Russel and Sathaye (1979):

Let A be a commutative K-algebra such that $A[t] \cong K[x, y, z]$ and let A contains a polynomial of the form

$$
a(x, y, z)=g(x)+z h(x, y, z), \quad h(x, y, z) \in K[x, y, z]
$$

where $f(z) \in K[z]$ is separable. Then $A \cong A[t] /(t) \cong K[u, v]$. In particular, t is a coordinate of $K[x, y, z]$.

Counterexample in positive characteristic
If $\operatorname{char}(K)=p>0$, and

$$
f(x, y)=y^{p^{2}}-x-x^{2 p}
$$

then $K[x, y] /(f(x, y)) \cong K[x]$.

Vénéreau polynomials

Vénéreau (2001), Berson (2004) independently introduced the following polynomials, known today as the Vénéreau polynomials:

$$
b_{m}(x, y, z, u)=y+x^{m}\left(x z+y\left(y u+z^{2}\right)\right) \in \mathbb{C}[x, y, z, u], \quad m \geq 1
$$

These polynomials satisfy the condition

$$
\mathbb{C}[x, y, z, u] /\left(b_{m}(x, y, z, u)\right) \cong \mathbb{C}[x, y, z] .
$$

Vénéreau proved that $b_{m}(x, y, z, u)$ is a coordinate for $m \geq 3$. Drew Lewis (arXiv 2010-2012, Ph. D. Thesis, 2012): $b_{2}(x, y, z, u)$ is also a coordinate.

Counterexample for free associative algebras

Shpilrain and J.-T. Yu (2003):
For any $n \geq 3$, the element

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-\left(x_{1}^{2}+x_{2} x_{3}\right) x_{3} \in K\left\langle X_{n}\right\rangle
$$

is not a coordinate but

$$
K\left\langle X_{n}\right\rangle /\left(f\left(x_{1}, x_{2}, x_{3}\right)\right) \cong K\left\langle X_{n-1}\right\rangle
$$

When K is of characteristic 0 , this gives a counterexample to the problem of G. M. Bergman whether there exists a principal ideal (u) of $K\left\langle X_{n}\right\rangle$ which is not an automorphic image of the ideal generated by x_{1} but $K\left\langle X_{n}\right\rangle /(u) \cong K\left\langle X_{n-1}\right\rangle$.

Drensky and Yu (2003):
Let (f) be the principal ideal of $K\langle x, y\rangle$ generated by $f=f(x, y)$. The factor algebra $K\langle x, y\rangle /(f)$ is isomorphic to the polynomial algebra $K[z]$ if and only if $f(x, y)$ is a coordinate.

Shpilrain and $Y u$ (2002):
If $f(x, y) \in K[x, y] \subset K\left[x, y, z_{3}, \ldots, z_{n}\right]$ is a coordinate in the polynomial algebra $K\left[x, y, z_{3}, \ldots, z_{n}\right]$, then $f(x, y)$ is a coordinate in $K[x, y]$.

Drensky and Yu (2003):
If $f(x, y)$ is a coordinate in the free associative algebra $K\left\langle x, y, z_{3}, \ldots, z_{n}\right\rangle$, then $f(x, y)$ is a coordinate also in $K\langle x, y\rangle$.

Zariski cancellation conjecture

If $\mathbb{C}\left[x_{1}, \ldots, x_{n+m}\right] \cong A\left[y_{1}, \ldots, y_{m}\right]$, is $A \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$?
The conjecture was discussed in details in the talk of Neena Gupta.
Results: The conjecture is true for $n=1$ and $n=2$:
an $n=1$: Abhyankar, Eakin, and Heinzer (1972), Miyanishi (1973).
\& $n=2$: Fujita (1979), Miyanishi and Sugie (1980).
\% Kambiyashi (1980) showed that the proofs can be modified to work for positive characteristic.

Be wary about cancellation!
(Danielewski surfaces, 1989)
$A=\mathbb{C}[x, y, z] /\left(x y-\left(1-z^{2}\right)\right) \cong \mathbb{C}[x, y, z] /\left(x^{2} y-\left(1-z^{2}\right)\right)=B$,
$A[t] \cong B[t]$ but A and B are not isomorphic.

Free associative algebras

Drensky and Yu (2008):
Theorem. Let R be an algebra over an arbitrary field K. If the free product $R * K[z]$ is K-isomorphic to $K\langle x, y\rangle$, then R is K-isomorphic to $K[x]$.

Theorem. (New proof.) Let R be an algebra over a field K of zero characteristic. If $R[z]$ is K-isomorphic to $K[x, y]$, then R is isomorphic to $K[x]$.

Lemma of Bergman, 1969

Let K be an arbitrary field, $f, g \in K\left\langle X_{n}\right\rangle$. Then f and g are algebraically dependent over K if and only if $[f, g]=0$. The centralizer

$$
\mathcal{C}(f)=\left\{g \in K\left\langle X_{n}\right\rangle \mid[f, g]=0\right\}
$$

has the form $\mathcal{C}(f)=K[u]$ for some $u \in K\left\langle X_{n}\right\rangle$.

Proof of the cancelation conjecture for $K\langle x, y\rangle$

Let $R * K[z] \cong K\langle x, y\rangle$. Clearly, $(R * K[z]) /(z) \cong R$. The algebra $R * K[z] \cong K\langle x, y\rangle$ is two-generated and the same holds for its homomorphic image $(R * K[z]) /(z) \cong R$. Let R be generated by $v, w \in R$. Since R is a subalgebra of $R * K[z] \cong K\langle x, y\rangle$, if v and w are algebraically independent over K, then R is isomorphic to the free algebra $K\left\langle t_{1}, t_{2}\right\rangle$. Hence $R * K[z] \cong K\left\langle t_{1}, t_{2}, z\right\rangle$, which is impossible. Hence v and w are algebraically dependent and the same holds for v and any element $f \in R$. By the lemma of Bergman, $R \subset K[u]$ for some $u \in R * K[z]$. Write $u=u_{0}+u_{1}$, where $u_{0} \in R$ and u_{1} contains all monomials of u with z-degree at least 1 . For any $f \in R, f=h(u)=h\left(u_{0}+u_{1}\right), h$ is a polynomial over K in one variable. Substituting $z=0$, we obtain $f=h\left(u_{0}\right)$. Therefore $R \subset K\left[u_{0}\right]$. Now $K\left[u_{0}\right] \subset R \subset K\left[u_{0}\right]$. It forces $R=K\left[u_{0}\right]$. Hence R is K-isomorphic to $K[x]$.

Partial case of Jacobi (1841)

Let $\operatorname{char}(K)=0$. The polynomials $f, g \in K[x, y]$ are algebraically dependent if and only if $f_{x} g_{y}-g_{x} f_{y}=0$ for the Jacobian of f and g.

Partial case of Shestakov and Umirbaev (2004)
Let $f \in K[x, y] \backslash K(\operatorname{char}(K)=0)$. Then

$$
\mathcal{C}(f)=\left\{g \in K[x, y] \mid f_{x} g_{y}-g_{x} f_{y}=0\right\}=K[u]
$$

for some $u \in K[x, y]$.

Proof of the cancelation conjecture for $K[x, y]$

As $R[z] \cong K[x, y]$, the transcendental degree of R over K is equal to 1 . Hence there exists a $g \in R \backslash K$ such that f and g are algebraically dependent over K for all $f \in R$. Therefore $R \subset K[u]$ for some $u \in R[z]$. Write $u=u_{0}+u_{1}$, where $u_{0} \in R$ and u_{1} contains all monomials of u with z-degree at least 1 . The elements $f \in R$ have the form $f=h(u)=h\left(u_{0}+u_{1}\right)$, where h is a polynomial over K in one variable. Substituting $z=0$, we obtain $f=h\left(u_{0}\right)$. Therefore $R \subset K\left[u_{0}\right]$. Now $K\left[u_{0}\right] \subset R \subset K\left[u_{0}\right]$ and $R=K\left[u_{0}\right]$. Hence R is K-isomorphic to $K[x]$.

Jacobian conjecture

Let $\operatorname{char}(K)=0$ and let φ and ψ be endomorphisms of $K\left[X_{n}\right]$ such that $\varphi\left(x_{j}\right)=f_{j}$ and $\psi\left(x_{j}\right)=g_{j}$. Let

$$
J(\varphi)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{1}}{\partial x_{n}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right)
$$

be the Jacobian matrix of φ. Then the chain rule holds:

$$
J(\varphi \psi)=J(\varphi) \varphi(J(\psi))
$$

where $\varphi(J(\psi))$ means that φ acts on the entries of the matrix $J(\psi)$. If φ is an automorphism, then the chain rule for $\varphi \varphi^{-1}=\iota$ gives that $I_{n}=J(\iota)=J(\varphi) \varphi\left(J\left(\varphi^{-1}\right)\right)$ and the matrix $J(\varphi)$ is invertible, i.e., its determinant is a nonzero constant.

Jacobian conjecture

(O. H. Keller, 1939): Let φ be an endomorphism of $K\left[X_{n}\right]$ such that its matrix $J(\varphi)$ is invertible. Is φ an automorphism?

The answer is unknown for all $n \geq 2$. Good references:
\& the seminal paper by Bass, Connell, and Wright (1982);
\& the book by van den Essen;
\& the recent preprint by Belov, Bokut, Rowen, and Yu.

The Jacobian conjecture and some of its equivalent statements were discussed in the lectures of Makar-Limanov and Belov-Kanel.

Freiheitssatz (Theorem for freedom), Magnus, 1930

One of the most important theorems of the combinatorial group theory:
Let $G=\left\langle x_{1}, \ldots, x_{n} \mid r=1\right\rangle$ be a group defined by a single cyclically reduced relator r. If x_{n} appears in r, then the subgroup of G generated by x_{1}, \ldots, x_{n-1} is a free group, freely generated by x_{1}, \ldots, x_{n-1}. Magnus gave several applications. The most important is: The word problem for groups with a single defining relation is algorithmically solvable.

Freiheitssatz - generalizations:

\& free Lie algebras: Shirshov, 1962;
\& free nilpotent and solvable groups: Romanovskij, 1972;
\& free associative algebras ($\operatorname{char}(K)=0)$: Makar-Limanov, 1985 (not known if $\operatorname{char}(K)>0$);
\& free right-symmetric algebras: Kozybaev, Makar-Limanov, Umirbaev, 2008
right-symmetric identity: $(x y) z-x(y z)=(x z) y-x(z y)$;
\& free Novikov algebras $(\operatorname{char}(K)=0)$: Makar-Limanov and Umirbaev, 2011
Novikov algebras: right-symmetric algebras with identity $x(y z)=y(x z)$;

Poisson algebras:

(important application by Shestakov and Umirbaev for the Nagata conjecture)
An algebra P is a Poisson algebra if it is commutative-associative and has a second multiplication (Poisson brackets) which makes it a Lie algebra and both multiplications are related with the Leibniz rule $[x \cdot y, z]=[z, x] \cdot y+x \cdot[y, z]$.
Main example. L is a Lie algebra with basis $\left\{f_{1}, f_{2}, \ldots\right\}$, $P(L)=S(L)$ is the symmetric algebra of L (the polynomial algebra $\left.K\left[f_{1}, f_{2}, \ldots\right]\right)$ with multiplication as in $K\left[f_{1}, f_{2}, \ldots\right]$ and Poisson brackets as in L extended to P by the Leibniz rule.
Free Poisson algebras: Take the free Lie algebra $L=L\left(X_{n}\right)$ and apply the above construction.

Free Poisson algebras:

\& Makar-Limanov, Turusbekova, and Umirbaev, 2009:
If $\operatorname{char}(K)=0$, then in the two-generated free Poisson algebra $P\left(X_{2}\right)$:
All locally nilpotent derivations are triangulizable (analogue of the theorem of Rentschler;
The automorphisms are tame (analogue of the theorem of Jung-van der Kulk).
\& Makar-Limanov and Umirbaev, 2011:
If $\operatorname{char}(K)=0$, then the Freiheitssatz holds for $P\left(X_{n}\right)$
(the Freiheitssatz does not hold for Poisson algebras in positive characteristic);
Corollary. New proof for the tameness of $\operatorname{Aut}\left(P\left(X_{2}\right)\right)$.

Relation with the Jacobian conjecture:

Makar-Limanov and Umirbaev, 2011:
Theorem. The Jacobian conjecture holds for $K\left[X_{2}\right]$ if and only if the commutator test (of Dicks) holds for the free Poisson algebra $P\left(X_{2}\right)$:
The endomorphism φ of $P\left(X_{2}\right)$ is an automorphism if and only if $\left[\varphi\left(x_{1}\right), \varphi\left(x_{2}\right)\right]=\alpha\left[x_{1}, x_{2}\right], \alpha \in K^{*}$.

Generalizations of the Jacobian conjecture:

\& free groups: Joan Birman, 1973;
\& free associative algebras: $(n=2)$ Dicks and Lewin, 1982, (any
n) Yagdzhev, 1980, Schofield, 1985;
\& free Lie algebras: Umirbaev, 1990, Reutenauer, 1992, Shpilrain, 1993;
\& absolutely free algebras, free commutative algebras: Jagdzhev, 2000.

Fox derivatives in $K\left\langle X_{n}\right\rangle$

The elements of $K\left\langle X_{n}\right\rangle$ have the form

$$
f=f\left(X_{n}\right)=\alpha+\sum_{i=1}^{n} x_{i} f_{i}\left(X_{n}\right), \alpha \in K, f_{i} \in K\left\langle X_{n}\right\rangle
$$

The (right) partial Fox derivatives of f are

$$
\frac{\partial f}{\partial x_{i}}=\frac{\partial_{r} f}{\partial_{r} x_{i}}=f_{i}\left(X_{n}\right), \quad i=1, \ldots, n,
$$

The idea comes from the Fox derivatives for free groups as used by Joan Birman in her proof of the Jacobian conjecture for groups.

The Jacobian matrix
If φ is an endomorphism of $K\left\langle X_{n}\right\rangle$, the (right) Jacobian matrix of φ is the $n \times n$ matrix with entries from $K\left\langle X_{n}\right\rangle$

$$
J(\varphi)=J_{r}(\varphi)=\left(\frac{\partial_{r} \varphi\left(x_{j}\right)}{\partial_{r} x_{i}}\right) .
$$

The chain rule
If φ and ψ are endomorphisms of $K\left\langle X_{n}\right\rangle$, then

$$
J_{r}(\varphi \psi)=J_{r}(\varphi) \varphi\left(J_{r}(\psi)\right), J_{l}^{t}(\varphi \psi)=\varphi\left(J_{r}^{t}(\psi)\right) J_{l}^{t}(\varphi),
$$

where ${ }^{t}$ states for the transpose matrix.
If $\varphi \in \operatorname{Aut}\left(K\left\langle X_{n}\right\rangle\right)$, then $J_{r}(\varphi)$ has right inverse in $G L_{n}\left(K\left\langle X_{n}\right\rangle\right)$.

Jacobian conjecture for free Lie algebras
Embedding the free Lie algebra $L\left(X_{n}\right)$ in $K\left\langle X_{n}\right\rangle$, every endomorphism φ of $L\left(X_{n}\right)$ can be extended to an endomorphism of $K\left\langle X_{n}\right\rangle$, and hence we can define its Jacobian matrix.

Reutenauer-Shpilrain-Umirbaev

The endomorphism φ of $L\left(X_{n}\right)$ is an automorphism if and only if its right Jacobian matrix $J_{r}(\varphi)$ is invertible from the right in $G L_{n}\left(K\left\langle X_{n}\right\rangle\right)$.

We shall present the proof of Umirbaev which is really elementary and uses basic facts on Lie algebras only.

Enveloping algebras of Lie algebras

If R is an associative algebra, then $R^{(-)}$is the Lie algebra on the vector space R with multiplication $[u, v]=u v-v u, u, v \in R$. If the Lie algebra L is isomorphic to a subalgebra of $R^{(-)}$, we say that R is an enveloping algebra of L. The associative algebra $U=U(L)$ is the universal enveloping algebra of the Lie algebra L, if L is a subalgebra of $U^{(-)}$and U has the following universal property: For any associative algebra R and any homomorphism of Lie algebras $\varphi: L \longrightarrow R^{(-)}$there exists a unique homomorphism of associative algebras $\psi: U \longrightarrow R$ which extends φ, i.e., ψ is equal to φ on L.

The Poincaré-Birkhoff-Witt (PBW) theorem

Every Lie algebra L possesses a unique (up to an isomorphism) universal enveloping algebra $U(L)$. If L has a basis $\left\{e_{i} \mid i \in I\right\}$, and the set of indices I is ordered, then $U(L)$ has a basis (called the PBW-basis)

$$
e_{i_{1}} \cdots e_{i_{p}}, i_{1} \leq \cdots \leq i_{p}, i_{k} \in I, p=0,1,2, \ldots
$$

The Witt theorem

The Lie subalgebra $L\left(X_{n}\right)$ of $K\left\langle X_{n}\right\rangle^{(-)}$generated by X_{n} is isomorphic to the free Lie algebra with X as a set of free generators; $U\left(L\left(X_{n}\right)\right)=K\left\langle X_{n}\right\rangle$.

Proposition

Let H be a subalgebra of the Lie algebra L, and let H be generated by u_{1}, \ldots, u_{m}. Let the right $U(L)$-module $L U(L)$ be generated by u_{1}, \ldots, u_{m}. Then $H=L$.

Proof

Let $H \neq L$. We fix a basis $\left\{h_{i} \mid i \in I\right\}$ of H and extend it by a set $\left\{g_{j} \mid j \in J\right\} \subset L \backslash H$ to a basis of L, assuming that $h_{i}<g_{j}$. Since the right $U(L)$-module $L U(L)$ is generated by H, if $g \in G \backslash H$ is a basis element of G, then $g=g \cdot 1 \in L U(L)$ and

$$
g=\sum_{k=1}^{m} u_{k} f_{k}, \quad f_{k} \in U(L)
$$

Using the PBW theorem, we express f_{k} as:

$$
f_{k}=\sum_{p, q} \beta_{k p q} h_{p_{1}} \ldots h_{p_{s}} g_{q_{1}} \cdots g_{q_{t}}, \beta_{k p q} \in K
$$

We present g in terms of the PBW-basis of $U(L)$. Since $u_{k}, h_{p_{l}} \in H$, each product $h_{k p}=u_{k} h_{p_{1}} \cdots h_{p_{s}}$ belongs to $U(H)$ and is a linear combination of products of h_{i} 's,

$$
h_{k p}=\sum_{i \in I} \alpha_{i k p} h_{i}
$$

Hence, each summand of g contains some h_{i} :

$$
\begin{gathered}
g=\sum_{k=1}^{m} u_{k} f_{k}=\sum_{k, p, q} \beta_{k p q} u_{k} h_{p_{1}} \ldots h_{p_{s}} g_{q_{1}} \cdots g_{q_{t}} \\
=\sum_{i, k, p, q} \beta_{k p q} \alpha_{i k p} h_{i} g_{q_{1}} \cdots g_{q_{t}}
\end{gathered}
$$

This contradicts with the linear independence of the basis elements of $U(L)$. Hence $H=L$.

Proof of the Jacobian conjecture for free Lie algebras

Let φ be an endomorphism of the free Lie algebra $L\left(X_{n}\right)$ such that the right Jacobian matrix $J(\varphi)=J_{r}(\varphi)$ is invertible over $K\left\langle X_{n}\right\rangle$ and let $J_{r}(\varphi) A=I_{n}$ for some $n \times n$ matrix A with entries from $K\left\langle X_{n}\right\rangle$. Since $f_{j}=\varphi\left(x_{j}\right), j=1, \ldots, n$, are polynomials without constant terms, we obtain that

$$
f_{j}=x_{1} \frac{\partial f_{j}}{\partial x_{1}}+\cdots+x_{m} \frac{\partial f_{j}}{\partial x_{n}}, j=1, \ldots, n,
$$

and, in matrix form,

$$
\left(f_{1}, \ldots, f_{n}\right)=\left(x_{1}, \ldots, x_{n}\right) J(\varphi) .
$$

Since $J_{r}(\varphi) A=I_{n}$, we obtain

$$
\left(f_{1}, \ldots, f_{n}\right) A=\left(x_{1}, \ldots, x_{n}\right) J(\varphi) A=\left(x_{1}, \ldots, x_{n}\right)
$$

Hence x_{1}, \ldots, x_{n} belong to the right ideal generated by f_{1}, \ldots, f_{n} in the universal enveloping algebra $U\left(L\left(X_{)}\right)=K\left\langle X_{n}\right\rangle\right.$. Obviously f_{1}, \ldots, f_{n} belong to the right ideal generated by x_{1}, \ldots, x_{n}, i.e. these two right ideals of $U\left(L\left(X_{n}\right)\right)$ coincide. By the proposition, the Lie subalgebra of $L\left(X_{n}\right)$ generated by f_{1}, \ldots, f_{n} coincides with the whole $L\left(X_{n}\right)$ and the endomorphism φ is an epimorphism. This implies that φ is an automorphism.

Counterexample for associative algebras

(Reutenauer)
Let $\varphi \in \operatorname{End} K\langle x, y\rangle$ be defined by

$$
\varphi(x)=x+y x y, \quad \varphi(y)=y
$$

Then the right and left Jacobian matrices are

$$
J(\varphi)_{r}=\left(\begin{array}{cc}
1 & 0 \\
x y & 1
\end{array}\right), \quad J(\varphi)_{I}=\left(\begin{array}{cc}
1 & 0 \\
y x & 1
\end{array}\right) .
$$

Both matrices are invertible. The commutator test of Dicks gives

$$
[\varphi(x), \varphi(y)]=[y x y, y]=y x y^{2}-y^{2} x y \neq \alpha[x, y], \quad \alpha \in K^{*} .
$$

Hence φ is not an automorphism.

The correct partial derivatives

Let $\mathcal{M}(R)$ be the algebra of multiplications of the algebra R. This is the algebra of linear operators on R generated by the left multiplications $\lambda(r)$ and right multiplications $\rho(r), r \in R$, defined by

$$
\lambda(r): s \rightarrow r s, \quad \rho(r): s \rightarrow s r, \quad s \in R .
$$

For $K\left\langle X_{n}\right\rangle, n>1$,

$$
\mathcal{M}\left(K\left\langle X_{n}\right\rangle\right) \cong K\left\langle X_{n}\right\rangle \otimes_{K} K\left\langle X_{n}\right\rangle^{\mathrm{op}}
$$

where $R^{\circ p}$ is the opposite algebra of R. Here we identify $\lambda(r)$ with $r \otimes 1$ and $\rho(r)$ with $1 \otimes r$.

We define the partial derivatives on the variables of $K\left\langle X_{n}\right\rangle$ by

$$
\partial_{i}\left(x_{j}\right)=\delta_{i j}, \quad i, j=1, \ldots, n
$$

and on the monomials of $K\left\langle X_{n}\right\rangle$ by

$$
\partial_{i}\left(x_{j_{1}} \cdots x_{j_{m}}\right)=\sum_{k=1}^{m} \lambda\left(x_{j_{1}} \cdots x_{j_{k-1}}\right) \mu\left(x_{j_{k+1}} \cdots x_{j_{m}}\right)
$$

Then we construct the Jacobian matrix of the endomorphisms of $K\left\langle X_{n}\right\rangle$ using these partial derivatives.

The Jacobian conjecture for free associative algebras
Dick and Lewin ($n=2$), Schofield (any n):
An endomorphism of $K\left\langle X_{n}\right\rangle, n>1$, is an automorphism if and only if its Jacobian matrix $J(\varphi)$ has right invertible in

$$
G L_{n}\left(\mathcal{M}\left(K\left\langle X_{n}\right\rangle\right)\right) \cong G L_{n}\left(K\left\langle X_{n}\right\rangle \otimes_{K} K\left\langle X_{n}\right\rangle^{\circ p}\right) .
$$

Example of Reutenauer

$\varphi \in \operatorname{End} K\langle x, y\rangle$ is defined by

$$
\varphi(x)=x+y x y, \quad \varphi(y)=y
$$

Then its Jacobian matrix is

$$
J(\varphi)=\left(\begin{array}{cc}
1+\lambda(y) \rho(y) & 0 \\
\rho(x y)+\lambda(y x) & 1
\end{array}\right)=\left(\begin{array}{cc}
1+y \otimes y & 0 \\
1 \otimes(y x)+(y x) \otimes 1 & 1
\end{array}\right)
$$

which is not invertible over $K\left\langle X_{n}\right\rangle \otimes_{K} K\left\langle X_{n}\right\rangle^{\text {op }}$.

