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Introduction

The theory known as pure topological gravity to physicists, and
Gromov–Witten theory of a point to mathematicians, can be characterized
in two different ways:

1 it solves the KdV hierarchy — this is a remarkable integrable system
associated with isospectral deformation of the equation

− d2

dx2
+ u(x),

that is, a sequence of commuting nonlinear flows on the function u;

2 it solves the Virasoro hierarchy, which is a sequence of linear
(second-order) differential equations realizing the Lie algebra of vector
fields on the line.
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In the first lecture, we will discuss the relationship between these two sets
of equations. In the following lecture(s), we will show how to generalize
these ideas to Gromov–Witten theory with target a projective space (or
more generally, certain Fano varieties).
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Deligne-Mumford moduli spaces

For each genus g ≥ 0 and number of marked points n ≥ 0, the moduli
space Mg ,n of n-pointed curves of genus g is a projective variety over C
of dimension 3g − 3 + n.

(It is empty if 2g − 2 + n ≤ 0. More precisely, Mg ,n is a smooth and
proper Deligne–Mumford stack.)

Denote a pointed curve by [C , z1, . . . , zn]. The tangent lines TziC
assemble to form a line bundle Li over Mg ,n, with Chern class

ψi = c1(Li ) ∈ H2(Mg ,n,Q).
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The moduli space Mg ,n has a fundamental cycle

[Mg ,n] ∈ H6g−6+2n(Mg ,n,Q).

Witten’s conjecture concerns the intersection numbers

〈τk1 . . . τkn〉g ,n = [Mg ,n] ∩ ψk1
1 . . . ψkn

n ∈ Q.

For example, if g > 0,

〈τ3g−2〉g ,1 =
1

24gg !

and if k1 + · · ·+ kn = n − 3,

〈τk1 . . . τkn〉0,n =
(n − 3)!

k1! . . . kn!
.
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Witten introduced the sequence of generating functions in an infinite
number of variables

Fg =
∞∑
n=0

1

n!

∑
k1...kn

〈τk1 . . . τkn〉g ,ntk1 . . . tkn .

Let ∂k = ∂/∂tk . Let

F =
∞∑
g=0

~gFg .

Define u = ∂2
0F = t0 + O(t2 + ~).

Denote by Q{u} the ring of differential polynomials

Q[~]{u} = Q[~,u,u′,u(2), . . . ,u(k), . . . ].

We will think of u(k) as the partial derivative ∂k0 u. Note that for the power
series u associated to intersection numbers on Mg ,n, we have

u(k) = δk1 + tk + O(t2 + ~).

Let ∂ be the derivation on Q[~]{u}, defined on the generators by
∂u(k) = u(k+1) and ∂~ = 0.
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The Gelfand–Dikii polynomials
The KdV hierarchy is a series of equations for u. Let D be the third-order
linear differential operator

D = ~
8∂

3 + u∂ + 1
2u′.

The Gelfand–Dikii polynomials are defined by the recursion

DRm =
(
m + 1

2

)
∂Rm+1,

with initial condition R0(u) = 1, and such that of Rk(0) = 0 for k > 0.
For example,

R1 = u,

R2 = ~
12u(2) + 1

2u2,

R3 = ~2

240u(4) + ~
12uu(2) + ~

24

(
u′
)2

+ 1
6u3.

This recursion has a unique solution for each m ≥ 0, though this is not
obvious.
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The KdV conjecture
Recall the generating function for the intersection numbers on the moduli
spaces Mg ,n

u = ∂2
0F =

∞∑
g=0

~g∂2
0Fg .

Witten’s KdV conjecture states that for k ≥ 0,

∂ku = ∂Rk+1(u).

The first of these equations says that

(∂0 − ∂)u = 0,

allowing us to identify the variable x with the formal variable t0. The
second equation says that

∂1u = ~
12u(3) + uu′.

This is the KdV (Korteweg–de Vries) equation, with t0 = x (spatial
variable) and t1 = t (time variable).
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Extend the derivation ∂k to Q[~]{u} by ∂ku(j) = ∂j+1Rk+1(u) and
∂k~ = 0. The Gelfand–Dikii polynomials satisfy integrability conditions

∂jRk+1 = ∂kRj+1,

without which the KdV conjecture would not make sense.

The KdV conjecture was proved in 1992 by Kontsevich. Several other
proofs have been found since then: a particularly beautiful proof is due to
Mirzakhani.
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The KdV conjecture in genus 0

In the theory of integrable systems, setting ~ = 0 is known as the
dispersionless limit. Denote the dispersionless limit of u by u = ∂2

0F0. In
this limit, the Gelfand–Dikii polynomials simplify to

Rk(u) = 1
k!u

k ,

and the KdV conjecture becomes

∂ku = 1
k!u

k∂0u.

Integrating this formula once with respect to t0, it becomes

∂k∂0F0 = 1
k!u

k .
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The string equation

Suppose that 2g − 2 + n > 0, so that Mg ,n is not empty. Knudsen and
Mumford constructed a flat morphism

Mg ,n+1 →Mg ,n

defined on irreducible stable curves by forgetting the last marked point

[C , z1, . . . , zn+1] 7→ [C , z1, . . . , zn].

When C is reducible, forgetting the marked point zn+1 may yield a pointed
curve that is no longer stable. In this case, one stabilizes [C , z1, . . . , zn] by
contracting to a point any rational component which has continuous
automorphisms. There are three cases: a rational component with two
double points, or a rational component with a single double point and
either zero or one marked points.
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Knudsen and Mumford prove that the fibre of the resulting map is
naturally isomorphic to C . By considering this fibration, Witten proved the
string equation: if 2g − 2 + n > 0, then

〈τ0τk1 . . . τkn〉g ,n+1 =
n∑

i=1

〈τk1 . . . τki−1 . . . τkn〉g ,n.

In terms of the generating functions Fg , this is equivalent to the series of
equations

∂0Fg −
∞∑
k=0

tk+1∂kFg =

{
1
2 t

2
0 , g = 0,

0, g > 0.
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Let Z be the formal expression

Z = exp(~−1F ).

This is a generating function for intesection numbers on possibly
disconnected stable pointed curves: if M∗g ,n is the moduli space of
possible disconnected stable curves of Euler characteristic 2− 2g with n
marked points (g may be positive or negative), and

〈τk1 . . . τkn〉
∗
g ,n = [M∗g ,n] ∩ ψk1

1 . . . ψkn
n ∈ Q,

we have

Z =
∞∑

g=−∞
~g−1

∞∑
n=0

1

n!

∑
k1...kn

〈τk1 . . . τkn〉
∗
g ,ntk1 . . . tkn .

The string equation may be written L−1Z = 0, where L−1 is the
differential operator

−∂0 +
∞∑
k=0

tk+1∂k + 1
2~ t

2
0 .
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Applying the differential operator ∂2
0 to the string equation, we obtain the

string equation for u:

∂0u = 1 +
∞∑
k=0

tk+1∂ku.

It is easily seen that the KdV conjecture together with the string equation
uniquely characterize u. Kontsevich proves that a solution exists using
matrix integrals.

Another proof of the existence of a solution was given by Kac and
Schwarz, using the relationship between solutions of the KdV hierarchy
and representation theory of loop groups.
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Let VN be the space of N × N Hermitian matrices, and given a
positive-definite Hermitian matrix Λ, let dµΛ be the probability measure
on VN with density

dµΛ =
1

cΛ
exp
(
−1

2 Tr(ΛM2)
)
.

Kontsevich shows that the matrix integral

ZN(Λ) =

∫
VN

exp
(
i
6 Tr(M3)

)
dµΛ

depends on Λ only through the variables

tk = −(2k − 1)!! Tr
(
Λ−2k−1

)
, k < N/2,

and that
lim

N→∞
ZN(tm) = Z .

Using this representation, he shows that Z satisfies the KdV hierarchy, as
well as the string equation.
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The Virasoro conjecture

Dijkgraaf, Verlinde and Verlinde found an alternative formulation of the
KdV conjecture. Witten used the Knudsen–Mumford fibration
Mg ,n+1 →Mg ,n to prove the dilaton equation: if 2g − 2 + n > 0,

〈τ1τk1 . . . τkn〉g ,n+1 = (2g − 2 + n)〈τk1 . . . τkn〉g ,n.

Multiplying by 3
2 and using the formula for the dimension of Mg ,n, we see

that

3
2〈τ1τk1 . . . τkn〉g ,n+1 =

(
k1 + · · ·+ kn + 1

2n
)
〈τk1 . . . τkn〉g ,n.

We may rewrite this as a differential equation L0Z = 0, where

L0 = −3
2∂1 +

∞∑
k=0

(
k + 1

2

)
tk∂k + 1

16 .

(The constant reflects the intersection number 〈τ1〉1,1 =
∫
M1,1

ψ1 = 1
24 .)

Gromov–Witten Invariants 16 / 19



For n > 0, let Ln be the differential operator

Ln = −Γ(n+ 5
2

)

Γ( 3
2

)
∂n+1 +

∞∑
k=0

Γ(k+n+ 3
2

)

Γ(k+ 1
2

)
tk∂k+n

+
~
2

−1∑
k=−n

(−1)k
Γ(k+n+ 3

2
)

Γ(k+ 1
2

)
∂−k−1∂k+n.

This formula is easier to understand in terms of the free field

φ(z) =
∞∑
k=0

Γ( 1
2 )

Γ(k + 3
2 )
zk+ 1

2 tk − ~
∞∑
k=0

Γ(k + 1
2 )

Γ( 1
2 )

z−k−
1
2∂k − 4

3z
3/2.

For n ≥ −1, we have

[Ln, φ(z)] = −zn+1∂φ(z)

∂z
.

It follows that [Lm, Ln]− (m − n)Lm+n is a constant. This constant is
obviously equal to 0 unless m + n = 0, in which case a more careful
calculation shows that it is zero even in this case (that is, [L1, L−1] = 2L0).
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The Virasoro conjecture states that LnZ = 0 for n ≥ −1. Since the Lie
algebra spanned by the operators {Ln}n≥−1 is generated by L2 and L−1,
and we already know that L−1Z = 0 by the string equation, the Virasoro
conjecture could also be written simply as L2Z = 0. This trick is of no use
in understanding or proving the conjecture, so we will not mention it again.

Like the KdV conjecture, the Virasoro conjecture completely determines
the generating function Z . We may rewrite the Virasoro conjecture in
terms of the functions Fg as follows: for n ≥ 0 and g ≥ 0,

Γ(n+ 5
2

)

Γ( 3
2

)
∂n+1Fg =

∞∑
k=0

Γ(k+n+ 3
2

)

Γ(k+ 1
2

)
tk∂k+nFg

+
1

2

−1∑
k=−n

(−1)k
Γ(k+n+ 3

2
)

Γ(k+ 1
2

)
∂−k−1∂k+nFg−1

+
1

2

g−1∑
h=0

−1∑
k=−n

(−1)k
Γ(k+n+ 3

2
)

Γ(k+ 1
2

)
∂−k−1Fh∂k+nFg−h−1 + δn,0

1
16 .
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Theorem

If Z = exp(~−1F ) satisfies the string equation L−1Z = 0, then the KdV
and Virasoro conjectures for Z are equivalent.

The proof is obtained by combining two lemmas.

Lemma

If L−1f = ∂f = 0, then f is a constant.

Lemma

Let zk = Z−1LkZ . Then if the KdV conjecture holds, we have

D∂zk = ∂2zk+1.
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