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Idea of spectra

In this talk, we’ll introduce the category of spectra and explain its
usefulness from the point of view of algebraic and geometric
topology.

The basic idea is to start with the category of based topological
spaces, and invert the suspension functor (denoted by Σ). Recall
that for a based topological space X ,

ΣX = X ∧ S1 ' X × S1/(X × {1} ∪ ∗ × S1)

Thus we have to formally introduce objects which are “Σ−nX ”
and figure out the correct notion of homotopy classes of maps
once we have introduced these new objects.
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Spanier-Whitehead category

For spaces X and Y , a map in the new category between X and Y
will be :
A map f : ΣnX → ΣnY for some n ≥ 0.

A homotopy between f : ΣnX → ΣnY and g : ΣmX → ΣmY is
homotopy between ΣN−nf and ΣN−mg for some N ≥ n,N ≥ m.

The homotopy classes of maps between X and Y are called stable
homotopy classes, and denoted {X ,Y }.

The Spanier-Whitehead category SW is defined as :
Objects of SW = based topological spaces.
MapSW(X ,Y ) = {X ,Y }.
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Suppose that X ,Y are based spaces. Note that for n ≥ 1, the
homotopy classes of maps [ΣnX ,Y ] ∼= [X ,ΩnY ] has a group
structure.

For n ≥ 2, the group structure is commutative.

Using these we may write

{X ,Y } = lim−→
n

[ΣnX ,ΣnY ]

which is a direct limit of abelian groups (for n ≥ 2).
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Stable homotopy groups

πsk(X ) = {Sk ,X} are called the stable homotopy groups of the
space X .

For X = S0, these are the stable homotopy groups of spheres
denoted by πsk .

Freudenthal suspension theorem : If X is (k − 1)-connected,
Σ : πnX → πn+1ΣX is an isomorphism if n ≤ 2k − 2, and
surjective if n = 2k − 1.

πsk(X ) ∼= π2k+2Σk+2X , πsk
∼= π2k+2S

k+2.

πs0
∼= Z (degree), πs1

∼= π4S
3 ∼= Z/2 (generated by the suspension

of the Hopf map).
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Definition of spectra

The Spanier-Whitehead category does not contain infinite colimits
and limits, which we would like as objects of the category of
spectra (we shall see examples in a bit).

Definition (Adams : Stable homotopy and generalized homology) :
A spectrum X is a sequence of spaces Xn (for n ≥ 0) together with
structure maps σn(X ) : ΣXn → Xn+1.
For a based space X , Σ∞X is the spectrum whose nth-space is
ΣnX and the structure maps are identity. This is called the
suspension spectrum of X , which we often denote simply as X .
For X = S0, this is called the sphere spectrum.

The spectrum Σ−nX is defined as

(Σ−nX )m =

{
∗ if m ≤ n

Σm−nX if m > n.
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Homotopy classes of maps between spectra

A map between spectra X and Y is defined as a sequence of maps
fm from Xm to Ym defined for m ≥ n that commutes with the
structure maps. A homotopy between two such maps is a coherent
homotopy that starts from a sufficiently high level. This defines
{X ,Y } for spectra X and Y .

If the adjoint of the structure maps Yn → ΩYn+1 are homotopy
equivalences, then Y is called an Ω-spectrum. If Y is an
Ω-spectrum, then maps and homotopies into Y are defined at all
levels.

The homotopy groups of spectra are defined as

πkX = {Sk ,X} = lim−→
n

πn+kXn.

This is evidently defined even when k < 0.
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Examples

For an abelian group A, the Eilenberg MacLane spaces K (A, n)
satisfy ΩK (A, n) ' K (A, n− 1). Thus the spectrum HA defined by
HAn = K (A, n) is an Ω-spectrum. This is called the Eilenberg
MacLane spectrum associated to A.

From Bott periodicity theorem, we have

Ω2Z× BU ' Z× BU,

so that
KU2n = Z× BU, KU2n+1 = ΩZ× BU,

defines an Ω-spectrum KU. This is called the complex K -theory
spectrum.

Analogously using the Bott periodicity theorem for orthogonal
groups : Ω8Z× BO ' Z× BO, one obtains an Ω-spectrum KO,
called the real K -theory spectrum.
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Spectra arising from generalized cohomology theories

A generalized cohomology theory is a sequence of contravariant
functors En, n ∈ Z defined on CW complexes which satisfy the
long exact sequence, excision, and wedge axioms. The Brown
Representability Theorem implies that there are spaces En such
that Ẽn(X ) ∼= [X ,En].

The suspension isomorphism implies that En ' ΩEn+1, which
means that the spaces En may be arranged together to form an
Ω-spectrum.

Conversely, a spectrum E induces a cohomology theory by the
assignment Ẽn : X 7→ {ΣnX ,E} for n ∈ Z.
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Thom spectra

For a vector bundle ξ : E → X one may define the Thom space X ξ

by taking the fibrewise one-point compactification and then
quotienting out the infinity section.

The Thom spectrum of a vector bundle ξ is defined as Σ∞X ξ. If ξ
is a virtual bundle and X is a finite CW complex, then ξ ' η − n
where η is a vector bundle, and then the Thom spectrum is '
Σ−nX η.
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Thom spectra II

We note that BO = lim−→BO(n) classifies virtual bundles of
dimension 0.

For a map f : X → BO we define X (n) as the pullback of X over
BO(n), and fn : X (n)→ BO(n) as the associated map. Then fn
defines an n-dimensional vector bundle over X (n), and we define
X f
n = X (n)fn .

One uses the fact that the universal n-plane bundle γn over BO(n)
pulls back under the usual map BO(n− 1)→ BO(n) to the bundle
γn−1 ⊕ ε. This allows us to construct structure maps
ΣX f

n → X f
n+1. Hence we obtain a spectrum X f , which is called the

Thom spectrum associated to the map f .
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Thom spectra and cobordism

The identity map BO → BO induces a spectrum. This spectrum is
denoted by MO.

Theorem (Thom)
πnMO ∼= {closed manifolds of dimension n}/cobordism.

One may define the Thom spectra associated to maps BSO → BO
(denoted MSO), BU → BO (denoted MU), BSU → BO (denoted
MSU) , and so on. All of these carry identifications with certain
cobordism classes as above. For details see Stong : Notes on
Cobordism theory.
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Smash products

The definition of smash products of spectra is quite complicated.
There are two good models that people work with
1) Elmendorf, Kriz, Mandell, May : Rings, modules and algebras in
stable homotopy theory.
2) Hovey, Shipley, Smith : Symmetric spectra.

We recall its salient features. There is a smash product of spectra
which is associative : (X ∧ Y ) ∧ Z ' X ∧ (Y ∧ Z ), and
commutative : X ∧ Y ' Y ∧ X . The smash product with
suspension spectra is equivalent to the space level smash product
with the space itself.

For a space X , πn(E ∧ X ) ∼= Ẽn(X ), the homology groups for the
cohomology theory associated to E .
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Spanier-Whitehead duality

There is a duality functor D defined on the category of spectra
which satisfies

{X ∧ Y ,Z} ∼= {X ,DY ∧ Z}

For finite CW complexes X , D2X ' X . If X ⊂ SN ,
DX ' Σ1−N(SN − X ).

Suppose M is a compact closed manifold and TM is its tangent
bundle. Then,
Theorem (Atiyah duality) DM ' M−TM .
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THANK YOU
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