Operads and Ring structures on spectra

Samik Basu

Indian Association for the Cultivation of Science

December 25, 2017

The strictest notion of a multiplication on a space is a topological monoid, in which the associative condition holds pointwise.

The strictest notion of a multiplication on a space is a topological monoid, in which the associative condition holds pointwise.

An *H*-space *X* has a multiplication $\mu : X \times X \to X$. It is homotopy associative if $\mu \circ (1 \times \mu)$ is homotopic to $\mu \circ (\mu \times 1)$ as maps from X^3 to *X*. The strictest notion of a multiplication on a space is a topological monoid, in which the associative condition holds pointwise.

An *H*-space *X* has a multiplication $\mu : X \times X \to X$. It is homotopy associative if $\mu \circ (1 \times \mu)$ is homotopic to $\mu \circ (\mu \times 1)$ as maps from X^3 to *X*.

If X is a loop space, that is, $X \simeq \Omega Y$ for some space Y, then it is a homotopy associative H-space but also it satisfies certain higher coherence rules for associativity.

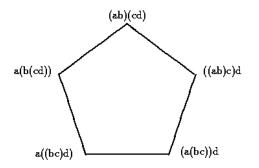
Higher coherence rules for associativity

The 3-fold rule is a homotopy $\mu \circ (1 \times \mu) \simeq \mu \circ (\mu \times 1)$ in $Map(X^3, X)$.

< ∃ →

Higher coherence rules for associativity

The 3-fold rule is a homotopy $\mu \circ (1 \times \mu) \simeq \mu \circ (\mu \times 1)$ in $Map(X^3, X)$.



The 4-fold rule involves extending the diagram above to the interior of the pentagon in the space $Map(X^4, X)$.

Theorem (Stasheff) There are spaces K_n , called associahedra, homeomorphic to \mathcal{D}^{n-2} , such that the *n*-fold rule is equivalent to an extension of a map $\partial K_n \rightarrow Map(X^n, X)$ to all of K_n . If a connected space satisfies all the coherence rules then it is weakly equivalent to ΩY for some space Y.

Theorem (Stasheff) There are spaces K_n , called associahedra, homeomorphic to \mathcal{D}^{n-2} , such that the *n*-fold rule is equivalent to an extension of a map $\partial K_n \rightarrow Map(X^n, X)$ to all of K_n . If a connected space satisfies all the coherence rules then it is weakly equivalent to ΩY for some space Y.

The spaces K_n fit together to form an operad.

Operads

An operad \mathcal{O} is a sequence of Σ_n -spaces $\mathcal{O}(n)$ together with structure maps

$$\mathcal{O}(k) \times \mathcal{O}(n_1) \times \cdots \mathcal{O}(n_k) \rightarrow \mathcal{O}(n_1 + \cdots + n_k)$$

which satisfy certain associativity conditions and equivariance conditions.

An operad \mathcal{O} is a sequence of Σ_n -spaces $\mathcal{O}(n)$ together with structure maps

$$\mathcal{O}(k) \times \mathcal{O}(n_1) \times \cdots \mathcal{O}(n_k) \rightarrow \mathcal{O}(n_1 + \cdots + n_k)$$

which satisfy certain associativity conditions and equivariance conditions.

We denote the structure maps by $\gamma_k(y; x_1, \dots, x_k)$ for $y \in \mathcal{O}(k)$ and $x_i \in \mathcal{O}(n_i)$. An operad \mathcal{O} is a sequence of Σ_n -spaces $\mathcal{O}(n)$ together with structure maps

$$\mathcal{O}(k) \times \mathcal{O}(n_1) \times \cdots \mathcal{O}(n_k) \rightarrow \mathcal{O}(n_1 + \cdots + n_k)$$

which satisfy certain associativity conditions and equivariance conditions.

We denote the structure maps by $\gamma_k(y; x_1, \dots, x_k)$ for $y \in \mathcal{O}(k)$ and $x_i \in \mathcal{O}(n_i)$. The associativity condition may be written as

$$\gamma_{k}(y;\gamma_{s_{1}}(y_{1};x_{1,1},\cdots,x_{m_{1},1}),\cdots,\gamma_{s_{k}}(y_{k};x_{1,k},\cdots,x_{m_{k},k}))$$
$$=\gamma_{\sum s_{i}}(\gamma_{k}(y;y_{1},\cdots,y_{k});x_{1,1},\cdots,x_{m_{k},k}).$$

For a topological space X, $\mathcal{E}_X(n) = Map(X^n, X)$ satisfies the above. For, having maps from X^{n_i} to X gives a map $X^{\sum n_i} \to X^k$ which on composition with a map from X^k to X gives a map $X^{\sum n_i} \to X$.

An operad \mathcal{O} is said to act on a space X if we have a map of operads from $\mathcal{O} \to \mathcal{E}_X$. Equivalently, we must have maps

 $\mathcal{O}(n) \times X^n \to X$

which satisfies certain coherence conditions. In this case X is called an \mathcal{O} -space.

An operad \mathcal{O} is said to act on a space X if we have a map of operads from $\mathcal{O} \to \mathcal{E}_X$. Equivalently, we must have maps

 $\mathcal{O}(n) \times X^n \to X$

which satisfies certain coherence conditions. In this case X is called an \mathcal{O} -space.

Example If $\mathcal{N}(n) = *$ for all *n*, then an \mathcal{N} -space is precisely a commutative topological monoid. This is called the commutative operad.

An operad \mathcal{O} is said to act on a space X if we have a map of operads from $\mathcal{O} \to \mathcal{E}_X$. Equivalently, we must have maps

 $\mathcal{O}(n) \times X^n \to X$

which satisfies certain coherence conditions. In this case X is called an \mathcal{O} -space.

Example If $\mathcal{N}(n) = *$ for all *n*, then an \mathcal{N} -space is precisely a commutative topological monoid. This is called the commutative operad.

Example : If $\mathcal{A}(n) = \Sigma_n$, an \mathcal{A} -space is a topological monoid. This is called the associative operad.

An operad \mathcal{O} is said to act on a space X if we have a map of operads from $\mathcal{O} \to \mathcal{E}_X$. Equivalently, we must have maps

 $\mathcal{O}(n) \times X^n \to X$

which satisfies certain coherence conditions. In this case X is called an \mathcal{O} -space.

Example If $\mathcal{N}(n) = *$ for all *n*, then an \mathcal{N} -space is precisely a commutative topological monoid. This is called the commutative operad.

Example : If $\mathcal{A}(n) = \Sigma_n$, an \mathcal{A} -space is a topological monoid. This is called the associative operad.

Operads acting on objects may be defined in any symmetric monoidal category. In this talk we restrict ourselves to topological spaces.

Define $C_n(k)$ as the space of k *n*-cubes linearly and parallelly embedded in a fixed *n*-cube I^n . By composing embedding of *n*-cubes this has the structure of an operad.

Define $C_n(k)$ as the space of k *n*-cubes linearly and parallelly embedded in a fixed *n*-cube I^n . By composing embedding of *n*-cubes this has the structure of an operad.

An operad is called an E_{∞} -operad if the n^{th} -space is a free Σ_n -space which is contractible. An example of an E_{∞} -operad is $C_{\infty}(k) = \varinjlim C_n(k)$.

Define $C_n(k)$ as the space of k *n*-cubes linearly and parallelly embedded in a fixed *n*-cube I^n . By composing embedding of *n*-cubes this has the structure of an operad.

An operad is called an E_{∞} -operad if the n^{th} -space is a free Σ_n -space which is contractible. An example of an E_{∞} -operad is $C_{\infty}(k) = \varinjlim C_n(k)$.

An operad whose n^{th} -space is Σ_n -equivariantly homotopic to Σ_n is called an A_∞ -operad. An example of an A_∞ -operad is C_1 .

The space $\Omega^n Y \simeq Map_*(S^n, Y)$ is a \mathcal{C}_n -space. Given k based maps f_1, \dots, f_k from S^n to Y and an element (c_1, \dots, c_k) of $\mathcal{C}_n(k)$, we obtain a based map f from S^n to Y so that f maps c_i using the map f_i and sends the rest to the basepoint. The space $\Omega^n Y \simeq Map_*(S^n, Y)$ is a \mathcal{C}_n -space. Given k based maps f_1, \dots, f_k from S^n to Y and an element (c_1, \dots, c_k) of $\mathcal{C}_n(k)$, we obtain a based map f from S^n to Y so that f maps c_i using the map f_i and sends the rest to the basepoint.

Theorem (May) If X is a connected C_n -space, then $X \simeq \Omega^n Y$ for some space Y.

The space $\Omega^n Y \simeq Map_*(S^n, Y)$ is a \mathcal{C}_n -space. Given k based maps f_1, \dots, f_k from S^n to Y and an element (c_1, \dots, c_k) of $\mathcal{C}_n(k)$, we obtain a based map f from S^n to Y so that f maps c_i using the map f_i and sends the rest to the basepoint.

Theorem (May) If X is a connected C_n -space, then $X \simeq \Omega^n Y$ for some space Y.

For $n = \infty$, we have that X is an infinite loop space. That is, for each n there is a space Y_n such that $X \simeq \Omega^n Y$.

For an abelian group A, the Eilenberg MacLane spaces K(A, n) satisfy $\Omega K(A, n) \simeq K(A, n-1)$. So each K(A, n) is an infinite loop space. In fact, the spaces in an Ω -spectrum are all infinite loop spaces.

For an abelian group A, the Eilenberg MacLane spaces K(A, n) satisfy $\Omega K(A, n) \simeq K(A, n-1)$. So each K(A, n) is an infinite loop space. In fact, the spaces in an Ω -spectrum are all infinite loop spaces.

The suspension spectrum functor Σ^{∞} from spaces to spectra has a right adjoint Ω^{∞} . For a spectrum X, $\Omega^{\infty}X \simeq \varinjlim \Omega^n X_n$. This is an infinite loop space.

For an abelian group A, the Eilenberg MacLane spaces K(A, n) satisfy $\Omega K(A, n) \simeq K(A, n-1)$. So each K(A, n) is an infinite loop space. In fact, the spaces in an Ω -spectrum are all infinite loop spaces.

The suspension spectrum functor Σ^{∞} from spaces to spectra has a right adjoint Ω^{∞} . For a spectrum X, $\Omega^{\infty}X \simeq \varinjlim \Omega^n X_n$. This is an infinite loop space.

A spectrum X is said to be connective if it has homotopy groups in only non-negative dimensions. The functors Σ^{∞} and Ω^{∞} induce an equivalence between connective spectra and (grouplike) E_{∞} -spaces.

Ring spectra

The definition of ring spectra was classically a difficult problem. Much of this is due to the fact that the definition of an associative and commutative smash product of spectra is complicated. Intuitively, a ring spectrum R should be equipped with maps

$$\mu_{n,m}: R_m \wedge R_n \to R_{m+n}$$

which commutes with appropriate structure maps and satisfies an appropriate associativity condition. R is said to be commutative if in addition it satisfies a commutativity condition.

Ring spectra

The definition of ring spectra was classically a difficult problem. Much of this is due to the fact that the definition of an associative and commutative smash product of spectra is complicated. Intuitively, a ring spectrum R should be equipped with maps

$$\mu_{n,m}: R_m \wedge R_n \to R_{m+n}$$

which commutes with appropriate structure maps and satisfies an appropriate associativity condition. R is said to be commutative if in addition it satisfies a commutativity condition.

Suppose \mathcal{O} is an operad. An \mathcal{O} -ring spectrum R is one which is equipped with maps

$$\mathcal{O}(k)_+ \wedge R_{n_1} \wedge \cdots \wedge R_{n_k} \to R_{n_1 + \cdots + n_k}$$

with appropriate coherence conditions.

For an A_{∞} -operad A, an A-ring spectrum is called an A_{∞} -ring spectrum.

< ∃ →

For an E_{∞} -operad \mathcal{E} , an \mathcal{E} -ring spectrum is called an E_{∞} -ring spectrum.

For an E_{∞} -operad \mathcal{E} , an \mathcal{E} -ring spectrum is called an E_{∞} -ring spectrum.

In general, it is difficult to construct such ring structures on a given spectrum. Generally the following are known to be E_{∞} -ring spectra

For an E_{∞} -operad \mathcal{E} , an \mathcal{E} -ring spectrum is called an E_{∞} -ring spectrum.

In general, it is difficult to construct such ring structures on a given spectrum. Generally the following are known to be E_{∞} -ring spectra 1. Suspension spectra of E_{∞} -spaces.

For an E_{∞} -operad \mathcal{E} , an \mathcal{E} -ring spectrum is called an E_{∞} -ring spectrum.

In general, it is difficult to construct such ring structures on a given spectrum. Generally the following are known to be E_{∞} -ring spectra 1. Suspension spectra of E_{∞} -spaces.

2. Thom spectra of infinite loop maps. Examples : MO, MU, etc.

For an E_{∞} -operad \mathcal{E} , an \mathcal{E} -ring spectrum is called an E_{∞} -ring spectrum.

In general, it is difficult to construct such ring structures on a given spectrum. Generally the following are known to be E_{∞} -ring spectra 1. Suspension spectra of E_{∞} -spaces.

- 2. Thom spectra of infinite loop maps. Examples : MO, MU, etc.
- 3. Spectra arising from bipermutative categories. Examples : *KO*, *KU*, algebraic *K*-theory spectrum of a commutative ring.

Let \mathcal{O} be an operad which has an operad map to \mathcal{E} . Then, BO also carries an action of the operad \mathcal{O} .

Let \mathcal{O} be an operad which has an operad map to \mathcal{E} . Then, BO also carries an action of the operad \mathcal{O} .

Theorem (Lewis, May, Steinberger) Suppose $f : X \to BO$ is a map of \mathcal{O} -spaces. Then, the Thom spectrum X^f is an \mathcal{O} -ring spectrum.

Let \mathcal{O} be an operad which has an operad map to \mathcal{E} . Then, BO also carries an action of the operad \mathcal{O} .

Theorem (Lewis, May, Steinberger) Suppose $f : X \to BO$ is a map of \mathcal{O} -spaces. Then, the Thom spectrum X^f is an \mathcal{O} -ring spectrum.

The maps $BU \rightarrow BO$, $BSO \rightarrow BO$, etc are all infinite loop maps. Hence, they may be refined as maps of \mathcal{E} -spaces. One deduces as a consequence that the cobordism spectra such as MO, MU, MSO are all E_{∞} -ring spectra.

THANK YOU

Samik Basu Operads and Ring structures on spectra

æ

< ∃ >

Image: A = A