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Multiplicative structures on spaces

The strictest notion of a multiplication on a space is a topological
monoid, in which the associative condition holds pointwise.

An H-space X has a multiplication µ : X × X → X . It is
homotopy associative if µ ◦ (1× µ) is homotopic to µ ◦ (µ× 1) as
maps from X 3 to X .

If X is a loop space, that is, X ' ΩY for some space Y , then it is
a homotopy associative H-space but also it satisfies certain higher
coherence rules for associativity.
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Higher coherence rules for associativity

The 3-fold rule is a homotopy µ ◦ (1× µ) ' µ ◦ (µ× 1) in
Map(X 3,X ).

The 4-fold rule involves extending the diagram above to the
interior of the pentagon in the space Map(X 4,X ).
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Theorem (Stasheff) There are spaces Kn, called associahedra,
homeomorphic to Dn−2, such that the n-fold rule is equivalent to
an extension of a map ∂Kn → Map(X n,X ) to all of Kn. If a
connected space satisfies all the coherence rules then it is weakly
equivalent to ΩY for some space Y .

The spaces Kn fit together to form an operad.
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Operads

An operad O is a sequence of Σn-spaces O(n) together with
structure maps

O(k)×O(n1)× · · ·O(nk)→ O(n1 + · · ·+ nk)

which satisfy certain associativity conditions and equivariance
conditions.

We denote the structure maps by γk(y ; x1, · · · , xk) for y ∈ O(k)
and xi ∈ O(ni ). The associativity condition may be written as

γk(y ; γs1(y1; x1,1, · · · , xm1,1), · · · , γsk (yk ; x1,k , · · · , xmk ,k))

= γ∑ si (γk(y ; y1, · · · , yk); x1,1, · · · , xmk ,k).
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Example

For a topological space X , EX (n) = Map(X n,X ) satisfies the
above. For, having maps from X ni to X gives a map X

∑
ni → X k

which on composition with a map from X k to X gives a map
X

∑
ni → X .
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Action of operads

An operad O is said to act on a space X if we have a map of
operads from O → EX . Equivalently, we must have maps

O(n)× X n → X

which satisfies certain coherence conditions. In this case X is
called an O-space.

Example If N (n) = ∗ for all n, then an N -space is precisely a
commutative topological monoid. This is called the commutative
operad.

Example : If A(n) = Σn, an A-space is a topological monoid.
This is called the associative operad.

Operads acting on objects may be defined in any symmetric
monoidal category. In this talk we restrict ourselves to topological
spaces.
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Little n-cubes operad

Define Cn(k) as the space of k n-cubes linearly and parallelly
embedded in a fixed n-cube I n. By composing embedding of
n-cubes this has the structure of an operad.

An operad is called an E∞-operad if the nth-space is a free
Σn-space which is contractible. An example of an E∞-operad is
C∞(k) = lim−→Cn(k).

An operad whose nth-space is Σn-equivariantly homotopic to Σn is
called an A∞-operad. An example of an A∞-operad is C1.

Samik Basu Operads and Ring structures on spectra



Little n-cubes operad

Define Cn(k) as the space of k n-cubes linearly and parallelly
embedded in a fixed n-cube I n. By composing embedding of
n-cubes this has the structure of an operad.

An operad is called an E∞-operad if the nth-space is a free
Σn-space which is contractible. An example of an E∞-operad is
C∞(k) = lim−→Cn(k).

An operad whose nth-space is Σn-equivariantly homotopic to Σn is
called an A∞-operad. An example of an A∞-operad is C1.

Samik Basu Operads and Ring structures on spectra



Little n-cubes operad

Define Cn(k) as the space of k n-cubes linearly and parallelly
embedded in a fixed n-cube I n. By composing embedding of
n-cubes this has the structure of an operad.

An operad is called an E∞-operad if the nth-space is a free
Σn-space which is contractible. An example of an E∞-operad is
C∞(k) = lim−→Cn(k).

An operad whose nth-space is Σn-equivariantly homotopic to Σn is
called an A∞-operad. An example of an A∞-operad is C1.

Samik Basu Operads and Ring structures on spectra



Recognition principle

The space ΩnY ' Map∗(S
n,Y ) is a Cn-space. Given k based

maps f1, · · · , fk from Sn to Y and an element (c1, · · · , ck) of
Cn(k), we obtain a based map f from Sn to Y so that f maps ci
using the map fi and sends the rest to the basepoint.

Theorem (May) If X is a connected Cn-space, then X ' ΩnY for
some space Y .

For n =∞, we have that X is an infinite loop space. That is, for
each n there is a space Yn such that X ' ΩnY .
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Infinite loop spaces

For an abelian group A, the Eilenberg MacLane spaces K (A, n)
satisfy ΩK (A, n) ' K (A, n − 1). So each K (A, n) is an infinite
loop space. In fact, the spaces in an Ω-spectrum are all infinite
loop spaces.

The suspension spectrum functor Σ∞ from spaces to spectra has a
right adjoint Ω∞. For a spectrum X , Ω∞X ' lim−→ΩnXn. This is an
infinite loop space.

A spectrum X is said to be connective if it has homotopy groups in
only non-negative dimensions. The functors Σ∞ and Ω∞ induce an
equivalence between connective spectra and (grouplike) E∞-spaces.
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Ring spectra

The definition of ring spectra was classically a difficult problem.
Much of this is due to the fact that the definition of an associative
and commutative smash product of spectra is complicated.
Intuitively, a ring spectrum R should be equipped with maps

µn,m : Rm ∧ Rn → Rm+n

which commutes with appropriate structure maps and satisfies an
appropriate associativity condition. R is said to be commutative if
in addition it satisfies a commutativity condition.

Suppose O is an operad. An O-ring spectrum R is one which is
equipped with maps

O(k)+ ∧ Rn1 ∧ · · · ∧ Rnk → Rn1+···+nk

with appropriate coherence conditions.
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A∞ and E∞-ring spectra

For an A∞-operad A, an A-ring spectrum is called an A∞-ring
spectrum.

For an E∞-operad E , an E-ring spectrum is called an E∞-ring
spectrum.

In general, it is difficult to construct such ring structures on a given
spectrum. Generally the following are known to be E∞-ring spectra
1. Suspension spectra of E∞-spaces.
2. Thom spectra of infinite loop maps. Examples : MO, MU, etc.
3. Spectra arising from bipermutative categories. Examples : KO,
KU, algebraic K -theory spectrum of a commutative ring.
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Ring structures on Thom spectra

The space BO is an infinite loop space, and hence an E∞-space.
Fix an E∞-operad E which acts on BO.

Let O be an operad which has an operad map to E . Then, BO
also carries an action of the operad O.

Theorem (Lewis, May, Steinberger) Suppose f : X → BO is a map
of O-spaces. Then, the Thom spectrum X f is an O-ring spectrum.

The maps BU → BO, BSO → BO , etc are all infinite loop maps.
Hence, they may be refined as maps of E-spaces. One deduces as a
consequence that the cobordism spectra such as MO, MU, MSO
are all E∞-ring spectra.
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THANK YOU
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