Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relat

Stochastic Quantisation and AdS/CFT

Dileep Jatkar¹

¹Harish-Chandra Research Institute, Allahabad

Work done with Jae-Hyuk Oh, arXiv:1209.2242

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example 0000000	Conclusion

Outline

Introduction

- Motivation
- Summary of Results
- Parameter Provide A Construction Provide A
- 3 Stochastic Quantisation
 - Basics
 - The Fokker-Planck Action
- 4 Relation between SQ and HWRG

5 Example

Massless Scalar Field in AdS₂

Conclusion

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example 0000000	Conclusion
Motivation					
Motivat	tion				

Recent progress in holographic Wilsonian renormalisation group (HWRG) has emphasised two aspects:

- Flow equations have Hamilton-Jacobi form,
- Complete description of HWRG flow necessarily requires multi-trace operators.Heemskerk-Polchinski, Nickel-Son, Faulkner-Liu-Rangamani

Stochastic Quantisation

- There has been a proposal of describing AdS/CFT in terms of Stochastic Quantisation (SQ) of a theory in one lower dimension. Akhmedov, Mansi-Mauri-Petkou
- It involves Hamilton-Jacobi set up with Fokker-Planck Hamiltonian.

Motivat	ion Contd				
Motivation					
Introduction 0000	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example 0000000	Conclusion

Questions

- Is it possible to relate SQ to HWRG in AdS/CFT correspondence?
- What is the relation between Fokker-Planck Hamiltonian and the HWRG Hamiltonian?
- What is the relation between the stochastic time and the radial direction in AdS?
- Is it possible to accommodate multi-trace operators in the SQ formulation?
- If yes, is it consistent with the SQ-HWRG dictionary?

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example 0000000	Conclusion
Summary of F	Results				

Relating SQ to HWRG

The Proposal

- (The stochastic time) t = r (the radial coordinate in AdS)
- (Classical action in SQ) S_c ≡ 2Γ(φ) (Classical effective action in AdS/CFT) Mansi-Mauri-Petkou
- (The Fokker-Planck Hamiltonian) $\mathcal{H}_{FP}(t) = \mathcal{H}_{RG}(r)$ (HWRG Hamiltonian in AdS/CFT).

Check

- We check our proposal by studying two examples, massless scalar field theory in AdS₂ and U(1) gauge theory on AdS₄.
- In both cases, description of double trace operator deformation agrees between SQ and HWRG.

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example	Conclusion
0000					

Summary of Results

Relating SQ to HWRG Contd...

Relation

The boundary action S_B in AdS/CFT is given by

$$S_{B} = \int_{t_{0}}^{t} d\tilde{t} \int d^{d}x \ \mathcal{L}_{FP}(\phi(\tilde{t}, x)), \qquad (1$$

 \mathcal{L}_{FP} is the Fokker-Planck Lagrangian density

The Langevin dynamics gives the relation between stochastic 2-point correlation functions and the double trace coupling in AdS/CFT

$$<\phi_q(t)\phi_{q'}(t)>_H^{-1}=<\phi_q(t)\phi_{q'}(t)>_S^{-1}-\frac{1}{2}\frac{\delta^2 S_c}{\delta\phi_q(t)\delta\phi_{q'}(t)},$$
 (2)

Lightning Review

Consider a bulk action in the Euclidean AdS_{d+1}

$$S = \int_{r>\epsilon} dr d^d x \sqrt{g} \mathcal{L}(\phi, \partial \phi) + S_B[\phi, \epsilon], \qquad (3)$$

S_B is the boundary effective action and ε is radial cutoff.
The AdS metric is

$$ds^{2} = \frac{dr^{2} + \sum_{i=1}^{d} dx_{i} dx_{i}}{r^{2}}.$$
 (4)

Canonical momentum is defined with boundary condition

$$\Pi_{\phi} = \sqrt{g} \frac{\partial \mathcal{L}}{\partial (\partial_r \phi)} = \frac{\delta S_B}{\delta \phi(x)}.$$
(5)

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example	Conclusion

Lightning Review

Cutoff independence of the action implies

$$\partial_{\epsilon} S_{B} = -\int_{r=\epsilon} d^{d}x \left(\frac{\delta S_{B}}{\delta \phi} \partial_{r} \phi - \mathcal{L}(\phi, \partial \phi) \right)$$
$$= \int_{r=\epsilon} d^{d}x \mathcal{H}_{RG}(\frac{\delta S_{B}}{\delta \phi}, \phi), \tag{6}$$

second equality follows from the Legendre transform.

• With a wavefunctional $\psi_H = \exp(-S_B)$, we can write

$$\partial_{\epsilon}\psi_{H} = -\int_{r=\epsilon} d^{d}x \ \mathcal{H}_{RG}(-\frac{\delta}{\delta\phi},\phi)\psi_{H},$$
 (7)

where we have assumed $\left(\frac{\delta S_B}{\delta \phi}\right)^2 >> \frac{\delta^2 S_B}{\delta \phi^2}$.

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example Conclusion
Basics				
Basics				

- Stochastic quantisation is a Hamiltonian description of Euclidean field theory evolving along fictitious stochastic time t. Damgaard-Huffel, Dijkgraaf-Orlando-Reffert
- The probability distribution P(φ, t) describes evolution of the system and reduces to Boltzmann measure at late time.
- N-point correlator is given by

$$<\phi(x_1)...\phi(x_N)>=\int D\phi \ P(\phi,t) \ \phi(x_1)...\phi(x_N).$$
 (8)

Introduction	Holographic Wilsonian RG	Stochastic Quantisation ○●○○	Relation between SQ and HWRG	Example 0000000	Conclusion
Basics					
Basics					

The Langevin equation $P(\phi, t) \text{ is determined using Langevin equation}$ $\frac{\partial \phi(x, t)}{\partial t} = -\frac{1}{2} \frac{\delta S_c}{\delta \phi(x, t)} + \eta(x, t), \quad (9)$ where $\eta(t)$ is Gaussian white noise, with property $< \eta_{i,q}(t) > = 0$

$$<\eta_{i,q}(t)\eta_{j,q'}(t')> = \delta_{ij}\delta^d(q-q')\delta(t-t'), \qquad (10)$$

with Gaussian weight

$$Z = \int D\eta(x,t) \exp(-\frac{1}{2} \int d^d x dt \ \eta^2(x,t)). \tag{11}$$

0000 00 00 000000	Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example	Conclusion
			0000			

The Fokker-Planck Action

Langevin to Fokker-Planck

• The Fokker-Planck description is obtained by eliminating $\eta(x, t)$ in

$$Z = \int D\eta(x,t) \exp(-\frac{1}{2} \int d^d x dt \ \eta^2(x,t)), \qquad (12)$$

using the Langevin equation.

This gives

$$P(\phi, t) = \exp\left[-\frac{S_c(\phi(t))}{2} - \int_{t_0}^t d\tilde{t} \int d^d x \mathcal{L}_{FP}(\phi(\tilde{t}, x))\right], \quad (13)$$

where the Fokker-Planck Lagrangian density is

$$\mathcal{L}_{FP} = \frac{1}{2} \left(\frac{\partial \phi(x)}{\partial t} \right)^2 + \frac{1}{8} \left(\frac{\delta S_c}{\delta \phi(x)} \right)^2 - \frac{1}{4} \frac{\delta^2 S_c}{\delta \phi^2(x)}.$$
 (14)

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example	Conclusion
		000			

The Fokker-Planck Action

Probability distribution

 Equation satisfied by P(φ, t) can be put in a suggestive form by defining

$$\psi_{\mathcal{S}}(\phi, t) \equiv \mathcal{P}(\phi, t) \exp(\frac{S_c}{2}),$$
 (15)

and then equation for $P(\phi,t)$ becomes the Schrödinger type equation for $\psi_{\mathcal{S}}(\phi,t)$

$$\partial_t \psi_{\mathcal{S}}(\phi, t) = -\int d^d x \, \mathcal{H}_{FP}(\frac{\delta}{\delta \phi}, \phi) \, \psi_{\mathcal{S}}(\phi, t),$$
 (16)

where,

$$\mathcal{H}_{FP} = -\frac{1}{2} \frac{\delta^2}{\delta \phi^2(x)} + \frac{1}{8} \left(\frac{\delta S_c}{\delta \phi(x)} \right)^2 - \frac{1}{4} \frac{\delta^2 S_c}{\delta \phi^2(x)}, \qquad (17)$$

where \mathcal{H}_{FP} is the Fokker-Planck Hamiltonian.

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG

The Dictionary

SQ \Leftrightarrow HWRG

• We can now state the relation between SQ and HWRG.

1
$$t = r$$

2 $\mathcal{H}_{FP}(t) = \mathcal{H}_{RG}(r)$
3 $\psi_{S}(\phi, t) \equiv P(\phi, t) \exp(\frac{S_{c}}{2}) = \psi_{H}(\phi, t) \equiv \exp(\frac{-S_{B}}{2})$

Implied relation

The second equality also implies a relation between the classical action S_c in SQ and the effective action Γ in AdS/CFT, namely

$$S_c = 2 \Gamma$$
 (18)

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between

The Dictionary

2-point functions in SQ

Langevin dynamics gives

$$<\phi_{q_1}(t_1)\phi_{q_2}(t_2)>_{S}=\int D\phi e^{-S_P(t)}\phi_{q_1}(t_1)\phi_{q_2}(t_2),$$
 (19)

- $P(\phi, t) \equiv \exp(-S_P(t)) = \exp(-\frac{1}{2}\int \mathcal{K}_q(t)\phi_q(t)\phi_{-q}(t)d^dq)$ Latter expression is true only for a free theory.
- In a free theory

$$<\phi_{q_1}(t_1)\phi_{q_2}(t_2)>_{S}=rac{1}{\mathcal{K}_q(t)}\delta^d(q_1+q_2).$$
 (20)

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example

The Dictionary

2-point functions in AdS/CFT

• According to relation **3**, $S_B = S_P - \frac{S_c}{2}$ and

$$\langle \phi_q(r)\phi_{q'}(r) \rangle_H^{-1} = rac{\delta^2 S_B}{\delta\phi_q(r)\delta\phi_{q'}(r)}.$$
 (21)

We thus have a relation

$$<\phi_{q_1}(t)\phi_{q_2}(t)>_{H}^{-1}=<\phi_{q_1}(t)\phi_{q_2}(t)>_{S}^{-1}-\frac{1}{2}\frac{\delta^2 S_c}{\delta\phi_q(t)\delta\phi_{-q}(t)}.$$
(22)

Scalar field action

Action for massless scalar field in Euclidean AdS₂

$$S_{bulk} = rac{1}{2} \int dr d au \sqrt{g} g^{\mu
u} \partial_{\mu} \phi \partial_{
u} \phi,$$
 (23)

where
$$(g_{\tau\tau}, g_{rr}) = (r^{-2}, r^{-2}).$$

Notice,

The action is invariant under Weyl rescaling of metric,

- 2 AdS space is conformally flat.
- Therefore scalar field action can also be written as

$$S_{bulk} = \frac{1}{2} \int_{\mathbb{R}^2_+} dr d\tau \partial_\mu \phi \partial_\mu \phi.$$
 (24)

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example Conclusion
Massless Sca	alar Field in AdS ₂			
AdS/C	FT			

Double trace terms

- $-\frac{d^2}{4} \le m^2 \le -\frac{d^2}{4} + 1$ implies massless scalar field admits alternate quantisation in AdS₂.
- Assume the form of S_B

$$S_{B} = \Lambda(\epsilon) + \int \frac{d\omega}{2\pi} \sqrt{\gamma(\epsilon)} \mathcal{J}(\epsilon, \omega) \phi_{-\omega} - \frac{1}{2} \int \frac{d\omega}{2\pi} \sqrt{\gamma(\epsilon)} \mathcal{F}(\epsilon, \omega) \phi_{\omega} \phi_{-\omega}, \quad (25)$$

where $\Lambda(\epsilon)$, $\mathcal{J}(\epsilon, \omega)$ and $\mathcal{F}(\epsilon, \omega)$ are unknown functions of radial cut-off ϵ .

• $\mathcal{F}(\epsilon, \omega)$ is the double trace coupling.

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example Conclusion	
				000000	

Massless Scalar Field in AdS₂

HWRG

• Holographic Hamilton-Jacobi equation is, Faulkner et al.

$$\partial_{\epsilon} S_{B} = -\frac{1}{2} \int_{r=\epsilon} d\omega \left(\left(\frac{\delta S_{B}}{\delta \phi_{\omega}} \right) \left(\frac{\delta S_{B}}{\delta \phi_{-\omega}} \right) - \omega^{2} \phi_{\omega} \phi_{-\omega} \right).$$
(26)

Substituting S_B into the holographic H-J equation

$$\partial_{\epsilon}\Lambda(\epsilon) = -\frac{1}{2}\int_{\epsilon}\frac{d\omega}{(2\pi)^2}J(\epsilon,\omega)J(\epsilon,-\omega),$$
 (27)

$$\partial_{\epsilon} J(\epsilon, -\omega) = \frac{1}{2\pi} J(\epsilon, \omega) f(\epsilon, -\omega),$$
 (28)

$$\partial_{\epsilon}f(\epsilon,\omega) = \frac{1}{2\pi}f(\epsilon,-\omega)f(\epsilon,\omega) - 2\pi\omega^2,$$
 (29)

where, $J(\epsilon, \omega) \equiv \sqrt{\gamma(\epsilon)} \mathcal{J}(\epsilon, \omega)$ and $f(\epsilon, \omega) \equiv \sqrt{\gamma(\epsilon)} \mathcal{F}(\epsilon, \omega)$

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example	Conclusion
				0000000	

Massless Scalar Field in AdS₂

HWRG

• Solution to these equation is Faulkner et al.

$$f(\epsilon,\omega) = -2\pi \frac{\Pi_{\omega}(\epsilon)}{\phi_{-\omega}(\epsilon)}, \quad J(\epsilon,\omega) = -\frac{\beta_{\omega}}{\phi_{\omega}(\epsilon)}, \quad (30)$$

and $\partial_{\epsilon}\Lambda(\epsilon) = -\frac{1}{2} \int_{r=\epsilon} \frac{d\omega}{(2\pi)^2} \frac{\beta_{\omega}\beta_{-\omega}}{\phi_{\omega}(\epsilon)\phi_{-\omega}(\epsilon)},$

where Π_{ω} is momentum conjugate to ϕ_{ω} and β_{ω} is independent of ϵ .

• General solution to ϕ equation of motion is

$$\phi_{\omega}(r) = \phi_{\omega}^{(0)} \cosh(|\omega|r) + \frac{\phi_{\omega}^{(1)}}{|\omega|} \sinh(|\omega|r).$$
(31)

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example Conclusion
				0000000

Massless Scalar Field in AdS₂

HWRG

• Consider only double trace coupling term, then

$$S_{B}(r) = \frac{1}{2} \int d\omega |\omega| \left(\frac{\sinh(|\omega|r) + \tilde{\phi}_{\omega} \cosh(|\omega|r)}{\cosh(|\omega|r) + \tilde{\phi}_{\omega} \sinh(|\omega|r)} \right) \phi_{\omega} \phi_{-\omega},$$
(32)
$$\mathcal{F}(r,\omega) = -2\pi |\omega| r \frac{\sinh(|\omega|r) + \tilde{\phi}_{\omega} \cosh(|\omega|r)}{\cosh(|\omega|r) + \tilde{\phi}_{\omega} \sinh(|\omega|r)}.$$
(33)

Flows

- As $r \to 0$ (UV), $\mathcal{F}(r, \omega) \to 0$ for $\tilde{\phi} = 0$ and $\mathcal{F}(r, \omega) \to -2\pi$ for $\tilde{\phi} = \infty$. (Two Fixed points in UV)
- As $r \to \infty$ (IR), $\mathcal{F}(r, \omega) \to -\infty$ unless $\tilde{\phi} = -1$, then $\mathcal{F}(r, \omega) \to \infty$. (Two different fixed points in IR)

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example 0000000	Conclusion
Magalaga Cas	les Field in AdC				

Massless Scalar Field in AdS2

Stochastic Quantisation

Fokker-Planck action

Recall S_c = 2 Γ, and Γ is Legendre transform of on-shell action,

$$S_{cl} = \int_{-\infty}^{\infty} d\omega |\omega| \phi_{\omega} \phi_{-\omega}.$$
 (34)

The Fokker-Planck Lagrangian density is

$$\mathcal{L}_{FP} = \frac{1}{2} \dot{\phi}_{\omega} \dot{\phi}_{-\omega} + \frac{1}{2} \omega^2 \phi_{\omega} \phi_{-\omega}, \qquad (35)$$

where, dot indicates derivative w.r.to stochastic time t.

• General solution to eq. of motion derived from \mathcal{L}_{FP} is

$$\phi_{\omega}(t) = a_{1,\omega} \cosh(|\omega|t) + a_{2,\omega} \sinh(|\omega|t).$$
 (36)

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example oooooo●	Conclusion
Massless Sca	lar Field in AdS ₂				

Stochastic Quantisation

Fokker-Planck action

• Consider a boundary condition that at time *t* we want the solution $\phi_{\omega}(\tilde{t} = t) = \phi_{\omega}(t)$ then

$$\phi_{\omega}(\tilde{t}) = \phi_{\omega}(t) \frac{\cosh(|\omega|\tilde{t}) + a_{\omega} \sinh(|\omega|\tilde{t})}{\cosh(|\omega|t) + a_{\omega} \sinh(|\omega|t)}.$$
 (37)

Substituting this in the Fokker-Planck action gives

$$S_{FP} = \frac{1}{2} \int d\omega |\omega| \phi_{\omega}(t) \phi_{-\omega}(t) \left(\frac{\sinh(|\omega|t) + a_{\omega} \cosh(|\omega|t)}{\cosh(|\omega|t) + a_{\omega} \sinh(|\omega|t)} \right)$$
(38)

- This action is identical to $S_B(r)$, with *t* replaced by *r*.
- It therefore has same fixed point structure.

Introduction	Holographic Wilsonian RG	Stochastic Quantisation	Relation between SQ and HWRG	Example	Conclusion

SQ ⇔ HWRG

The Proposal

- (The stochastic time) t = r (the radial coordinate in AdS)
- (Classical action in SQ) S_c ≡ 2Γ(φ) (Classical effective action in AdS/CFT)
- (The Fokker-Planck Hamiltonian) $\mathcal{H}_{FP}(t) = \mathcal{H}_{RG}(r)$ (HWRG Hamiltonian in AdS/CFT).

Limitations

- We have checked our proposal for Weyl invariant actions only.
- We have only studied free theories in the bulk. It would be interesting to extend it at least to interacting Weyl invariant theories.