Lectures on the Radon transform and the wave front set

Jan Boman
(2014-06-12)

1 Definition and basic properties of the wave front set

It is an elementary fact that a compactly supported function or distribution is infinitely differentiable if and only if its Fourier transform decays as $\mathcal{O}\left(|\xi|^{-m}\right)$ as $|\xi| \rightarrow \infty$ for every m. The following statement is an immediate consequence of this fact.

Proposition 1. A distribution $f \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$ is equal to a C^{∞} function in some neighborhood of the point $x^{0} \in \mathbf{R}^{n}$ if and only if there exists a function $\psi \in C_{c}^{\infty}$ with $\psi\left(x^{0}\right) \neq 0$ such that

$$
\begin{equation*}
|\widehat{\psi f}(\xi)| \leq C_{m}(1+|\xi|)^{-m}, \quad m=1,2, \ldots \tag{1.1}
\end{equation*}
$$

The singular support of a function or distribution f, denoted $\operatorname{sing} \operatorname{supp} f$, is defined as the complement of the largest open set in which the function is C^{∞}. The proposition can therefore be expressed as follows: the singular support of f is equal to the complement of the set of x^{0} for which there exists $\psi \in C_{c}^{\infty}$ with $\psi\left(x^{0}\right) \neq 0$ such that (1.1) holds. This observation makes it possible to introduce a more precise description of singularities by restricting the set of directions in which $\widehat{\psi f}(\xi)$ must decay fast.

Definition. The wave front set, $W F(f)$, of f is the complement of the set of $\left(x^{0}, \xi^{0}\right) \in$ $T^{*}\left(\mathbf{R}^{n}\right) \backslash 0$ with the following property: there exists a function $\psi \in C_{c}^{\infty}$ with $\psi\left(x^{0}\right) \neq 0$, a conic neighborhood Γ of ξ^{0}, and constants C_{m} such that

$$
\begin{equation*}
|\widehat{\psi f}(\xi)| \leq C_{m}(1+|\xi|)^{-m}, \quad m=1,2, \ldots, \quad \xi \in \Gamma . \tag{1.2}
\end{equation*}
$$

Example 1. Let $f\left(x_{1}, x_{2}\right)=1$ for $x_{2}>0$ and $f\left(x_{1}, x_{2}\right)=0$ for $x_{2}<0$. Then

$$
\begin{equation*}
W F(f) \subset\left\{\left(x_{1}, 0 ; 0, \xi_{2}\right) ; x_{1} \in \mathbf{R}, \xi_{2} \neq 0\right\} . \tag{1.3}
\end{equation*}
$$

Later we shall see that there is in fact equality in (1.3).
Example 2. More generally, let $f\left(x_{1}, x_{2}\right)=h\left(x_{2}\right)$ for some function $h \in L_{\text {loc }}^{1}(\mathbf{R})$. Then

$$
\begin{equation*}
W F(f) \subset\left\{\left(x_{1}, x_{2} ; 0, \xi_{2}\right) ; x_{2} \in \operatorname{sing} \operatorname{supp} h, \xi_{2} \neq 0\right\} . \tag{1.4}
\end{equation*}
$$

It is obvious that the wave front set is always conic in the ξ-variable, which means that $(x, \xi) \in W F(f)$ if and only if $(x, \lambda \xi) \in W F(f)$ for every $\lambda>0$. It is also obvious that $(x, \xi) \notin W F(f)$ for all $\xi \neq 0$, if f is equal to a C^{∞} function in some neighborhood of x. This is the same as saying that the projection of $W F(f)$ onto the first component is contained in the singular support, i.e.,

$$
\pi_{X}(W F(f)) \subset \operatorname{sing} \operatorname{supp}(f) .
$$

Here π_{X} denotes the projection $T^{*}\left(\mathbf{R}^{n}\right) \backslash 0 \ni(x, \xi) \mapsto x \in \mathbf{R}^{n}$. To prove the opposite inclusion we need the following basic lemma.

Lemma 1. Let Γ be an open cone and assume $\varphi \in C^{\infty}\left(\mathbf{R}^{n}\right)$, $f \in \mathcal{E}^{\prime}\left(\mathbf{R}^{n}\right)$, and

$$
|\widehat{f}(\xi)| \leq C_{m}(1+|\xi|)^{-m}, \quad m=1,2, \ldots, \quad \xi \in \Gamma .
$$

Let Γ_{0} be a cone whose conic closure is contained in Γ. Then

$$
|\widehat{\varphi f}(\xi)| \leq C_{m}^{\prime}(1+|\xi|)^{-m}, \quad m=1,2, \ldots, \quad \xi \in \Gamma_{0} .
$$

Proof. We may assume $\varphi \in C_{c}^{\infty}$. By Fourier's inversion formula

$$
\widehat{\varphi f}(\xi)=\frac{1}{(2 \pi)^{n}} \int \widehat{f}(\xi-\eta) \widehat{\varphi}(\eta) d \eta=\int_{|\eta|>\varepsilon|\xi|}+\int_{|\eta|<\varepsilon|\xi|}
$$

Choose $\varepsilon>0$ so small that

$$
\xi \in \Gamma_{0} \quad \text { and } \quad|\eta|<\varepsilon|\xi| \quad \text { implies } \quad \xi-\eta \in \Gamma .
$$

Let us first assume that $f \in L_{c}^{1}\left(\mathbf{R}^{n}\right)$. Choose M so that $\sup |\widehat{f}| \leq M$ and $\sup |\widehat{\varphi}| \leq M$. Then, since f satisfies (1.2)

$$
\left|\int_{|\eta|<\varepsilon|\xi|} \ldots\right| \leq \sup |\widehat{\varphi}| \int_{|\eta|<\varepsilon|\xi|} C_{m}(1+|\xi-\eta|)^{-m} d \eta=\mathcal{O}\left(|\xi|^{-m+n}\right) \quad \text { as }|\xi| \rightarrow \infty \text { with } \xi \in \Gamma_{0}
$$

for all m. And since $\varphi \in C_{c}^{\infty}$

$$
\left|\int_{|\eta|>\varepsilon|\xi|} \ldots\right| \leq \sup \left|\widehat{f \mid} \int_{|\eta|>\varepsilon|\xi|}\right| \widehat{\varphi}(\eta) \mid d \eta=\mathcal{O}\left(|\xi|^{-m}\right) \quad \text { as }|\xi| \rightarrow \infty \text { for all } m
$$

To consider the general case assume that f is a distribution of order r so that $|\widehat{f}(\xi)| \leq$ $M(1+|\xi|)^{r}$. The term $\int_{|\eta|<\varepsilon|\xi|}$ can be estimated as before. And

$$
\left|\int_{|\eta|>\varepsilon|\xi|} \cdots\right| \leq M \int_{|\eta|>z|\xi|}(1+|\xi-\eta|)^{r} C_{p}(1+|\eta|)^{-p} d \eta
$$

for any p. If $\varepsilon \leq 1$ and $|\eta|>\varepsilon|\xi|$ we have $|\xi-\eta| \leq 2|\eta| / \varepsilon$, so

$$
\left|\int_{|\eta|>\varepsilon|\xi|} \cdots\right| \leq M C_{p} \int_{|\eta|>\varepsilon|\xi|}(1+2|\eta| / \varepsilon)^{r}(1+|\eta|)^{-p} d \eta
$$

which is $\mathcal{O}\left(|\xi|^{-m}\right)$ as $|\xi| \rightarrow \infty$ if $p>r+n+m$. The proof is complete.
Proposition 2. Let $\psi \in C^{\infty}\left(\mathbf{R}^{n}\right)$ and $f \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$. Then

$$
W F(\psi f) \subset W F(f)
$$

Proof. Assume $\left(x^{0}, \xi^{0}\right) \notin W F(f)$. By the assumption there exists $\varphi \in C_{c}^{\infty}$ with $\varphi\left(x^{0}\right) \neq 0$ and a conic neighbourhood Γ of ξ^{0} such that (1.2) holds. Let Γ_{0} be a conic neighbourhood of ξ^{0} whose conic closure is contained in Γ. Applying Lemma 1 to ψ and φf proves the assertion.

Corollary 1. The singular support of f is equal to the projection of $W F(f)$ onto the first component, i.e.,

$$
\pi_{X}(W F(f))=\operatorname{sing} \operatorname{supp}(f)
$$

Proof. It remain to prove the inclusion \supset. Assume $x^{0} \notin \pi_{X}(W F(f))$, i.e., for every $\xi^{0} \neq 0$ we have $\left(x^{0}, \xi^{0}\right) \notin W F(f)$. This means that for every ξ^{0} with $\left|\xi^{0}\right|=1$ there exists $\psi \in C_{c}^{\infty}$ with $\psi\left(x^{0}\right) \neq 0$, a conic neighborhood Γ of ξ^{0}, and constants C_{m} such that (1.2) holds. Note that the function ψ may depend on ξ^{0}. By the Borel-Lebesgue Lemma there exists a fine subset of those cones that covers the unit sphere. Let ψ_{ν}, $\nu=1, \ldots, p$, be the corresponding ψ functions and let φ be the product of all ψ_{ν}. Then $\varphi\left(x^{0}\right) \neq 0$ and it follows from Lemma 1 that $\widehat{\varphi f}(\xi)$ satisfies (1.1) in all of \mathbf{R}^{n}.

Corollary 2. Assume that for every $\varepsilon>0$ there exists $\phi \in C^{\infty}$ with support in $B_{\varepsilon}\left(x^{0}\right)=\left\{x ;\left|x-x^{0}\right|<\varepsilon\right\}$ such that $\widehat{\phi g}\left(\lambda \xi^{0}\right)$ does not decay as $\mathcal{O}\left(|\lambda|^{-m}\right)$ as $\lambda \rightarrow \infty$ for every m. Then $\left(x^{0}, \xi^{0}\right) \in W F(g)$.
Proof. Assume the assertion were false, i.e. that $\left(x^{0}, \xi^{0}\right) \notin W F(g)$. This means that there exists $\psi \in C_{c}^{\infty}$ with $\psi\left(x^{0}\right) \neq 0$ such that $\widehat{\psi g}$ satisfies (1.2). Choose $\varepsilon>0$ and δ such that $|\psi(x)| \geq \delta>0$ for $x \in B_{\varepsilon}\left(x^{0}\right)$. According to the assumption we can take ϕ with support in $B_{\varepsilon}\left(x^{0}\right)$ such that $\widehat{\phi g}\left(\lambda \xi^{0}\right)$ does not decay as $\mathcal{O}\left(|\lambda|^{-m}\right)$ as $\lambda \rightarrow \infty$ for every m. Applying Lemma 1 with $f=\psi g$ and $\varphi=\phi / \psi$ we obtain a contradiction, which completes the proof.

Remark. Essentially the same argument proves the following stronger statement.
Corollary $\mathbf{2}^{\prime}$. Assume that for every $\varepsilon>0$ and every conic neighborhood Γ of ξ^{0} there exists $\phi \in C^{\infty}$ with support in $B_{\varepsilon}\left(x^{0}\right)$ such that $\widehat{\phi g}(\xi)$ does not decay as $\mathcal{O}\left(|\xi|^{-m}\right)$ for every m as $|\xi| \rightarrow \infty$ with $\xi \in \Gamma$. Then $\left(x^{0}, \xi^{0}\right) \in W F(g)$.
Exercise. Show that equality holds in (1.3).
Exercise. Let $f\left(x_{1}, x_{2}\right)=1$ if $x_{1}>0$ and $x_{2}>0, f\left(x_{1}, x_{2}\right)=0$ for all other x. Prove that

$$
\begin{aligned}
W F(f)= & \left\{\left(x_{1}, 0 ; 0, \xi_{2}\right) ; x_{1}>0, \xi_{2} \neq 0\right\} \cup\left\{\left(0, x_{2} ; \xi_{1}, 0\right) ; x_{2}>0, \xi_{1} \neq 0\right\} \\
& \cup\left\{\left(0,0 ; \xi_{1}, \xi_{2}\right) ;\left(\xi_{1}, \xi_{2}\right) \neq(0,0)\right\} .
\end{aligned}
$$

Exercise. Let $f \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$ be a smooth density on the hypersurface $x_{n}=0$, i.e., let $f(x)=f\left(x^{\prime}, x_{n}\right)=g\left(x^{\prime}\right) \delta_{0}\left(x_{n}\right)$ for some $g \in C^{\infty}\left(\mathbf{R}^{n-1}\right)$. Prove that

$$
W F(f)=\left\{\left(x^{\prime}, 0 ; 0, \xi_{n}\right) ; x^{\prime} \in \operatorname{supp} g, \xi_{n} \neq 0\right\} .
$$

There exist functions whose wave front set contains (x, ξ) but not $(x,-\xi)$. An example is the inverse Fourier transform of the Heaviside function $H(\xi)$. The latter is defined as the characteristic function for the positive half-axis. The distribution $\operatorname{vp}(1 / x)$ is defined by

$$
\langle\operatorname{vp}(1 / x), \varphi\rangle=\lim _{\varepsilon \rightarrow 0} \int_{|x|>\varepsilon} \frac{\varphi(x)}{x} d x \quad \text { for all } \varphi \in C_{c}^{\infty}(\mathbf{R}) .
$$

Here is one way to compute the inverse Fourier transform of $H(\xi)$. Observe that $u_{\varepsilon}(x)=$ $e^{-\varepsilon x} H(x) \rightarrow H(x)$ as $\varepsilon \rightarrow 0$ and compute

$$
\widehat{u}_{\varepsilon}(\xi)=\int_{0}^{\infty} e^{-\varepsilon x} e^{-i x \xi} d x=\frac{1}{\varepsilon+i \xi}=\frac{\varepsilon-i \xi}{\varepsilon^{2}+\xi^{2}} \rightarrow \pi \delta_{0}-i \operatorname{vp} \frac{1}{\xi} \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Thus $\widehat{H}(\xi)=\pi \delta_{0}(\xi)-i \operatorname{vp}(1 / \xi)$. Using Fourier's inversion formula $\widehat{\widehat{g}}(x)=2 \pi g(-x)$ we conclude that the Fourier transform of $\pi \delta_{0}(x)+i \operatorname{vp}(1 / x)$ is equal to $2 \pi H(\xi)$.
Exercise. Set $f(x)=\pi \delta_{0}(x)+i \operatorname{vp}(1 / x)$. Prove that $(0,-1) \notin W F(f)$ and that $(0,1) \in$ $W F(f)$.

Hint. Use the argument of Lemma 1 to show that $(0,-1) \notin W F(f)$.
On the other hand, if f is real-valued, then $W F(f)$ is symmetric in ξ in the sense that $(x, \xi) \in W F(f)$ if and only if $(x,-\xi) \in W F(f)$. This is an immediate consequence of the fact that the Fourier transform of a real-valued function f is even, $\widehat{f}(\xi)=\widehat{f}(-\xi)$.

We next prove that the wave front set behaves as it should under coordinate transformations. Consider first affine transformations. Since the effect of a translation is trivial, it is enough to consider linear coordinate transformations. If A is a non-singular transformation and we set $\widetilde{f}(y)=f(A y)$ we note that for $f \in L_{c}^{1}\left(\mathbf{R}^{n}\right)$

$$
\begin{gather*}
\widehat{\widetilde{f}}(\eta)=\int e^{-i y \cdot \eta} f(A y) d y=\int e^{-i A^{-1} x \cdot \eta} f(x)|\operatorname{det} A|^{-1} d x \tag{1.5}\\
=|\operatorname{det} A|^{-1} \int e^{-i x \cdot A^{*-1} \eta} f(x) d x=|\operatorname{det} A|^{-1} \widehat{f}\left(A^{*-1} \eta\right)=|\operatorname{det} A|^{-1} \widehat{f}(\xi),
\end{gather*}
$$

if $\eta=A^{*} \xi$. Here we have used the fact that $A^{-1 *}=A^{*-1}$. Applying (1.5) to ψf with $\psi\left(x^{0}\right) \neq 0$ and ψ supported near x^{0}, we see that

$$
\begin{align*}
& \left(x^{0}, \xi^{0}\right) \in W F(f) \Longleftrightarrow\left(y^{0}, \eta^{0}\right) \in W F(\widetilde{f}), \\
& \text { if } \quad x^{0}=A y^{0} \quad \text { and } \quad \eta^{0}=A^{*} \xi^{0} . \tag{1.6}
\end{align*}
$$

We shall need an extension of (1.6) to the case when A is a mapping from \mathbf{R}^{n} onto \mathbf{R}^{m} and $n \geq m$. Let N be the kernel of A. Then A can be factored $A=A_{0} \circ \pi$, where π is the projection $\mathbf{R}^{n} \mapsto A / N$ and A_{0} is non-singular. It is therefore sufficient to consider the case when A is a projection. Choosing suitable coordinates we can assume that A is the projection $x=\left(x^{\prime}, x^{\prime \prime}\right) \mapsto x^{\prime}$. Then $\widetilde{f}(x)=(f \circ A)(x)=f\left(x^{\prime}\right)$. It is an easy exercise to verify that in this case

$$
(x, \xi)=\left(x^{\prime}, x^{\prime \prime} ; \xi^{\prime}, \xi^{\prime \prime}\right) \in W F(\widetilde{f})
$$

if and only if $\left(x^{\prime}, \xi^{\prime}\right) \in W F(f)$ and $\xi^{\prime \prime}=0$. Since $A^{*} \xi^{\prime}=\left(\xi^{\prime}, 0\right)$ this agrees with (1.6). Observing that (1.6) is valid for the composition of two operators $A=A_{1} A_{2}$ if it is valid for A_{1} and A_{2} we have proved (1.6) for the general case.

Example 3. The wave front set of the function $f(x)=\left|x_{1}-x_{2}\right|$ is equal to

$$
\left\{(x, \xi) ; x_{1}=x_{2}, \xi_{1}=-\xi_{2}, \xi_{1} \neq 0\right\}
$$

More generally, the wave front set of the function $|x-y|^{\alpha}, \alpha \neq 0,(x, y) \in \mathbf{R}^{n} \times \mathbf{R}^{n}$, is equal to

$$
\{(x, y ; \xi, \eta) ; x=y, \xi=-\eta, \xi \neq 0\} .
$$

It is important to avoid thinking of ξ as a vector in x-space. Instead, we can think of a direction in ξ-space as an (oriented) hyperplane through the origin in the tangent space to \mathbf{R}^{n} at x^{0}, which can be identified with a hyperplane in \mathbf{R}^{n} itself. Because a
ray in the cotangent space $T_{x^{0}}^{*}\left(\mathbf{R}^{n}\right)$ is uniquely determined by its zero-set, which is a hyperplane through the origin in the tangent space $T_{x^{0}}\left(\mathbf{R}^{n}\right)$. If L is a hyperplane in $T_{y^{0}}\left(\mathbf{R}^{n}\right)$, then A transforms L into the hyperplane $\widetilde{L} \subset X$ consisting of all $A v$ for $v \in L$. Let η^{0} be conormal to L and choose ξ^{0} so that $A^{*} \xi^{0}=\eta^{0}$. Then ξ^{0} is conormal to \widetilde{L}, because (write for a moment $\langle\xi, v\rangle$ instead of $\xi \cdot v$)

$$
\left\langle\xi^{0}, A v\right\rangle=0 \Longleftrightarrow\left\langle A^{*} \xi^{0}, v\right\rangle=\left\langle\eta^{0}, v\right\rangle=0 \quad \text { for all } v \in L
$$

which agrees with (1.6).
Next, let Ψ be a diffeomorphism of a neighborhood of y^{0} onto a neighborhood of $x^{0}=\Psi\left(y^{0}\right)$ and set $\widetilde{f}(y)=f(\Psi(y))$. We claim that, in analogy with (1.6),

$$
\begin{align*}
& \left(x^{0}, \xi^{0}\right) \in W F(f) \Longleftrightarrow\left(y^{0}, \eta^{0}\right) \in W F(\tilde{f}), \\
& \text { if } \quad x^{0}=\Psi\left(y^{0}\right) \quad \text { and } \quad \eta^{0}=\Psi^{\prime}\left(y^{0}\right)^{*} \xi^{0} . \tag{1.7}
\end{align*}
$$

Here $\Psi^{\prime}\left(y^{0}\right)$ denotes the linear transformation $\mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ that is given by the Jacobian matrix $\partial_{y_{j}} \Psi_{i}$ at the point y^{0} and $\Psi^{\prime}\left(y^{0}\right)^{*}$ denotes the adjoint of $\Psi^{\prime}\left(y^{0}\right)$.

Sketch of proof. It is clear that we may assume that $x^{0}=y^{0}=0$, and by (1.6) we may assume that $\Psi^{\prime}\left(y^{0}\right)$ is equal to the identity matrix. Thus $\Psi(y)-y=\mathcal{O}\left(|y|^{2}\right)$ as $|y| \rightarrow 0$, and hence with $\Phi(x)=\Psi^{-1}(x)$

$$
\Phi(x)=x+h(x)
$$

where $h(x)=\mathcal{O}\left(|x|^{2}\right)$ as $|x| \rightarrow 0$. Instead of (1.5) we now have

$$
\begin{align*}
\widehat{\tilde{f}}(\eta) & =\int e^{-i y \cdot \eta} f(\Psi(y)) d y=\int e^{-i(x+h(x)) \cdot \eta} f(x)\left|\operatorname{det} \Phi^{\prime}(x)\right| d x \\
& =\int e^{-i x \cdot \eta} \varphi_{\eta}(x) f(x) d x \tag{1.8}
\end{align*}
$$

where $\varphi_{\eta}(x)=e^{-i h(x) \cdot \eta}\left|\operatorname{det} \Phi^{\prime}(x)\right|$. It is enough to prove that $\widehat{\widetilde{f}}(\eta)$ decays rapidly in a conic neighborhood of $\eta^{0}=\xi^{0}$, if $\widehat{f}(\xi)$ decays rapidly in some conic neighborhood of ξ^{0}. To prove this we argue as in the proof of Lemma 1 with $\varphi(x)$ replaced by $\varphi_{\eta}(x)$, which depends on the parameter η. The only new element relative to the proof of Lemma 1 is that we need to prove that

$$
\begin{equation*}
\int_{|\theta|>\varepsilon|\eta|}\left|\widehat{\varphi_{\eta}}(\theta)\right| d \theta \leq C_{m}(1+|\eta|)^{-m} \quad \text { for every } m \tag{1.9}
\end{equation*}
$$

We will sketch the proof of this fact in the next lemma.
Lemma 2. Assume that $h(x)$ is a C^{∞} function from \mathbf{R}^{n} to \mathbf{R}^{n} that satisfies $h(x)=$ $\mathcal{O}\left(|x|^{2}\right)$ as $|x| \rightarrow 0$. Let $\psi(x)$ be a C^{∞} function supported in the ball $|x| \leq \delta$ and set

$$
\varphi_{\eta}(x)=e^{i h(x) \cdot \eta} \psi(x)
$$

Then (1.9) holds if δ is small enough.
Sketch of proof. We have

$$
\begin{equation*}
\widehat{\varphi_{\eta}}(\theta)=\int_{\mathbf{R}^{n}} e^{-i(x \cdot \theta-h(x) \cdot \eta)} \psi(x) d x \tag{1.10}
\end{equation*}
$$

We are going to make the substitution $z=\gamma_{\theta, \eta}(x)=x-\theta(h(x) \cdot \eta) /|\theta|^{2}$ in the integral (1.10). Since $h(x)=\mathcal{O}\left(|x|^{2}\right)$ and $|\eta| /|\theta| \leq 1 / \varepsilon$ in the integrand (1.9), it is easily seen that $\gamma_{\theta, \eta}(x)$ is invertible in $|x|<\delta$ if δ is small enough. Denote its inverse by $x=\rho_{\theta, \eta}(z)$. It follows that

$$
\widehat{\varphi_{\eta}}(\theta)=\int_{\mathbf{R}^{n}} e^{-i z \cdot \theta} \widetilde{\psi}(z) d z=\widehat{\widetilde{\psi}}(\theta)
$$

with

$$
\widetilde{\psi}(z)=\psi\left(\rho_{\theta, \eta}(z)\right)\left|\operatorname{det} \rho_{\theta, \eta}^{\prime}(z)\right| .
$$

The estimate (1.10) now follows, after we have verified that all derivatives of $\widetilde{\psi}(z)$ are bounded uniformly with respect to the parameters θ and η in the region $|\eta| \leq|\theta| / \varepsilon$. And this in turn follows from the fact that all derivatives of $\gamma_{\theta, \eta}(x)$ and $\rho_{\theta, \eta}$ are uniformly bounded for such θ and η. The proof is complete.

Example 5. Let f be the characteristic function for the unit disk in \mathbf{R}^{2}. Then

$$
W F(f)=\{(x, \xi) ;|x|=1, \xi=\lambda x, \lambda \neq 0\} .
$$

Example 6. More generally, let $h \in L_{\text {loc }}^{1}(\mathbf{R})$ (or $h \in \mathcal{D}^{\prime}(\mathbf{R})$) and let $F \in C^{\infty}\left(\mathbf{R}^{n}\right)$ with $\nabla F=\left(\partial_{x_{1}} F, \ldots, \partial_{x_{n}} F\right) \neq(0, \ldots, 0)$ for all x. Then $W F(h(F(x))) \subset\{(x, \xi) ; F(x) \in$ $\operatorname{supp} h, \xi=\lambda \nabla F(x), \lambda \neq 0\}$. In other words, $W F(h(F(x)))$ is contained in the union of the conormal manifolds to all level surfaces $F(x)=c$ and $c \in \operatorname{supp} h$.

Finally we shall investigate the effect on the wave front set of integration over a family of submanifolds. Set $e_{n}=(0, \ldots, 0,1)$ and assume $\left(x^{0}, \pm e_{n}\right) \notin W F(f)$. By the definition of the wave front set there exists $\psi \in C_{c}^{\infty}$ and a conic neighbourhood Γ of $\pm e_{n}$ such that $\psi\left(x^{0}\right) \neq 0$ and $|\widehat{\psi f}(\xi)|=\mathcal{O}\left(|\xi|^{-m}\right)$ as $|\xi| \rightarrow \infty$ in Γ for every m. In particular

$$
\begin{equation*}
\widehat{\psi f}\left(0, \ldots, 0, \xi_{n}\right)=\mathcal{O}\left(\left|\xi_{n}\right|^{-m}\right) \quad \text { as }\left|\xi_{n}\right| \rightarrow \infty \text { for every } m \tag{1.11}
\end{equation*}
$$

But this implies that the function

$$
\begin{equation*}
x_{n} \mapsto \int_{\mathbf{R}^{n-1}} \psi\left(x^{\prime}, x_{n}\right) f\left(x^{\prime}, x_{n}\right) d x^{\prime} \quad \text { is } C^{\infty}, \tag{1.12}
\end{equation*}
$$

because the left hand side of (1.11) is the 1-dimensional Fourier transform of the function (1.12). This simple observation together with a partition of unity proves the following. Assume $f \in L_{c}^{1}\left(\mathbf{R}^{n}\right)$ and that $\left(x, \pm e_{n}\right) \notin W F(f)$ for every x. Then the function

$$
\begin{equation*}
x_{n} \mapsto \int_{\mathbf{R}^{n-1}} f\left(x^{\prime}, x_{n}\right) d x^{\prime} \quad \text { is } C^{\infty} . \tag{1.13}
\end{equation*}
$$

The same assertion holds for distributions $f \in \mathcal{E}^{\prime}\left(\mathbf{R}^{n}\right)$ if the distribution (1.11) is defined as $\varphi \mapsto\langle f, \varphi\rangle$ for $\varphi\left(x_{n}\right)$ in $C_{c}^{\infty}(\mathbf{R})$. Here $\varphi \mapsto\langle f, \varphi\rangle$ should be understood as the action of the distribution $f \in \mathcal{E}^{\prime}\left(\mathbf{R}^{n}\right)$ on the test function $\varphi\left(x_{n}\right)$ considered as a function of $\left(x^{\prime}, x_{n}\right)$ that is independent of x^{\prime}.

We can express this fact in terms of the Radon transform as follows.
Proposition 3. Let $f \in \mathcal{E}^{\prime}\left(\mathbf{R}^{n}\right)$ and assume $(x, \pm \omega) \notin W F(f)$ for every $x \in \operatorname{supp} f$. Then $p \mapsto R f(\omega, p)$ is a C^{∞} function.

By a similar argument we can prove the analogous statement for integration over submanifolds with codimension greater than 1. Denote again the elements of $\mathbf{R}^{n}=$ \mathbf{R}^{p+q} by $x=\left(x^{\prime}, x^{\prime \prime}\right)$ and $\xi=\left(\xi^{\prime}, \xi^{\prime \prime}\right)$. Let f be compactly supported and assume $\left(x^{\prime}, x^{\prime \prime} ; 0, \xi^{\prime \prime}\right) \notin W F(f)$ for every x and every $\xi^{\prime \prime} \neq 0$. Then $F\left(x^{\prime \prime}\right)=\int_{\mathbf{R}^{p}} f\left(x^{\prime}, x^{\prime \prime}\right) d x^{\prime}$ is in $C^{\infty}\left(\mathbf{R}^{q}\right)$. More generally,

$$
\begin{equation*}
\text { if }\left(x^{\prime}, x^{\prime \prime} ; 0, \xi^{\prime \prime}\right) \notin W F(f) \text { for all } x^{\prime \prime} \text {, then }\left(x^{\prime \prime}, \xi^{\prime \prime}\right) \notin W F(F) \text {. } \tag{1.14}
\end{equation*}
$$

By change of variables we get a similar statement for integration over families of general submanifolds. We state it only for the case of codimension 1 . Let $\Phi(x)$ be a smooth real-valued function on a neighbourhood of $\operatorname{supp} f$ with gradient $\nabla \Phi(x) \neq 0$. Then $S_{t}=\{x ; \Phi(x)=t\}$ is a 1-parametric family of smooth hypersurfaces. Let $d \mu_{t}$ be a smooth measure on S_{t} that depends smoothly on t (in the sense that $d \mu_{t}=a(x, t) d s$ where $a(x, t)$ is smooth and $d s$ is surface measure on $\left.S_{t}\right)$.

Proposition 4. Assume $N^{*}\left(S_{t}\right) \cap W F(f)=\emptyset$. Then

$$
t \mapsto \int_{S_{t}} f d \mu_{t}
$$

is a C^{∞} function.
Proof. Choose coordinates so that $\Phi(x)=x_{n}$. In those coordinates we have $d \mu_{t}=$ $a\left(x^{\prime}, t\right) d x^{\prime}$ for some smooth function $a\left(x^{\prime}, x_{n}\right)$. By (1.7) $W F(f)$ contains no element of the form $\left(x, \pm e_{n}\right)$. By Proposition 2 the same is true of $a(x) f(x)$. The assertion now follows from (1.13).

Exercise. Let f be the characteristic function for the first quadrant in \mathbf{R}^{2}. Use (1.14) to give a new proof of the fact that $\left(0,0 ; \xi_{1}, \xi_{2}\right) \in W F(f)$ for every $\xi \neq(0,0)$.

2 Estimates for $W F(R f)$

Let $X=\mathbf{R}^{2}$ and let Y be the manifold of lines in \mathbf{R}^{2}. The Radon transform

$$
\begin{equation*}
R f(L)=\int_{L} f d s, \quad L \in Y, \tag{2.1}
\end{equation*}
$$

is a linear map from $C_{c}(X)$ into $C_{c}(Y)$. We shall study how singularities in f are mapped to singularities in $R f$ by the map R. In particular, given that f is smooth except for a singularity at x^{0}, we may ask where $R f$ can have singularities. I turns out that it is not much we can say. The singularity at x^{0} may give rise to a singularity in $R f$ at any line passing through x^{0}. And conversely, a singularity in $R f$ at L^{0} may be caused by a singularity in f at an arbitrary point x in L^{0}.

Therefore it may appear remarkable that we get a $1-1$ correspondence between singularities in f and singularities in $R f$ if we describe singularities in terms of the wave front set. And this correspondence is described by the wave front set of the Schwartz kernel of the operator R

To specify cotangent vectors above Y it is useful to have coordinates in Y. Let us for a moment consider the 2-dimensional case. Let $L(y)=L\left(y_{1}, y_{2}\right)$ be the line defined by the equation

$$
\begin{equation*}
x_{2}=y_{1} x_{1}+y_{2} . \tag{2.2}
\end{equation*}
$$

All lines except the vertical lines $x_{1}=c$ can be represented in this way. Set

$$
F(x, y)=-x_{2}+y_{1} x_{1}+y_{2}
$$

If we replace the arclength measure $d s$ by $d x_{1}$, which has no influence on singularities, we can now write the Radon transform (2.1)

$$
\begin{equation*}
R f(y)=\int_{\mathbf{R}} f\left(x_{1}, y_{1} x_{1}+y_{2}\right) d x_{1} \tag{2.3}
\end{equation*}
$$

This expression can be written

$$
\begin{equation*}
R f(y)=\int_{\mathbf{R}^{2}} K(y, x) f(x) d x=\int_{\mathbf{R}}\left(\int_{\mathbf{R}} K(y, x) f(x) d x_{2}\right) d x_{1} \tag{2.4}
\end{equation*}
$$

where $K(y, x)$ is the smooth density on the hypersurface $F(x, y)=x_{2}-y_{1} x_{1}-y_{2}=0$ defined by

$$
K(y, x)=\delta_{0}\left(x_{2}-y_{1} x_{1}-y_{2}\right)=\delta_{0}(F(x, y))
$$

We may regard the iterated integral in (2.4) as the definition of the double integral. Indeed, by the definition of the measure $\delta_{0}\left(x_{2}-a\right)$ the inner integral will be evaluated to

$$
f\left(x_{1}, y_{1} x_{1}+y_{2}\right)
$$

and after performing the outer integral we obtain (2.3). The wave front set of $\delta_{0}(F(x, y))$ is equal (see Example 6) to the set of all conormals to the hypersurface $F(x, y)=0$. The gradient of F can be written

$$
\nabla_{(x, y)} F=\left(-y_{1}, 1 ;-x_{1},-1\right)
$$

Hence an arbitrary non-vanishing conormal at (x, y) to the hypersurface

$$
Z=\{(x, y) ; F(x, y)=0\}
$$

can be written

$$
(\xi, \eta)=\lambda\left(y_{1},-1 ; x_{1}, 1\right)
$$

for some $\lambda \neq 0$. Thus the conormal manifold to Z, which we denote by $N^{*}(Z)$, consists of all the elements

$$
N^{*}(Z)=\left\{(x, y, \xi, \eta) ; F(x, y)=0, \xi=\lambda\left(y_{1},-1\right), \eta=\lambda\left(x_{1}, 1\right), \lambda \neq 0\right\}
$$

$N^{*}(Z)$ is a 4-dimensional submanifold of the 8-dimensional space $T^{*}(X \times Y)$. It is easy to see that there is a natural isomorphism between $T^{*}(X \times Y)$ and $T^{*}(X) \times T^{*}(Y)$. Thus we can reorder the elements and describe $N^{*}(Z)$ as a subset of $T^{*}(X) \times T^{*}(Y)$ as follows

$$
N^{*}(Z)=\left\{(x, \xi ; y, \eta) ; F(x, y)=0, \xi=\lambda\left(y_{1},-1\right), \eta=\lambda\left(x_{1}, 1\right), \lambda \neq 0\right\}
$$

This is a very important object, and it is usually denoted by Λ, or Λ_{R} if we want to emphasise that Λ is associated to the operator R. For reasons that will be explained later we shall have to change sign of the η vector and introduce the set

$$
\begin{equation*}
\Lambda^{\prime}=\left\{(x, \xi ; y,-\eta) ; F(x, y)=0, \xi=\lambda\left(y_{1},-1\right), \eta=\lambda\left(x_{1}, 1\right), \lambda \neq 0\right\} . \tag{2.5}
\end{equation*}
$$

Being a subset of the product space $T^{*}(X) \times T^{*}(Y)$ it is of course a relation in $T^{*}(X) \times$ $T^{*}(Y)$. However, this relation is actually $1-1$, if we identify cotangent vectors ξ and θ whenever $\theta=\lambda \xi$ for some $\lambda>0$. This means that we can view Λ^{\prime} as a function or mapping from $T^{*}(X)$ into $T^{*}(Y)$, a mapping that has an inverse.

Exercise. Prove that the relation Λ^{\prime} is one to one.
A mapping, or more generally a relation, acts on subsets in an obvious way, which in this case means the following. If E is a subset of $T^{*}(X)$, then $\Lambda^{\prime} \circ E$ is defined as

$$
\Lambda^{\prime} \circ E=\left\{(y, \eta) \in T^{*}(Y) ;(x, \xi ; y, \eta) \in \Lambda^{\prime},(x, \xi) \in E\right\}
$$

Theorem 1. The following inclusion is valid

$$
\begin{equation*}
W F(R f) \subset \Lambda^{\prime} \circ W F(f) \tag{2.6}
\end{equation*}
$$

In the next section we shall prove that $W F(R f)$ is in fact equal to $\Lambda^{\prime} \circ W F(f)$.
Lemma 3. Assume $f \in C_{c}\left(\mathbf{R}^{2}\right)$ and set $g(y)=\int_{\mathbf{R}} f\left(x_{1}, y_{1} x_{1}+y_{2}\right) d x_{1}$. Then

$$
\begin{array}{ll}
& (0,0 ; 0, \pm 1) \notin W F(f) \\
\text { implies } & (0,0 ; 0, \pm 1) \notin W F(g) . \tag{2.8}
\end{array}
$$

Sketch of proof. By assumption there exists a function $\varphi \in C_{c}^{\infty}$ with $\varphi(0,0) \neq 0$ and a $\delta_{1}>0$ such that

$$
\begin{equation*}
|\widehat{\varphi f}(\xi)| \leq C_{m}(1+|\xi|)^{-m}, \quad \text { if } \quad\left|\xi_{1}\right|<\delta_{1}\left|\xi_{2}\right|, \quad m=1,2, \ldots \tag{2.9}
\end{equation*}
$$

We have to prove that there exists a function $\psi \in C_{c}^{\infty}$ with $\psi(0,0) \neq 0$ and $\delta_{2}>0$ such that

$$
\begin{equation*}
|\widehat{\psi g}(\eta)| \leq C_{m}(1+|\eta|)^{-m}, \quad \text { if } \quad\left|\eta_{1}\right|<\delta_{2}\left|\eta_{2}\right|, \quad m=1,2, \ldots \tag{2.10}
\end{equation*}
$$

The proof consists of a succession of three simple observations.

1. Assume first that $f=0$ for $\left|x_{1}\right|<\varepsilon$. By Example 2 we know that the function $\left(y_{1}, y_{2}\right) \mapsto f\left(x_{1}, y_{1} x_{1}+y_{2}\right)$ can only have wave fronts parallel to $\left(x_{1}, 1\right)$ for each fixed x_{1}. Hence the Fourier transform of $y \mapsto \psi(y) f\left(x_{1}, y_{1} x_{1}+y_{2}\right)$ must satisfy the estimates (2.10) if $\delta_{2}<\varepsilon<\delta_{1}$ for arbitrary $\psi \in C_{c}^{\infty}$. Integrating with respect to x_{1} we see that $\widehat{\psi g}(\eta)$ must satisfy the same estimates. Splitting $f=f_{0}+f_{1}$ by means of a partition of unity, where $f_{1}=0$ for $\left|x_{1}\right|<\varepsilon / 2$ and $f_{0}=0$ for $\left|x_{1}\right|>\varepsilon$ we conclude that it is enough to consider f_{0}, which we will denote by f from now on.
2. If we choose ψ with support in $|y|<\varepsilon / 2 \leq 1 / 2$ it is clear that $\left|y_{1} x_{1}+y_{2}\right| \leq$ $\varepsilon(\varepsilon / 2)+\varepsilon / 2 \leq \varepsilon$ in the integral defining $\psi(y) g(y)$. Hence we may assume that $\operatorname{supp} f \subset$ $\left\{\max \left|x_{\nu}\right| \leq \varepsilon\right\} \subset\{|x| \leq 2 \varepsilon\}$.
3. Take $\psi(y)$ of the form $\psi\left(y_{1}\right) \psi\left(y_{2}\right)$ and consider first

$$
\begin{equation*}
\int e^{-i \eta_{2} y_{2}} \psi\left(y_{2}\right) g\left(y_{1}, y_{2}\right) d y_{2}=\int e^{-i \eta_{2} y_{2}} \psi\left(y_{2}\right) \int f\left(x_{1}, y_{1} x_{1}+y_{2}\right) d x_{1} d y_{2} \tag{2.11}
\end{equation*}
$$

Change order of integration and then make the translation $y_{1} x_{1}+y_{2} \mapsto y_{2}$ in the y_{2} integral. This gives

$$
\int\left(\int e^{-i \eta_{2}\left(y_{2}-y_{1} x_{1}\right)} \psi\left(y_{2}-y_{1} x_{1}\right) f\left(x_{1}, y_{2}\right) d y_{2}\right) d x_{1} .
$$

Changing the variable y_{2} to x_{2} gives the more natural looking expression

$$
\iint e^{-i \eta_{2}\left(x_{2}-y_{1} x_{1}\right)} \psi\left(x_{2}-y_{1} x_{1}\right) f\left(x_{1}, x_{2}\right) d x_{2} d x_{1} .
$$

Writing the exponent $\eta_{2}\left(x_{2}-y_{1} x_{1}\right)=\eta_{2}\left(x_{1}, x_{2}\right) \cdot\left(-y_{1}, 1\right)$ we see that for fixed y_{1} the last expression can be written

$$
\begin{equation*}
\widehat{\psi_{y_{1}} f}\left(\eta_{2}\left(-y_{1}, 1\right)\right), \tag{2.12}
\end{equation*}
$$

where we have written $\psi_{y_{1}}\left(x_{1}, x_{2}\right)=\psi\left(x_{2}-y_{1} x_{1}\right)$. The fact that $\psi_{y_{1}}$ depends on y_{1} will cause no problem. By the assumption (2.7) the expression (2.12) is $\mathcal{O}\left(\left|\eta_{2}\right|^{-m}\right)$ for every m as $\left|\eta_{2}\right| \rightarrow \infty$, if $\left|y_{1}\right|<\delta_{1}$. Multiplying (2.11) by $\psi\left(y_{1}\right) e^{-i y_{1} \eta_{1}}$ and integrating with respect to y_{1} we obtain the same estimates for $\widehat{\psi g}(\eta)$, that is, we obtain (2.10) with $\delta_{2}=\delta_{1}$, provided $\psi\left(y_{1}\right)$ is supported in $\left|y_{1}\right|<\delta_{1}$.

Proof of Theorem 1. Let $\left(x^{0}, \xi^{0}\right)$ be an arbitrary element of $T^{*}(X)$. Choose coordinates in $X=\mathbf{R}^{2}$ so that $x^{0}=(0,0)$ and ξ^{0} is parallel to $(0,1)$. Choose coordinates $\left(y_{1}, y_{2}\right)$ as above on the subset of non-vertical lines in Y. We have to prove that $\left(y^{0}, \eta^{0}\right) \notin W F(R f)$, if $\left(y^{0}, \eta^{0}\right)=\Lambda^{\prime} \circ\left(x^{0}, \xi^{0}\right)$. Next let us compute $\left(y^{0}, \eta^{0}\right)$. We are going to use (2.5). Since $F\left(x^{0}, y^{0}\right)=0$ and $x^{0}=(0,0)$, we must have $y_{2}^{0}=0$. Since ξ^{0} is parallel to (0,1) it follows from (2.5) that $y_{1}^{0}=0$. Moreover, since $x_{1}^{0}=0$ we see from (2.5) that η^{0} must be parallel to $(0,1)$. Hence the assertion of the theorem follows from Lemma 3.

It is interesting to describe the relation Λ in geometric terms. To do this we think of Y as the 2 -dimensional manifold of all lines in the plane X. Then Z is the 3 -dimensional submanifold of $X \times Y$ that consists of all pairs (x, L) such that $x \in L$. The manifold Λ is the 4 -dimensional conormal bundle of Z, a subset of the 8 -dimensional manifold $T^{*}(X \times Y) \approx T^{*}(X) \times T^{*}(Y)$. Since we don't have natural coordinates on Y it appears hard to "see" the conormal vectors η above the lines $L \in Y$. Here is a way to do this, at least if we agree to ignore the distinction between η and $-\eta$.

In any vector space V, the direction of a vector $\eta \in V^{*}$ is determined by the zero set of η, which is a hyperplane through the origin in V. In our case $V=T_{p}(M)$ and $V^{*}=T_{p}^{*}(M)$, where $p \in M$, and M is X or Y. So, to a direction η in $T_{p}^{*}(M)$ corresponds a hyperplane in $T_{p}(M)$. But if the manifold M is not a vector space, we cannot talk about hyperplanes in M. Instead, a hyperplane in $T_{p}(M)$ can be specified by a piece of hypersurface through p in M. Thus a cotangent vector in $T_{p}^{*}(M)$ is determined up to \pm by a piece of a hypersurface in M that contains p. If we insist on distinguishing between η and $-\eta$, we need just specify an orientation of the hypersurface. In particular, a cotangent vector above a line L^{0} in the space Y of all lines in \mathbf{R}^{2} can be defined as the conormal to the curve $\Sigma_{x} \subset Y$ consisting av all lines near L^{0} that contain the point $x \in L^{0}$.

Let us now describe the correspondence $(x, \xi) \sim(y, \eta)$ defined by our Λ^{\prime} in geometric terms. We will consider the n-dimensional case, since this causes no additional difficulties. Thus $X=\mathbf{R}^{n}$ and Y is the n-dimensional manifold of hyperplanes L in X. Let $\left(x^{0}, \xi^{0}\right) \in T^{*}(X)$. We shall describe up to \pm the element $\left(L^{0}, \eta^{0}\right) \in T^{*}(Y)$ that is coupled to $\left(x^{0}, \xi^{0}\right)$ by Λ^{\prime}. First of all L^{0} is the hyperplane through x^{0} that is conormal to ξ^{0}. Moreover, I claim that η^{0} (up to \pm) is the element of $T_{L^{0}}^{*}(Y)$ that is defined by the surface $\Sigma_{x^{0}}$ consisting of all hyperplanes (near L^{0}) that contain x^{0}. In other words, η^{0} is the (unique up to multiplication by scalars) conormal to $\Sigma_{x^{0}}$.

Exercise. Given a line L^{0} in the manifold Y of all lines in \mathbf{R}^{2}. Prove that all cotangent vectors $\eta \in T_{L^{0}}^{*}(Y)$ with one exception (up to multiplication by non-zero scalars) can be defined as conormals to some surface $\Sigma_{x} \subset Y$ for $x \in L^{0}$.
Exercise. Prove that the geometric description of Λ^{\prime} given above is correct, i.e., that it agrees with (2.5).

Corollary to Theorem 1. Let $f \in C_{c}\left(\mathbf{R}^{n}\right)$ and assume $R f(L)=0$ for all hyperplanes L in some neighborhood of the hyperplane L^{0}. Then

$$
W F(f) \cap N^{*}\left(L^{0}\right)=\emptyset,
$$

or more explicitly

$$
(x, \xi) \notin W F(f) \text { for every }(x, \xi) \text { with } x \in L^{0} \text { and } \xi \text { conormal to } L^{0} .
$$

Proof. We have seen that every $(x, \xi) \in N^{*}\left(L^{0}\right)$ is coupled by Λ^{\prime} to some cotangent vector $\eta \in T_{L^{0}}^{*} \backslash 0$. But the assumption implies that $\left(L^{0}, \eta\right) \notin W F(R f)$ for every $\eta \in T_{L^{0}}^{*} \backslash 0$. The assertion now follows from Theorem 1 .

