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1 Definition and basic properties of the wave front set

It is an elementary fact that a compactly supported function or distribution is infinitely
differentiable if and only if its Fourier transform decays as O(|ξ|−m) as |ξ| → ∞ for
every m. The following statement is an immediate consequence of this fact.

Proposition 1. A distribution f ∈ D′(Rn) is equal to a C∞ function in some neighbor-
hood of the point x0 ∈ Rn if and only if there exists a function ψ ∈ C∞c with ψ(x0) 6= 0
such that

(1.1) |ψ̂f(ξ)| ≤ Cm(1 + |ξ|)−m, m = 1, 2, . . . .

The singular support of a function or distribution f , denoted sing supp f , is defined as
the complement of the largest open set in which the function is C∞. The proposition can
therefore be expressed as follows: the singular support of f is equal to the complement
of the set of x0 for which there exists ψ ∈ C∞c with ψ(x0) 6= 0 such that (1.1) holds. This
observation makes it possible to introduce a more precise description of singularities by
restricting the set of directions in which ψ̂f(ξ) must decay fast.

Definition. The wave front set, WF (f), of f is the complement of the set of (x0, ξ0) ∈
T ∗(Rn) \ 0 with the following property: there exists a function ψ ∈ C∞c with ψ(x0) 6= 0,
a conic neighborhood Γ of ξ0, and constants Cm such that

(1.2) |ψ̂f(ξ)| ≤ Cm(1 + |ξ|)−m, m = 1, 2, . . . , ξ ∈ Γ.

Example 1. Let f(x1, x2) = 1 for x2 > 0 and f(x1, x2) = 0 for x2 < 0. Then

(1.3) WF (f) ⊂ {(x1, 0; 0, ξ2); x1 ∈ R, ξ2 6= 0}.

Later we shall see that there is in fact equality in (1.3).

Example 2. More generally, let f(x1, x2) = h(x2) for some function h ∈ L1
loc(R). Then

(1.4) WF (f) ⊂ {(x1, x2; 0, ξ2); x2 ∈ sing supph, ξ2 6= 0}.

It is obvious that the wave front set is always conic in the ξ-variable, which means
that (x, ξ) ∈ WF (f) if and only if (x, λξ) ∈ WF (f) for every λ > 0. It is also obvious
that (x, ξ) /∈ WF (f) for all ξ 6= 0, if f is equal to a C∞ function in some neighborhood
of x. This is the same as saying that the projection of WF (f) onto the first component
is contained in the singular support, i.e.,

πX(WF (f)) ⊂ sing supp(f).

Here πX denotes the projection T ∗(Rn) \ 0 3 (x, ξ) 7→ x ∈ Rn. To prove the opposite
inclusion we need the following basic lemma.
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Lemma 1. Let Γ be an open cone and assume ϕ ∈ C∞(Rn), f ∈ E ′(Rn), and

|f̂(ξ)| ≤ Cm(1 + |ξ|)−m, m = 1, 2, . . . , ξ ∈ Γ.

Let Γ0 be a cone whose conic closure is contained in Γ. Then

|ϕ̂f(ξ)| ≤ C ′m(1 + |ξ|)−m, m = 1, 2, . . . , ξ ∈ Γ0.

Proof. We may assume ϕ ∈ C∞c . By Fourier’s inversion formula

ϕ̂f(ξ) =
1

(2π)n

∫
f̂(ξ − η)ϕ̂(η)dη =

∫
|η|>ε|ξ|

+

∫
|η|<ε|ξ|

.

Choose ε > 0 so small that

ξ ∈ Γ0 and |η| < ε|ξ| implies ξ − η ∈ Γ.

Let us first assume that f ∈ L1
c(R

n). Choose M so that sup |f̂ | ≤M and sup |ϕ̂| ≤M .
Then, since f satisfies (1.2)∣∣ ∫
|η|<ε|ξ|

. . .
∣∣ ≤ sup |ϕ̂|

∫
|η|<ε|ξ|

Cm(1+|ξ−η|)−mdη = O(|ξ|−m+n) as |ξ| → ∞ with ξ ∈ Γ0

for all m. And since ϕ ∈ C∞c∣∣ ∫
|η|>ε|ξ|

. . .
∣∣ ≤ sup |f̂ |

∫
|η|>ε|ξ|

|ϕ̂(η)|dη = O(|ξ|−m) as |ξ| → ∞ for all m.

To consider the general case assume that f is a distribution of order r so that |f̂(ξ)| ≤
M(1 + |ξ|)r. The term

∫
|η|<ε|ξ| can be estimated as before. And

∣∣ ∫
|η|>ε|ξ|

. . .
∣∣ ≤M ∫

|η|>ε|ξ|
(1 + |ξ − η|)rCp(1 + |η|)−pdη

for any p. If ε ≤ 1 and |η| > ε|ξ| we have |ξ − η| ≤ 2|η|/ε, so∣∣ ∫
|η|>ε|ξ|

. . .
∣∣ ≤MCp

∫
|η|>ε|ξ|

(1 + 2|η|/ε)r(1 + |η|)−pdη,

which is O(|ξ|−m) as |ξ| → ∞ if p > r + n+m. The proof is complete.

Proposition 2. Let ψ ∈ C∞(Rn) and f ∈ D′(Rn). Then

WF (ψf) ⊂WF (f).

Proof. Assume (x0, ξ0) /∈ WF (f). By the assumption there exists ϕ ∈ C∞c with
ϕ(x0) 6= 0 and a conic neighbourhood Γ of ξ0 such that (1.2) holds. Let Γ0 be a
conic neighbourhood of ξ0 whose conic closure is contained in Γ. Applying Lemma 1 to
ψ and ϕf proves the assertion.

Corollary 1. The singular support of f is equal to the projection of WF (f) onto the
first component, i.e.,

πX(WF (f)) = sing supp(f).
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Proof. It remain to prove the inclusion ⊃. Assume x0 /∈ πX(WF (f)), i.e., for every
ξ0 6= 0 we have (x0, ξ0) /∈ WF (f). This means that for every ξ0 with |ξ0| = 1 there
exists ψ ∈ C∞c with ψ(x0) 6= 0, a conic neighborhood Γ of ξ0, and constants Cm such
that (1.2) holds. Note that the function ψ may depend on ξ0. By the Borel-Lebesgue
Lemma there exists a fine subset of those cones that covers the unit sphere. Let ψν ,
ν = 1, . . . , p, be the corresponding ψ functions and let ϕ be the product of all ψν . Then
ϕ(x0) 6= 0 and it follows from Lemma 1 that ϕ̂f(ξ) satisfies (1.1) in all of Rn.

Corollary 2. Assume that for every ε > 0 there exists φ ∈ C∞ with support in
Bε(x

0) = {x; |x− x0| < ε} such that φ̂g(λξ0) does not decay as O(|λ|−m) as λ→∞ for
every m. Then (x0, ξ0) ∈WF (g).

Proof. Assume the assertion were false, i.e. that (x0, ξ0) /∈ WF (g). This means that

there exists ψ ∈ C∞c with ψ(x0) 6= 0 such that ψ̂g satisfies (1.2). Choose ε > 0 and δ
such that |ψ(x)| ≥ δ > 0 for x ∈ Bε(x0). According to the assumption we can take φ

with support in Bε(x
0) such that φ̂g(λξ0) does not decay as O(|λ|−m) as λ → ∞ for

every m. Applying Lemma 1 with f = ψg and ϕ = φ/ψ we obtain a contradiction,
which completes the proof.

Remark. Essentially the same argument proves the following stronger statement.

Corollary 2′. Assume that for every ε > 0 and every conic neighborhood Γ of ξ0 there
exists φ ∈ C∞ with support in Bε(x

0) such that φ̂g(ξ) does not decay as O(|ξ|−m) for
every m as |ξ| → ∞ with ξ ∈ Γ. Then (x0, ξ0) ∈WF (g).

Exercise. Show that equality holds in (1.3).

Exercise. Let f(x1, x2) = 1 if x1 > 0 and x2 > 0, f(x1, x2) = 0 for all other x. Prove
that

WF (f) ={(x1, 0; 0, ξ2); x1 > 0, ξ2 6= 0} ∪ {(0, x2; ξ1, 0); x2 > 0, ξ1 6= 0}
∪ {(0, 0; ξ1, ξ2); (ξ1, ξ2) 6= (0, 0)}.

Exercise. Let f ∈ D′(Rn) be a smooth density on the hypersurface xn = 0, i.e., let
f(x) = f(x′, xn) = g(x′)δ0(xn) for some g ∈ C∞(Rn−1). Prove that

WF (f) = {(x′, 0; 0, ξn); x′ ∈ supp g, ξn 6= 0}.

There exist functions whose wave front set contains (x, ξ) but not (x,−ξ). An
example is the inverse Fourier transform of the Heaviside function H(ξ). The latter is
defined as the characteristic function for the positive half-axis. The distribution vp(1/x)
is defined by

〈vp(1/x), ϕ〉 = lim
ε→0

∫
|x|>ε

ϕ(x)

x
dx for all ϕ ∈ C∞c (R).

Here is one way to compute the inverse Fourier transform of H(ξ). Observe that uε(x) =
e−εxH(x)→ H(x) as ε→ 0 and compute

ûε(ξ) =

∫ ∞
0

e−εxe−ixξdx =
1

ε+ iξ
=

ε− iξ
ε2 + ξ2

→ πδ0 − i vp
1

ξ
as ε→ 0.
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Thus Ĥ(ξ) = πδ0(ξ)− i vp(1/ξ). Using Fourier’s inversion formula ̂̂g(x) = 2πg(−x) we
conclude that the Fourier transform of πδ0(x) + i vp(1/x) is equal to 2πH(ξ).

Exercise. Set f(x) = πδ0(x) + i vp(1/x). Prove that (0,−1) /∈WF (f) and that (0, 1) ∈
WF (f).

Hint. Use the argument of Lemma 1 to show that (0,−1) /∈WF (f).

On the other hand, if f is real-valued, then WF (f) is symmetric in ξ in the sense
that (x, ξ) ∈ WF (f) if and only if (x,−ξ) ∈ WF (f). This is an immediate consequence
of the fact that the Fourier transform of a real-valued function f is even, f̂(ξ) = f̂(−ξ).

We next prove that the wave front set behaves as it should under coordinate trans-
formations. Consider first affine transformations. Since the effect of a translation is
trivial, it is enough to consider linear coordinate transformations. If A is a non-singular
transformation and we set f̃(y) = f(Ay) we note that for f ∈ L1

c(R
n)

̂̃
f(η) =

∫
e−iy·ηf(Ay)dy =

∫
e−iA

−1x·ηf(x)|detA|−1dx

= |detA|−1
∫
e−ix·A

∗−1ηf(x)dx = |detA|−1f̂(A∗−1η) = |detA|−1f̂(ξ),

(1.5)

if η = A∗ξ. Here we have used the fact that A−1∗ = A∗−1. Applying (1.5) to ψf with
ψ(x0) 6= 0 and ψ supported near x0, we see that

(x0, ξ0) ∈WF (f)⇐⇒ (y0, η0) ∈WF (f̃),

if x0 = Ay0 and η0 = A∗ξ0.
(1.6)

We shall need an extension of (1.6) to the case when A is a mapping from Rn onto
Rm and n ≥ m. Let N be the kernel of A. Then A can be factored A = A0 ◦π, where π
is the projection Rn 7→ A/N and A0 is non-singular. It is therefore sufficient to consider
the case when A is a projection. Choosing suitable coordinates we can assume that A is
the projection x = (x′, x′′) 7→ x′. Then f̃(x) = (f ◦A)(x) = f(x′). It is an easy exercise
to verify that in this case

(x, ξ) = (x′, x′′; ξ′, ξ′′) ∈WF (f̃)

if and only if (x′, ξ′) ∈ WF (f) and ξ′′ = 0. Since A∗ξ′ = (ξ′, 0) this agrees with (1.6).
Observing that (1.6) is valid for the composition of two operators A = A1A2 if it is valid
for A1 and A2 we have proved (1.6) for the general case.

Example 3. The wave front set of the function f(x) = |x1 − x2| is equal to

{(x, ξ); x1 = x2, ξ1 = −ξ2, ξ1 6= 0}.

More generally, the wave front set of the function |x− y|α, α 6= 0, (x, y) ∈ Rn ×Rn, is
equal to

{(x, y; ξ, η); x = y, ξ = −η, ξ 6= 0}.

It is important to avoid thinking of ξ as a vector in x-space. Instead, we can think
of a direction in ξ-space as an (oriented) hyperplane through the origin in the tangent
space to Rn at x0, which can be identified with a hyperplane in Rn itself. Because a
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ray in the cotangent space T ∗x0(Rn) is uniquely determined by its zero-set, which is a
hyperplane through the origin in the tangent space Tx0(Rn). If L is a hyperplane in
Ty0(Rn), then A transforms L into the hyperplane L̃ ⊂ X consisting of all Av for v ∈ L.

Let η0 be conormal to L and choose ξ0 so that A∗ξ0 = η0. Then ξ0 is conormal to L̃,
because (write for a moment 〈ξ, v〉 instead of ξ · v)

〈ξ0, Av〉 = 0⇐⇒ 〈A∗ξ0, v〉 = 〈η0, v〉 = 0 for all v ∈ L,

which agrees with (1.6).

Next, let Ψ be a diffeomorphism of a neighborhood of y0 onto a neighborhood of
x0 = Ψ(y0) and set f̃(y) = f(Ψ(y)). We claim that, in analogy with (1.6),

(x0, ξ0) ∈WF (f)⇐⇒ (y0, η0) ∈WF (f̃),

if x0 = Ψ(y0) and η0 = Ψ′(y0)∗ξ0.
(1.7)

Here Ψ′(y0) denotes the linear transformation Rn → Rn that is given by the Jacobian
matrix ∂yjΨi at the point y0 and Ψ′(y0)∗ denotes the adjoint of Ψ′(y0).

Sketch of proof. It is clear that we may assume that x0 = y0 = 0, and by (1.6) we may
assume that Ψ′(y0) is equal to the identity matrix. Thus Ψ(y)− y = O(|y|2) as |y| → 0,
and hence with Φ(x) = Ψ−1(x)

Φ(x) = x+ h(x),

where h(x) = O(|x|2) as |x| → 0. Instead of (1.5) we now have

̂̃
f(η) =

∫
e−iy·ηf(Ψ(y))dy =

∫
e−i(x+h(x))·ηf(x)| det Φ′(x)|dx

=

∫
e−ix·ηϕη(x)f(x)dx,

(1.8)

where ϕη(x) = e−ih(x)·η| det Φ′(x)|. It is enough to prove that
̂̃
f(η) decays rapidly in a

conic neighborhood of η0 = ξ0, if f̂(ξ) decays rapidly in some conic neighborhood of ξ0.
To prove this we argue as in the proof of Lemma 1 with ϕ(x) replaced by ϕη(x), which
depends on the parameter η. The only new element relative to the proof of Lemma 1 is
that we need to prove that

(1.9)

∫
|θ|>ε|η|

|ϕ̂η(θ)|dθ ≤ Cm(1 + |η|)−m for every m.

We will sketch the proof of this fact in the next lemma.

Lemma 2. Assume that h(x) is a C∞ function from Rn to Rn that satisfies h(x) =
O(|x|2) as |x| → 0. Let ψ(x) be a C∞ function supported in the ball |x| ≤ δ and set

ϕη(x) = eih(x)·ηψ(x).

Then (1.9) holds if δ is small enough.

Sketch of proof. We have

(1.10) ϕ̂η(θ) =

∫
Rn

e−i(x·θ−h(x)·η)ψ(x)dx.
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We are going to make the substitution z = γθ,η(x) = x− θ
(
h(x) · η

)
/|θ|2 in the integral

(1.10). Since h(x) = O(|x|2) and |η|/|θ| ≤ 1/ε in the integrand (1.9), it is easily seen
that γθ,η(x) is invertible in |x| < δ if δ is small enough. Denote its inverse by x = ρθ,η(z).
It follows that

ϕ̂η(θ) =

∫
Rn

e−iz·θψ̃(z)dz =
̂̃
ψ(θ)

with
ψ̃(z) = ψ(ρθ,η(z))|det ρ′θ,η(z)|.

The estimate (1.10) now follows, after we have verified that all derivatives of ψ̃(z) are
bounded uniformly with respect to the parameters θ and η in the region |η| ≤ |θ|/ε. And
this in turn follows from the fact that all derivatives of γθ,η(x) and ρθ,η are uniformly
bounded for such θ and η. The proof is complete.

Example 5. Let f be the characteristic function for the unit disk in R2. Then

WF (f) = {(x, ξ); |x| = 1, ξ = λx, λ 6= 0}.

Example 6. More generally, let h ∈ L1
loc(R) (or h ∈ D′(R)) and let F ∈ C∞(Rn) with

∇F = (∂x1F, . . . , ∂xnF ) 6= (0, . . . , 0) for all x. Then WF
(
h(F (x))

)
⊂ {(x, ξ); F (x) ∈

supph, ξ = λ∇F (x), λ 6= 0}. In other words, WF
(
h(F (x))

)
is contained in the union

of the conormal manifolds to all level surfaces F (x) = c and c ∈ supph.

Finally we shall investigate the effect on the wave front set of integration over a
family of submanifolds. Set en = (0, . . . , 0, 1) and assume (x0,±en) /∈ WF (f). By the
definition of the wave front set there exists ψ ∈ C∞c and a conic neighbourhood Γ of ±en
such that ψ(x0) 6= 0 and |ψ̂f(ξ)| = O(|ξ|−m) as |ξ| → ∞ in Γ for every m. In particular

(1.11) ψ̂f(0, . . . , 0, ξn) = O(|ξn|−m) as |ξn| → ∞ for every m.

But this implies that the function

(1.12) xn 7→
∫
Rn−1

ψ(x′, xn)f(x′, xn)dx′ is C∞,

because the left hand side of (1.11) is the 1-dimensional Fourier transform of the function
(1.12). This simple observation together with a partition of unity proves the following.
Assume f ∈ L1

c(R
n) and that (x,±en) /∈WF (f) for every x. Then the function

(1.13) xn 7→
∫
Rn−1

f(x′, xn)dx′ is C∞.

The same assertion holds for distributions f ∈ E ′(Rn) if the distribution (1.11) is defined
as ϕ 7→ 〈f, ϕ〉 for ϕ(xn) in C∞c (R). Here ϕ 7→ 〈f, ϕ〉 should be understood as the action
of the distribution f ∈ E ′(Rn) on the test function ϕ(xn) considered as a function of
(x′, xn) that is independent of x′.

We can express this fact in terms of the Radon transform as follows.

Proposition 3. Let f ∈ E ′(Rn) and assume (x,±ω) /∈ WF (f) for every x ∈ supp f .
Then p 7→ Rf(ω, p) is a C∞ function.
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By a similar argument we can prove the analogous statement for integration over
submanifolds with codimension greater than 1. Denote again the elements of Rn =
Rp+q by x = (x′, x′′) and ξ = (ξ′, ξ′′). Let f be compactly supported and assume
(x′, x′′; 0, ξ′′) /∈ WF (f) for every x and every ξ′′ 6= 0. Then F (x′′) =

∫
Rp f(x′, x′′)dx′ is

in C∞(Rq). More generally,

(1.14) if (x′, x′′; 0, ξ′′) /∈WF (f) for all x′′, then (x′′, ξ′′) /∈WF (F ) .

By change of variables we get a similar statement for integration over families of
general submanifolds. We state it only for the case of codimension 1. Let Φ(x) be a
smooth real-valued function on a neighbourhood of supp f with gradient ∇Φ(x) 6= 0.
Then St = {x; Φ(x) = t} is a 1-parametric family of smooth hypersurfaces. Let dµt be
a smooth measure on St that depends smoothly on t (in the sense that dµt = a(x, t)ds
where a(x, t) is smooth and ds is surface measure on St).

Proposition 4. Assume N∗(St) ∩WF (f) = ∅. Then

t 7→
∫
St

f dµt

is a C∞ function.

Proof. Choose coordinates so that Φ(x) = xn. In those coordinates we have dµt =
a(x′, t)dx′ for some smooth function a(x′, xn). By (1.7) WF (f) contains no element of
the form (x,±en). By Proposition 2 the same is true of a(x)f(x). The assertion now
follows from (1.13).

Exercise. Let f be the characteristic function for the first quadrant in R2. Use (1.14)
to give a new proof of the fact that (0, 0; ξ1, ξ2) ∈WF (f) for every ξ 6= (0, 0).

2 Estimates for WF (Rf)

Let X = R2 and let Y be the manifold of lines in R2. The Radon transform

(2.1) Rf(L) =

∫
L
f ds, L ∈ Y,

is a linear map from Cc(X) into Cc(Y ). We shall study how singularities in f are mapped
to singularities in Rf by the map R. In particular, given that f is smooth except for
a singularity at x0, we may ask where Rf can have singularities. I turns out that it is
not much we can say. The singularity at x0 may give rise to a singularity in Rf at any
line passing through x0. And conversely, a singularity in Rf at L0 may be caused by a
singularity in f at an arbitrary point x in L0.

Therefore it may appear remarkable that we get a 1 − 1 correspondence between
singularities in f and singularities in Rf if we describe singularities in terms of the wave
front set. And this correspondence is described by the wave front set of the Schwartz
kernel of the operator R
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To specify cotangent vectors above Y it is useful to have coordinates in Y . Let us
for a moment consider the 2-dimensional case. Let L(y) = L(y1, y2) be the line defined
by the equation

(2.2) x2 = y1x1 + y2.

All lines except the vertical lines x1 = c can be represented in this way. Set

F (x, y) = −x2 + y1x1 + y2.

If we replace the arclength measure ds by dx1, which has no influence on singularities,
we can now write the Radon transform (2.1)

(2.3) Rf(y) =

∫
R
f(x1, y1x1 + y2)dx1.

This expression can be written

(2.4) Rf(y) =

∫
R2

K(y, x)f(x)dx =

∫
R

( ∫
R
K(y, x)f(x)dx2

)
dx1,

where K(y, x) is the smooth density on the hypersurface F (x, y) = x2 − y1x1 − y2 = 0
defined by

K(y, x) = δ0(x2 − y1x1 − y2) = δ0(F (x, y)).

We may regard the iterated integral in (2.4) as the definition of the double integral.
Indeed, by the definition of the measure δ0(x2 − a) the inner integral will be evaluated
to

f(x1, y1x1 + y2),

and after performing the outer integral we obtain (2.3). The wave front set of δ0(F (x, y))
is equal (see Example 6) to the set of all conormals to the hypersurface F (x, y) = 0.
The gradient of F can be written

∇(x,y)F = (−y1, 1;−x1,−1).

Hence an arbitrary non-vanishing conormal at (x, y) to the hypersurface

Z = {(x, y); F (x, y) = 0}

can be written
(ξ, η) = λ(y1,−1;x1, 1)

for some λ 6= 0. Thus the conormal manifold to Z, which we denote by N∗(Z), consists
of all the elements

N∗(Z) = {(x, y, ξ, η); F (x, y) = 0, ξ = λ(y1,−1), η = λ(x1, 1), λ 6= 0}.

N∗(Z) is a 4-dimensional submanifold of the 8-dimensional space T ∗(X ×Y ). It is easy
to see that there is a natural isomorphism between T ∗(X × Y ) and T ∗(X) × T ∗(Y ).
Thus we can reorder the elements and describe N∗(Z) as a subset of T ∗(X)× T ∗(Y ) as
follows

N∗(Z) = {(x, ξ; y, η); F (x, y) = 0, ξ = λ(y1,−1), η = λ(x1, 1), λ 6= 0}.
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This is a very important object, and it is usually denoted by Λ, or ΛR if we want to
emphasise that Λ is associated to the operator R. For reasons that will be explained
later we shall have to change sign of the η vector and introduce the set

(2.5) Λ′ = {(x, ξ; y,−η); F (x, y) = 0, ξ = λ(y1,−1), η = λ(x1, 1), λ 6= 0}.

Being a subset of the product space T ∗(X)×T ∗(Y ) it is of course a relation in T ∗(X)×
T ∗(Y ). However, this relation is actually 1 − 1, if we identify cotangent vectors ξ and
θ whenever θ = λξ for some λ > 0. This means that we can view Λ′ as a function or
mapping from T ∗(X) into T ∗(Y ), a mapping that has an inverse.

Exercise. Prove that the relation Λ′ is one to one.

A mapping, or more generally a relation, acts on subsets in an obvious way, which
in this case means the following. If E is a subset of T ∗(X), then Λ′ ◦ E is defined as

Λ′ ◦ E = {(y, η) ∈ T ∗(Y ); (x, ξ; y, η) ∈ Λ′, (x, ξ) ∈ E}.

Theorem 1. The following inclusion is valid

(2.6) WF (Rf) ⊂ Λ′ ◦WF (f).

In the next section we shall prove that WF (Rf) is in fact equal to Λ′ ◦WF (f).

Lemma 3. Assume f ∈ Cc(R2) and set g(y) =
∫
R f(x1, y1x1 + y2)dx1. Then

(0, 0; 0,±1) /∈WF (f)(2.7)

implies (0, 0; 0,±1) /∈WF (g).(2.8)

Sketch of proof. By assumption there exists a function ϕ ∈ C∞c with ϕ(0, 0) 6= 0 and a
δ1 > 0 such that

(2.9) |ϕ̂f(ξ)| ≤ Cm(1 + |ξ|)−m, if |ξ1| < δ1|ξ2|, m = 1, 2, . . . .

We have to prove that there exists a function ψ ∈ C∞c with ψ(0, 0) 6= 0 and δ2 > 0 such
that

(2.10) |ψ̂g(η)| ≤ Cm(1 + |η|)−m, if |η1| < δ2|η2|, m = 1, 2, . . . .

The proof consists of a succession of three simple observations.

1. Assume first that f = 0 for |x1| < ε. By Example 2 we know that the function
(y1, y2) 7→ f(x1, y1x1 + y2) can only have wave fronts parallel to (x1, 1) for each fixed
x1. Hence the Fourier transform of y 7→ ψ(y)f(x1, y1x1 + y2) must satisfy the estimates
(2.10) if δ2 < ε < δ1 for arbitrary ψ ∈ C∞c . Integrating with respect to x1 we see that

ψ̂g(η) must satisfy the same estimates. Splitting f = f0 + f1 by means of a partition of
unity, where f1 = 0 for |x1| < ε/2 and f0 = 0 for |x1| > ε we conclude that it is enough
to consider f0, which we will denote by f from now on.

2. If we choose ψ with support in |y| < ε/2 ≤ 1/2 it is clear that |y1x1 + y2| ≤
ε(ε/2) + ε/2 ≤ ε in the integral defining ψ(y)g(y). Hence we may assume that supp f ⊂
{max |xν | ≤ ε} ⊂ {|x| ≤ 2ε}.
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3. Take ψ(y) of the form ψ(y1)ψ(y2) and consider first

(2.11)

∫
e−iη2y2ψ(y2)g(y1, y2)dy2 =

∫
e−iη2y2ψ(y2)

∫
f(x1, y1x1 + y2)dx1 dy2.

Change order of integration and then make the translation y1x1 + y2 7→ y2 in the y2
integral. This gives∫ ( ∫

e−iη2(y2−y1x1)ψ(y2 − y1x1)f(x1, y2)dy2
)
dx1.

Changing the variable y2 to x2 gives the more natural looking expression∫ ∫
e−iη2(x2−y1x1)ψ(x2 − y1x1)f(x1, x2)dx2 dx1.

Writing the exponent η2(x2 − y1x1) = η2(x1, x2) · (−y1, 1) we see that for fixed y1 the
last expression can be written

(2.12) ψ̂y1f(η2(−y1, 1)),

where we have written ψy1(x1, x2) = ψ(x2 − y1x1). The fact that ψy1 depends on y1
will cause no problem. By the assumption (2.7) the expression (2.12) is O(|η2|−m) for
every m as |η2| → ∞, if |y1| < δ1. Multiplying (2.11) by ψ(y1)e

−iy1η1 and integrating

with respect to y1 we obtain the same estimates for ψ̂g(η), that is, we obtain (2.10) with
δ2 = δ1, provided ψ(y1) is supported in |y1| < δ1.

Proof of Theorem 1. Let (x0, ξ0) be an arbitrary element of T ∗(X). Choose coordinates
in X = R2 so that x0 = (0, 0) and ξ0 is parallel to (0, 1). Choose coordinates (y1, y2) as
above on the subset of non-vertical lines in Y . We have to prove that (y0, η0) /∈WF (Rf),
if (y0, η0) = Λ′ ◦ (x0, ξ0). Next let us compute (y0, η0). We are going to use (2.5). Since
F (x0, y0) = 0 and x0 = (0, 0), we must have y02 = 0. Since ξ0 is parallel to (0, 1) it
follows from (2.5) that y01 = 0. Moreover, since x01 = 0 we see from (2.5) that η0 must
be parallel to (0, 1). Hence the assertion of the theorem follows from Lemma 3.

It is interesting to describe the relation Λ in geometric terms. To do this we think of
Y as the 2-dimensional manifold of all lines in the plane X. Then Z is the 3-dimensional
submanifold of X × Y that consists of all pairs (x, L) such that x ∈ L. The manifold
Λ is the 4-dimensional conormal bundle of Z, a subset of the 8-dimensional manifold
T ∗(X × Y ) ≈ T ∗(X)× T ∗(Y ). Since we don’t have natural coordinates on Y it appears
hard to “see” the conormal vectors η above the lines L ∈ Y . Here is a way to do this,
at least if we agree to ignore the distinction between η and −η.

In any vector space V , the direction of a vector η ∈ V ∗ is determined by the zero
set of η, which is a hyperplane through the origin in V . In our case V = Tp(M) and
V ∗ = T ∗p (M), where p ∈M , and M is X or Y . So, to a direction η in T ∗p (M) corresponds
a hyperplane in Tp(M). But if the manifold M is not a vector space, we cannot talk
about hyperplanes in M . Instead, a hyperplane in Tp(M) can be specified by a piece
of hypersurface through p in M . Thus a cotangent vector in T ∗p (M) is determined up
to ± by a piece of a hypersurface in M that contains p. If we insist on distinguishing
between η and −η, we need just specify an orientation of the hypersurface. In particular,
a cotangent vector above a line L0 in the space Y of all lines in R2 can be defined as
the conormal to the curve Σx ⊂ Y consisting av all lines near L0 that contain the point
x ∈ L0.
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Let us now describe the correspondence (x, ξ) ∼ (y, η) defined by our Λ′ in geo-
metric terms. We will consider the n-dimensional case, since this causes no additional
difficulties. Thus X = Rn and Y is the n-dimensional manifold of hyperplanes L in X.
Let (x0, ξ0) ∈ T ∗(X). We shall describe up to ± the element (L0, η0) ∈ T ∗(Y ) that is
coupled to (x0, ξ0) by Λ′. First of all L0 is the hyperplane through x0 that is conormal
to ξ0. Moreover, I claim that η0 (up to ±) is the element of T ∗L0(Y ) that is defined by
the surface Σx0 consisting of all hyperplanes (near L0) that contain x0. In other words,
η0 is the (unique up to multiplication by scalars) conormal to Σx0 .

Exercise. Given a line L0 in the manifold Y of all lines in R2. Prove that all cotangent
vectors η ∈ T ∗L0(Y ) with one exception (up to multiplication by non-zero scalars) can
be defined as conormals to some surface Σx ⊂ Y for x ∈ L0.

Exercise. Prove that the geometric description of Λ′ given above is correct, i.e., that it
agrees with (2.5).

Corollary to Theorem 1. Let f ∈ Cc(Rn) and assume Rf(L) = 0 for all hyperplanes
L in some neighborhood of the hyperplane L0. Then

WF (f) ∩N∗(L0) = ∅,

or more explicitly

(x, ξ) /∈WF (f) for every (x, ξ) with x ∈ L0 and ξ conormal to L0.

Proof. We have seen that every (x, ξ) ∈ N∗(L0) is coupled by Λ′ to some cotangent
vector η ∈ T ∗L0 \ 0. But the assumption implies that (L0, η) /∈ WF (Rf) for every
η ∈ T ∗L0 \ 0. The assertion now follows from Theorem 1.
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