Introduction to With vectors, S-rivers, and prisms

Perfectoral Spaces Baugalore 2019 Sept 9-13

to which we will take a formula-based approach Goal: Formula-Free der of W.... 1. p-derivations + \overline{S} -ringes p = prime (Fixed) R = ring <u>Def</u>: A ring ende $\varphi: R \rightarrow R$ is a <u>Frohenius</u> [if] : $\forall x \in R, \quad \varphi(x) = x^{p} \text{ und } pR$ E.g. ZIXT, q: x ~ x + p. cmything global class Sidd theory crystation cohomology Adams operations of Goal : Leads meritably to With rectors * E Rings with Frob. 1583 naturally Dorws a category but not a good one! Problem: "lift" has a hidden I: $\forall x \exists x' s:l. q(x) = x^2 + px'.$ x' is unique up to p-torsion — no control over it it R is not p-to. free Ex: O Category doesn't have pull backs, intersections of sub-objects? Solution: Provide x' itself as part of the structure, rather than the property of its were existence. i.e. want an operator $\Sigma: R \longrightarrow R$ undelled on $\Sigma(x) = \frac{\varphi(x) - x^2}{p}$

Axious? Write the ring-endo axious for q in terms or S. • $\varphi(x+y) = \varphi(x) + \varphi(y)$ $(x+y)^{2} + p\delta(x+y)$ $x^{2} + p\delta(x+y) + p\delta(y)$ an additivity of q $\frac{1}{10} = \frac{1}{2} \delta(x_{1} + y_{1}) = \frac{1}{2} \delta(x_{1}) + \frac{1}{2} \delta(x_{1}) + \frac{1}{2} \delta(x_{1}) + \frac{1}{2} \delta(x_{1}) + \frac{1}{2} \delta(x_{1}) - \sum_{k=1}^{2} \frac{1}{2} (\frac{1}{k}) x^{k} y^{k-k}$ in equiv. only melphon * $\varphi(x_{y}) = \varphi(x) \varphi(y)$ $(x_{y})^{b} + p\delta(x_{y}) = (x^{b} - p\delta(x_{y}))$ $(ii) \quad \delta(xy) = x^2 \delta(y) + \delta(x) y^2 + p \delta(x) \delta(y)$ (iii) 5(0) = 0 (iv) 5(1) = O "Leibnix rules' for 5 under +, x, 0, 1. Dimm: 5 = "Ap" Del: A Survivan $\mathcal{E} = \mathcal{R} \to \mathcal{R}$ is a <u>p</u>-derivertion if it satisfies (i)-(iv). A <u>5-river</u> is a river equipped with a <u>p</u>-derivertion. ✓ {p-der ou R} → {Freb. Hits ou R}
5 → cp, where cp(K) = x²+p5(X)
This is a bijection if R is p-tor dree (but yot in general!) E_{iq} : Any p-tor-free ving with Fools. [iff: $\mathcal{X}[x]$, $\mathcal{S}(x) = anything$ • $\mathcal{R} = \mathcal{K}_{o}(\mathcal{C})$. $\mathcal{S} = \lambda$ -operation assoc. to $(x_{i}^{n} + x_{i}^{n} + \dots) - (x_{i} + x_{i} + \dots)^{p}$ Ruck: There is a formula-free del. of a &-structure. Ex: @ R = Thy-alg: Radmits a p-der. (=) R= 203, whereas all side R have Field. Hills! 3) Same Lor - 7/27 - algebras.

2. Will we have
God.
$$(1)$$
 W
Rivey:
Compare: (1) "W^R" Co- (1) Hun (c_1) G- (1) $(-)^G$
Rivey: (1) "W^R" Co- (1) Hun (c_1) G- (1) $(-)^G$
Rivey: A St
• Warm op with differential rives:
W^R(A) = "divided power serves" = $\{\sum_{n=0}^{\infty} \frac{d}{n-n}\}$ and A ?
choices rive $\frac{d}{n-1} = \frac{d}{n-1}$ formall
derivative: $d(\frac{d}{n-1}) - \frac{d}{n-1}$
Universal property: $d \in \mathbb{R}$ $(\frac{d}{n-1}) = \sum_{n=0}^{\infty} g(d^n(n)) \frac{d^n}{n!}$
Cluste: g' is differential rivey was holding g , and is aright.
Alternative point d view:
W^R(A) = $A \cdot A \cdot \cdots$
 $\sum a_{n-1}^{d} = (a_n, a_{n-1})$
 $\frac{d}{dt} = -\frac{1}{2}$ with thit
Thun $g': r \cdots (g(r), g(d(r)), g(d^n(r)), \cdots)$

ble can see that
$$\tilde{q}$$
 is actually the analyst set map litting q + equivariant.
So from this point of view, the ring str. on
W^{ARD} (A) = A + A *
is denoted to make \tilde{q} a ring map.
In bod, the ring str. is a "porty symbolic" re-expression of
the backwith rules for d^{en} .
 $(a, a_{1}, ...): (b_{0}, b_{1}, ...) = (\dots, \sum_{i \leq n} (i) a_{i} b_{i}, ...)$
 $d^{on}(xy) = \sum_{i \leq n} (i) d^{oi}(x) d^{oi}(q)$
 $(a_{0}, a_{1}, ...): (b_{0}, b_{1}, ...) = (\dots, \sum_{i \leq n} (i) a_{i} b_{i}, ...)$
 $d^{on}(xy) = \sum_{i \leq n} (i) d^{oi}(x) d^{oi}(q)$
 $i = A \times A \times$ an ring str. of the ut compound given by
the back to W
 $W(A) = A \times A \times$ an ring str. of the ut compound given by
 $(a_{0}, a_{1}, ...) + (b_{0}, b_{1}, ...) = (a_{0}, b_{0}, a_{1}, b_{1} - \sum_{i \leq n} \frac{1}{i} (b_{i}) a_{0}^{i} b_{1} + a_{0} b_{1} \times a_{0} b_{1} + a_{0} b_{1} \times a_{0} b_{1} + a_{0} b_{1} \times a_{0} b_{1} + a_{0} b_{1} + a_{0} b_{1} \times a_{0} b_{1} + a_{0} b_{1} + a_{0} b_{1} + a_{0} b_{1} \times a_{0} + a_{0} b_{0} + a_{0} b_$

à is the unique set map litting a (and compet. with 5) It is also a ring map by construction. .: W is the right adjoint. Next time: Our Wis canonically isom to the usual With vector construction: The usual With vector construction: Ex: (1) Prove the poly Pr (x, yos, x, y) s.t. 5"(x+y) = Pr (x, y, ..., 5"(x), 5"(y)) is unique. Similarly dor multiplication. 3. Hoduli, interpretation R= 8-1714 X= Spec (R) $\chi(A) = \mu(R, A)$ $\chi(\omega(A)) \leftarrow Hom_{\mathcal{S}}(\mathcal{R}, \omega(A))$ * IS a modili space has a S-structure, then the objects it classifies have a theory of canonical lists.