Introduction to bitt vectors, δ-rings, and prisms

Persectoid Spaces
Bangalore 2019
Sent $9-13$ Sept 9-13

Geal: Formula-free def. of W.... to wheh we will take a forma-boad approak

1. p-divadious $+\delta$-riugs
$p=$ pinve (fined)

$$
R=\text { sing }
$$

DR: A ing eud $\varphi: R \rightarrow R$ is a Firanics lit if $\forall x \in R, \varphi(x)=x^{2} \quad \bmod R$
E.. $\mathbb{Z}[x], \varphi: x-x^{2}+p \cdot a y t h i n g$ gloal daen ficd thery crrastlime colonoday
Adous operations ψ^{7}
Gad: head meritlly to Whtt vecos

- \{Rings wank Font \mid.ft $\}$ udurally form a calegary
.... but wet a gad one!
Prolkm: "Iift" has a hiddeu \exists :

$$
\forall x \exists x^{\prime} \text { s.t. } \varphi(x)=x^{p}+p x^{\prime}
$$

x^{\prime} is unique up to p-tosion - us cantod over it of R a ut p the fire
Ex: 0 Categoy dosout have plll bades, intersectious of sbb-odject?
Solvtion: Prainde x^{\prime} itslff as part of the strudure, rather then the property of is were exsituce.
i.e. wount an quator $\delta: R \rightarrow R$ modlled an $\delta(x)=\frac{\varphi(x)-x^{3}}{P}$

Axioms? Write the ring-endo axions for φ in terms of δ.

- $\varphi(x+y)=\varphi(x)+\varphi(y)$
$(x+y)^{p}+p \delta(x+y) \quad x^{p}+p \delta(x)+y^{p}+p \delta(y)$

$$
\therefore p \delta(x+y)=p \delta(x)+p^{\delta}(y)+x^{p}+y^{p}-(x+y)^{p}
$$

an equiv to the
adativily o φ
(i) $\delta(x+y)=\delta(x)+\delta(y)-\sum_{i=1} \frac{1}{p}\left(P_{i}\right) x^{i} y^{p-2}$
sum equiv. ouly veraptor

- $\varphi(x y)=\varphi(x) \varphi(y)$

$$
(x y)^{p}+p \delta(x y)=\left(x^{n}+p \delta(x)\right)\left(y^{p}+p \delta(y)\right)
$$

(iii) $\delta(x y)=x^{p} \delta(y)+\delta(x) y^{p}+p \delta(x) \delta(y)$
(iii) $\delta(0)=0$
(iv) $\delta(1)=0$
"Leibuiz rules" for δ under $+, x, 0,1$. Bioum: $\delta=$ " d / α_{p}
De.: A furation $\delta=R \rightarrow R$ is a p-derivation if it sataties in-(i).
A δ-ring is a ring equiped with a p-derivation.

- \{p-der on R\} $\rightarrow\{$ Frob. 1 ith on $R\}$

$$
\delta \longmapsto \varphi \text {, wher } \varphi(x)=x^{p}+p \delta(x)
$$

This is a bijection of R is p-bor free (bat not in geveral!)
E.g: - Any p-tor-free ring with Frob. 1 ift: $\mathbb{Z}[x], \delta(x)=$ auything

Ruk: There is a formula-free dd. of a δ-strocture.
Ex: $0 R=\mathbb{F}_{7}-$ dg: R admits a p-der. $\Leftrightarrow R=\{0\}$, whreas all sech R have Fros. AAh!
(3) Save Lor $\pi / p R$-alghas.
2. Witt vectors

Gad: δ-rive
Cl) c

Ring
Compare: \{8fferchid ing\} ~

- Warm op with differential rimes

$$
W^{\text {din }}(A)=\text { "divided power series" }=\left\{\left.\sum_{t^{\prime}=0} a_{n} \frac{T_{n}}{t_{n}^{\prime}} \right\rvert\, a_{n} \in A\right\}
$$

obvious ring str: $\frac{t^{\prime \prime}}{w} \cdot \frac{t^{\prime}}{u!}=\binom{m u}{m}=$

$$
\tilde{g}(r)=" g(\text { Tapbr sense } \alpha r)^{\prime \prime}=\sum_{u=0} g\left(d^{\prime \prime \prime}(r)\right) \frac{t^{n}}{u^{\prime}}
$$

Cluck: \tilde{g} is dill ring map tithing g, and is uigur.
Alternative point of view:

$$
\begin{aligned}
W^{\alpha N(t i d}(A)^{\prime} & =A \times A \times \ldots \\
\sum a_{n} \frac{t^{\prime}}{w} & =\left(a_{0}, a_{1}, a_{2}, \ldots\right) \\
\frac{d}{d t} & =\text { skit t lett }
\end{aligned}
$$

The $\tilde{g}: r \longmapsto\left(g(r), g(d(r)), g\left(d^{2}(r), \ldots\right)\right.$

We can see that \tilde{g} is actually the viriqu set mas lifting g + equineriant.
So from this pout So from this point of view, the ring str. on

$$
W^{\text {dill }}(A)=A \times A \times \ldots
$$

is forced to wacke \tilde{g} a ring map.
In food, the ring shr. is a "purely syntactic" re-expression of the Leibniz rules for $d^{\circ 4}$.

$$
\begin{aligned}
& \sum a_{i} \frac{t^{n}}{i!} \sum b_{j} \frac{t_{j}^{j}}{j!}=\sum\binom{i+j}{i} a_{i} b_{j} \frac{t^{i+j}}{(i+j)!} \\
& \left(a_{0}, a_{1}, \ldots\right) \cdot\left(b_{0}, b_{1}, \ldots\right)=\left(\ldots, \sum_{i=1}\binom{n}{i} a_{i} b_{j}, \ldots\right) \\
& d^{o n}(x y)=\underbrace{\sum_{i=j=u}\binom{u}{i} d^{o i}(x) d^{0 j}(y)}_{\text {save }} \underbrace{q}
\end{aligned}
$$

- back to W
$W(A)=A \times A \times \cdots$ an ring str. of the $u^{\text {th }}$ component given by the Leibniz roles for δ^{n} w.r.t. both \pm and x

$$
\begin{aligned}
\left(a_{0}, a_{1}, \ldots\right)+\left(b_{0}, b_{1}, \ldots\right) & =\left(a_{0}+b_{0}, a_{1}+b_{1}-\sum_{i=1}^{-1} \frac{1}{p}\left(p_{i}\right) a_{0}^{i} b_{0}^{p-i}, \ldots\right) \\
\left(a_{0}, a_{1}, \ldots\right) \times\left(b_{0}, b_{1}, \ldots\right) & =\left(a_{0} b_{0}, a_{0}^{p} b_{1}+a_{1} b_{0}^{p}+p a_{1} b_{1}, \ldots\right) \\
0 & =(0,0,0, \ldots) \\
1 & =(1,0,0, \ldots) \\
\delta:\left(a_{0}, a_{1}, a_{1}, \ldots\right) & \longmapsto\left(a_{1}, a_{2}, \ldots\right)
\end{aligned}
$$

$$
\hat{g}(r)=\left(g(r), g(\delta(r)), g\left(\delta^{0^{2}}(r)\right), \ldots\right)
$$

\tilde{g} is the unique set map lifting g (and compar. with δ)
It is also a rung map by construction.
$\therefore W$ is the right adjoint!
Next time: Our W is canonically isom. to the usual Witt vector construction: But not by the identity!

Ex: (4) Prove the poly $P_{n}^{+}\left(x_{0}, y_{n}, \ldots, x_{n}, y_{n}\right)$ st. $\delta^{o u}(x+y)=P_{n}^{+}\left(x, y, \ldots, \delta_{(x,}^{+}, \delta^{\prime \prime}(y)\right)$ is unique. Similarly for multiplication.
3. Moduli interpretation

$$
\begin{aligned}
& R=\delta \text {-Ave } \\
& X=S_{\mu \mu}(R) \\
& X(A)=\operatorname{Hom}(R, A) \\
& \vdots \\
& X(\omega(A))<\operatorname{Ham}_{\delta}(R, W(A)) \quad!
\end{aligned}
$$

* If a modli space hes a δ-struedure, then the objects it classifies have a theory of canonical iris.

