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Gene regulatory networks (GRN) are being studied with increasingly precise quantitative tools and can
provide a testing ground for ideas regarding the emergence and evolution of complex biological
networks. We analyze the global statistical properties of the transcriptional regulatory network of the
prokaryote Escherichia coli, identifying each operon with a node of the network. We propose a null
model for this network using the content-based approach applied earlier to the eukaryote
Saccharomyces cerevisiae (Balcan et al., 2007). Random sequences that represent promoter regions
and binding sequences are associated with the nodes. The length distributions of these sequences are
extracted from the relevant databases. The network is constructed by testing for the occurrence of
binding sequences within the promoter regions. The ensemble of emergent networks yields an
exponentially decaying in-degree distribution and a putative power law dependence for the out-degree
distribution with a flat tail, in agreement with the data. The clustering coefficient, degree-degree
correlation, rich club coefficient and k-core visualization all agree qualitatively with the empirical
network to an extent not yet achieved by any other computational model, to our knowledge. The
significant statistical differences can point the way to further research into non-adaptive and adaptive

processes in the evolution of the E. coli GRN.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Complex biological systems such as transcriptional regulatory
networks (Ma et al., 2004; Samal and Jain, 2008), protein-
protein interaction networks (Spirin and Mirny, 2003) or
metabolic networks (Jeong et al., 2000) all require the satisfac-
tion of physical and chemical constraints between pairs of
molecules. There is a growing body of knowledge regarding
specific protein—-DNA or protein-protein interactions and meta-
bolic pathways. Nevertheless, it would be hopeless at this stage
to try to predict the universal (Bergmann et al., 2004) features or
the global architecture of the gene regulatory network or the
proteomic network on this basis. On the other hand, rudimentary
forms of many complex structures we observe in biology can
arise spontaneously, given the combinatoric profusion of
possible ways in which the simple building blocks, such as
nucleotides, amino acids, etc., can be associated with each other
(Dawkins, 1986, 2006; Kauffman, 1993). In particular, given a
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sufficiently long sequence (such as the genome), and a set of
complex biological molecules (such as the proteins), it is very
likely that some of them will have affinities for certain
subsequences of the genome and bind them, giving rise to an
interaction network.

We propose that important insights could be gained into the
emergence of biological networks by employing null models
making use of the combinatoric properties of random sequences
(Kim et al., 2003). Comparison with real biological data could
enable us to distinguish between: (i) generic properties of such
networks, (ii) features that could spontaneously evolve under the
kinetics of duplication and divergence (Wagner, 1994; Sengun
and Erzan, 2006; Lynch, 2007) and (iii) those features that must
have clearly evolved in response to specific selection pressures
(see, e.g., Kashtan et al., 2009 and references therein). Such a null
model for the global statistics of a biological network would not
aim to model it on a node to node basis, but would provide a
much more appropriate starting point for further elaboration than
would a “classical” random network (Erdés and Rényi, 1959,
1960).

In previous work (Balcan and Erzan, 2004; Mungan et al.,
2005) we have demonstrated that any collection of random
sequences of varying lengths with a matching rule between them
naturally gives rise to a complex network. In a recent paper
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(Balcan et al., 2007) it was shown that, the statistical properties of
the transcriptional gene regulatory network (GRN) of the
eukaryote Saccharomyces cereviciae (yeast) (Teixeira et al., 2006)
could be predicted by such a null model, with random sequences
representing the binding sites of the transcription factors and the
promoter regions. The information content of the binding
sequences, extracted from their probability matrices (Teixeira
et al, 2006), was used to determine their effective length
distribution. The only free parameter employed in this model
was the exponent of the long tailed power law distribution
(Almirantis and Provata, 1999) exhibited by the promoter region
lengths (Harbison et al.,, 2004). This exponent was chosen to
obtain the best fit of the model networks to the empirical GRN. In
fact, the model was not very sensitive to the precise value of this
exponent.

It should be mentioned that similar ideas of sequence
matching have been employed earlier in constructing model
genomes and interaction networks (Banzhaf and Kuo, 2004; Geard
and Wiles, 2003; Reil, 1999; van Noort et al., 2004; Wagner, 1994;
Watson et al., 2004). However, in these models no attempt was
made to take into account the variability in the specificity of the
interactions and the results were not very realistic.

Taking the content-based network approach of Balcan et al.
(2007) we here propose a model which is able to predict many of
the global statistical properties of the GRN of Escherichia coli, on
the basis of the distribution of the degree of specificity of the
binding sequences/sites (Sengupta et al., 2002). If the high degree
of agreement between the GRN of yeast and the content-based
model is not due to pure chance, we should be able to
demonstrate that the model also captures the characteristics of
a prokaryotic GRN that is known to be organized somewhat
differently.

In prokaryotes, in contradistinction to eukaryotes, one en-
counters a more complex, hierarchical organization of promoter
regions and groups of genes which they regulate (Alberts et al.,
2002; Almirantis and Provata, 1999; Browning and Busby, 2004;
Ma et al., 2004; Okuda et al., 2007; Salgado et al., 2006b; Warren
and Wolde, 2003). Genes which are to be co-regulated typically
occur in tandem. A group of one or more genes which are very
often (but not necessarily always) transcribed together into one
mRNA is called a “Transcription Unit” (TU). A maximal series of
genes that can be transcribed into an mRNA, organized into one or
more tandem or overlapping TUs, are termed an “operon” (see
Fig. 1). The operon, and the TUs that it may contain, are
(generally) preceded by promoter regions (PRs). As in the case
of eukaryotes, special proteins called transcription factors (TFs)
have high affinities for certain sequences, called “binding
sequences”, or somewhat misleadingly, “binding sites” (bs)
within these PRs.? The binding of a bs by a TF may facilitate or
suppress the transcription of all the genes in the associated TU,
thereby regulating their expression.

In the next section we present our information-content based
null-model for the E. coli GRN. In Section 3, we describe the
biological information which determines the model parameters.
In Section 4 we outline our simulation results which we obtain by
generating an ensemble of realizations of the model GRN,
compute the topological properties of these different realizations
and compare them with the empirical network which we extract

2 The terminology here is far from uniform. Certain authors, e.g., Alberts et al.
(2002), refer to the DNA sequence bound by the RNA polymerase as a “promoter”,
and the region in which the binding sequences of the transcription factors
regulating a given TU are to be found, is termed a “gene control region” or a
“regulatory region”. On the other hand, Harbison et al. (2004), Berg et al. (2004),
and Almirantis and Provata (1999) among many others use the term in the way we
have defined it here.
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Fig. 1. Hierarchical organization of the E. coli genome. Shown are an operon (big
box), which constitutes a transcription unit (TU) in itself, and a smaller box
embedded in it, which is another TU. Promoter regions (PRs), shown here as
striped horizontal bars, are attached to both the whole operon and the TU
embedded in it. The vertical bars indicate different genes within the TUs. A blob on
the left hand side represents a transcription factor which may bind a binding site
(bs) within one of the PRs, initiating the transcription of the TU associated with
that PR. The drawing is not to scale.
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Fig. 2. Transcription units per operon. Distribution of the number of transcription
units (TUs) per operon for the E. coli genome, extracted from the RegulonDB v6.0
(Gama-Castro et al, 2007). The straight line is the power law x~", with
v=3.333 £+ 0.045.

from the RegulonDB v6.0 (Gama-Castro et al., 2007). Section 5 will
be devoted to a discussion of our findings.

2. The model

To build the model network, we choose a certain number of
nodes, each representing an operon. For each node, we pick from
an empirically determined distribution (see Fig. 2), the number of
TUs to be associated with that operon. This will determine the
number of random PR sequences which we will assign to the
node. The lengths of these PR sequences will be chosen from
the empirical PR length distribution (see Section 3 and Fig. 3).

We then randomly choose an empirically determined percen-
tage (see Table 1) of operons which will incorporate TF coding
genes. Each TF-coding node will be assigned one or more binding
sequences its TF will recognize. The number of bss per TF obeys
the empirical distribution in Table 1. The length of each distinct bs
will be independently chosen from the bs length distribution (see
Fig. 4) determined (see next section and Appendix A) from the
information content of the known binding sequences.

Finally, we consider each TF-coding operon (with at least one
bs, by definition), and ask if any of these sequences are contained
as a subsequence within any of the PRs assigned to any of the
operons. A directed edge is then drawn from the operon coding
the TF to each of the operons whose PRs contain the bs associated
with this TF. Self-interactions are included in this scheme. Nodes
connected by directed edges going both ways are considered to be
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Fig. 3. Where do the binding sites occur? The distribution of intergenic distances
(Rudd, 2000) in base pairs (circles) and the distances from the centers of the
binding sequences (bsc) to the start codons of the operons or transcription units
(TUs) which they regulate (from the RegulonDB v6.0). The latter distances are
shown as filled diamonds for operons, empty diamonds for TUs within an operon.
The absolute values of the distances, which may be negative (upstream) or
positive (downstream) were taken. The distributions were fitted to exponential
functions ~ exp(—bl), omitting the first three points and roughly ten outlying data
points (out of about 100) with distances up to [ ~2500. The b values are given in
Table 1.

Table 1
Network parameters and genome data extracted from the RegulonDB (Gama-
Castro et al., 2007) and Ecogene (Rudd, 2000).

Number of nodes (operons) 2684
Number of known TFs 159
Percentage of TF coding operons 5.9
Candidate PR lengths b
Intergenic 0.00648 +9 x 107>
bsc to start codon (operon) 0.0156 + 0.0003
bsc to start codon (TU in op.) 0.014 + 0.001

bsc to start codon (op.s and TUs) 0.0152 + 0.0007

Number n of bs per TF 1 2 3 4 5 7
Percentage of TFs with n bs 766 11.7 1.7 33 33 1.7 1.7

The percentage of transcription factors (TFs) recognizing n distinct binding
sequences has been calculated on the basis of the 60 TFs for which this information
is available. The parameter b refers to fits to distributions of the form exp(—bl) for
the intergenic and for binding site center to start codon distances [ (see Fig.3).

connected by one bi-directional edge. The resulting directed
network is one realization of our model GRN.

2.1. Information content and specificity of the connections

Since we require an exact match for each connection, the
number of characters in the bs determines the specificity of the
interaction. In a real genome, the consensus bs represents a
number of slightly different sequences to which the same TF
binds. Therefore, we identify the length of a model binding
sequence with the effective length computed (Balcan et al., 2007)
from the probability matrices of the set of similar sequences
recognized by a given TF (Gama-Castro et al., 2007; Gershenzon
et al., 2005; Li et al., 2002; Pachkov et al., 2007; Stormo, 2000)
(see Appendix A).

We define (Balcan et al., 2007) the effective information
content of a consensus bs as its Shannon information (Shannon,
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Fig. 4. Information content of the binding sequences. Effective binary length
distribution for the binding sequences of E. coli extracted from three different
databases: RegulonDB v6.0 (Gama-Castro et al., 2007) (triangles), PRODORIC
(Miinch et al., 2003) (squares), SwissRegulon (Pachkov et al., 2007) (circles). The
solid line is the truncated Poisson distribution with mean = 20, and normalized
over the finite range of the data points represented by circles, as obtained from the
SwissRegulon data. The data points fall right on the curve.

1949; Avery, 2003) relative to a random sequence,

In 4
In=3">" pg")lnpg")ﬂmln 4, 1)

i=1j=1

Here [, is the length of the mth bs and the elements of the
probability matrix, p?”). are the probabilities for encountering the
jth nucleotide (from among A,T,C,G) at the ith site, computed over
the different instances of this bs within the different PRs. The last
term comes from subtracting off the information content of a
random sequence of length [, with equal probabilities for the
four letters. Note that any other choice of the background
distribution would have just shifted the lengths by a constant
amount per position (see Appendix A).

The binding sequences and the PRs will be represented in
Boolean characters (see Appendix A). We define the effective
lengths of the binding sequences represented in Boolean char-
acters to be

T = I, /In2], ()

where the square brackets indicate integer part. The probability
matrices are frequently reported in the databases on the
assumption that they factorize site-wise, which is most probably
not the case (Berg et al., 2004; Benos et al., 2002; Bilu and Barkai,
2005; O’Flanagan et al., 2005; Okuda et al., 2007), and the
effective bitwise lengths are probably slightly overestimated as a
result (see Section 3).

2.2. Connection probabilities

Within our model, the probability of connection between two
nodes can be estimated analytically. The probability of encoun-
tering a Boolean bs sequence of length I, associated with one node,
within the PR sequence (of length k > [) of a second node, is given
to a very good approximation (see Mungan et al., 2005, Fig. 2) by

p( k) ~ 1—(1=27Hk1+1, 3)

For I'> 1, this can be further approximated by p(l, k) ~ (k—I+1)27".
Thus the effective length distribution of the bs is highly relevant
to the topological properties of the resulting interaction matrix,
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with the connection probabilities depending exponentially on the
bs lengths, and only linearly on the length of the PR.

The resulting network can be considered as a superposition of
random networks, with connection probabilities which depend on
the properties of different classes of nodes, here labeled by the
lengths of the bs (if any) and PR sequences associated with them.
For analytical results on how such a superposition can actually
give power law or exponential distributions, the reader should
consult Mungan et al. (2005) and Balcan and Erzan (2007). It
should be noted that different distributions of sequence lengths
give rise to markedly different behavior. The interaction network
of a set of random sequences with an exponential length
distribution was solved analytically by Mungan et al. (2005),
and shown to exhibit an out-degree distribution with two
different scaling regimes and a non-monotonic in-degree dis-
tribution with a Gaussian tail.

3. Extracting the model parameters from biological data
3.1. The GRN at the operon level

As stated above, to analyze and model the GRN at the operon
level, we identify the nodes of the network with the operons. A TF
coded by any one of the genes belonging to any TU within an
operon contributes one or more out-going edges to the node
associated with that operon. Conversely, any TF which binds a bs
contained within a promoter region (PR) associated with a node
will contribute an in-coming edge to that node, regardless of
whether it regulates the operon itself, or a TU within the operon.

In the RegulonDB v.6.0 the number of TF coding operons are
159 out of a total of 2684, or about 5.9% of all operons. The E. coli
genome is reported to have only one operon which codes two TFs,
all the rest code one or zero. There are a couple of TFs which are
complexes formed out of two proteins coded by genes in two
different operons but we have neglected this fine detail. We
picked 5.9% of the nodes on the average and assigned one binding
sequence to each, indicating that they code candidate TFs. The
distribution of the number of PRs (effectively, the number of TUs)
associated with each operon is determined from the RegulonDB
and is shown in Fig. 2.

3.2. Determining the PR lengths

Prokaryotes have a very high proportion of “coding” to
intergenic material in their genomes, in comparison to eukar-
yotes. In E. coli coding material constitutes about 89% of the whole
genome, while in S. cereviciae the ratio is just about inverted. The
number of genes, on the other hand, are comparable in the two
organisms; as a consequence, the average intergenic distance is
much smaller on the prokaryotic genome, and distributed
exponentially (Almirantis and Provata, 1999).

There is no clear cut prescription for the determination of the
lengths of the PRs. We decided to focus on the distances (in
number of base pairs, with the absolute value taken) between the
start codons of the TUs and the binding site centers (bsc)
recognized by the TFs regulating them (see Fig. 3). We believe
this quantity is most clearly indicative of the length of the region
in which the bs could possibly occur. The PR length distribution
found in this way is not conditional on whether the regulated TU
is buried inside an operon, or is located right at the beginning. By
contrast, the intergenic distances found from the EcoGene
database (Rudd, 2000), also displayed in Fig. 3, are larger for
pairs of inter-operonic pairs of genes than they are for intra-
operonic pairs (Okuda et al., 2007). The continuous line in Fig. 3,

fitted to the relative frequency of bsc-to-start-codon distances
taken from the RegulonDB, corresponds to an exponential
distribution ppr(l) ~ exp(—bl) with b=0.0152 +0.0007 (see
Table 1). In performing the actual simulations, the PR lengths
were randomly selected from the empirical distribution of all the
bsc-to-start-codon distances shown as diamonds in Fig. 3, uni-
formly shifted upwards by 9 base pairs to allow the shortest PRs
to accommodate binding sequences of typical length. The mean of
this shifted distribution is 91bp, with a few datum points at
distances as large as 2500bp. The absolute range of the
distribution is comparable with that for S. cereviciae, although
there the distribution decays only as a power law (Almirantis and
Provata, 1999; Balcan et al., 2007).

3.3. Probability matrices of the binding sequences

The most important problem was in determining the effective
lengths (see Egs. (1) and (2)) of the binding sequences. We have
analyzed the E. coli data starting from version 5.6 of the RegulonDB
and subsequently updated our data with versions 5.7, 5.8 and 6.0.
In the successive updates of the data base, the most telling
difference was in the small but extremely important (see Eq. (3))
upward shift of the minimum effective bs length appearing in
RegulonDB v6.0. Moreover, inspection of the sets of sequences used
for the generation of certain probability matrices in the RegulonDB
revealed that, if the sequences were clustered into several distinct
sets (rather than being considered as variants of the same bs) they
could be better aligned. This would result in several probability
matrices with fewer columns but with larger matrix elements,
leading to larger relative information content (Eq. (1)) for several
distinct binding sequences (Fu and Weng, 2004).

The literature search for an alternative source for weight
matrices yielded the SwissRegulon (Pachkov et al., 2007) and
PRODORIC (v2.0) (Miinch et al., 2003). The effective bs length
distributions obtained via Eqs. (1) and (2) from these three
databases are displayed in Fig. 4. Data was binned into intervals of
size three.

The weight matrices (see Appendix A) quoted in the SwissRe-
gulon database were obtained by Pachkov et al. (2007) by re-
clustering and re-aligning the binding site data from RegulonDB,
using the clustering algorithm “PROCSE” of van Nimwegen et al.
(2002). In Fig. 4, the computed length distribution in bits is
indicated by the open circles. This distribution is clearly much
smoother than the others. The lower limit of its range agrees with
that of the RegulonDB v6.0 and it has a mean of 20 bits. We have
superposed on this set of points a truncated Poisson distribution
with the same mean, normalized over their finite range. It can be
seen that most of the points fall right on the curve, which
interpolates over the gaps in the data. In our simulations we have
randomly chosen our bs lengths from this smoothed, Poissonian
distribution.

We have found from the SwissRegulon (Pachkov et al., 2007)
data that the number of binding sequences per TF obeys the
distribution given in Table 1. Each bs contributes a single length
to the empirical length distribution, regardless of the number of
other binding sites a TF may have. In constructing the model
genome each bs length is drawn independently from the
truncated Poisson distribution shown in Fig. 4.

The parameters for the GRN network of E. coli are shown in
Table 1.

4. Simulation results

We chose the size of the model and empirical networks to be
comparable, even though the absolute size of the network can be
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normalized away for all of the statistical graph properties
discussed below, except for the k-core analysis. The empirical
network has 683 nodes (out of 2684) that have at least one edge
connecting them to some other node. For the model networks we
started with 2684 nodes as in the empirical network; the number
of connected nodes range between 575 and 1372, with a mean of
982 and standard deviation 162. The model networks have on the
order of 2000 edges, whereas the empirical network has about
1300.

In our simulations we randomly pick 5.9% of the nodes to be
candidates for TF coding nodes; however, only about half of them
actually connect (see Table 1) and we end up with about half the
number of TFs as the empirical network.?

In order to study the statistical properties of our model, we
have performed two sets of simulations. In the first, we have
computed the topological properties of 100 realizations of the
model. Below, in Figs. 5-11, we display the scatter plots we thus
obtained. The properties computed for the empirical network are
superposed on these simulation results. We have also performed
k-core analysis of the empirical and model networks. Finally, we
have extracted statistics of the motifs (Milo et al., 2002, 2004)
encountered in both the empirical and model networks.

In the second set of simulations, we have randomized the
empirical and model networks while keeping the in- and out-
degrees of each node fixed. Comparisons of the topological
properties of randomized versions of the empirical and model
networks are available in the Supplementary Material. Not
surprisingly, the empirical network moves closer to the null
model under randomization, while the 100 randomized versions
of one randomly picked model network generate another,
statistically identical realization of the original ensemble. As
remarked below, the clustering coefficient and motif statistics of
the empirical graph are most strongly affected by the randomiza-
tion, while the degree-degree correlation function is almost left
invariant.

The simulation code for generating the adjacency matrices and
computing the graph properties was written in C* . A reasonably
annotated version is available upon request. The random number
generator we used was a C** implementation by Richard
Wagner* of the Mersenne Twister (Matsumoto and Nishimura,
1998).

4.1. Degree distributions

A basic tool of graph analysis is the degree distribution of the
nodes (Albert and Barabasi, 2002; Dorogovtsev and Mendes,
2002). The degree of a node is the total number of nodes to which
it is connected, by one or more directed or undirected edges (see
Appendix B).

In Fig. 5 we present the results for the degree distribution p(k),
on a log-log plot. The emerging picture is rather similar to that of
the GRN of yeast (Balcan et al., 2007). It is very gratifying that here
too, the empirical data points (red disks) fall right on top of the
scatter of points from 100 independent realizations of the model.
For each realization we have picked the relevant sequence
lengths, TF numbers and bs numbers, from the appropriate
distributions and generated the random sequences indepen-
dently. In Fig. 6 we have plotted the averages over the 100

3 We have repeated the calculations with twice the number of nodes that are
TF candidates, ending up with approximately the empirical number of TFs which
actually bind other nodes. The statistical distributions characterizing the network,
normalized as they are by the size of the network in each case, remain the same.
There is a slight reduction in the scatter due to the larger network. Data is
available upon request.

4 http://www-personal.umich.edu/ ~wagnerr/MersenneTwister.html

10 T r r
E. coli e
] Uad Simulation -
3
S 01 ]
x
\
0.01 ¢ o . E
LA s o -
.....:'m" Jealioung '&ﬂ s
0.001 1 1 1
0.1 1 10 100 1000

k/<k>

Fig. 5. Degree distribution. Plot of the degree distribution of the transcriptional
gene regulatory network (GRN) of E. coli extracted from the RegulonDB v6.0 (red
disks), compared with the scatter plot (black points) of the degree distribution of
100 independent realizations of the model network, in which we have included
only those nodes with degree greater than zero. To account for the fluctuations in
the network size, the horizontal axis has been scaled with the average degree per
node <{k), an extensive quantity. The probability p(k) (the vertical axis) has been
multiplied by the average degree in anticipation of an exponential fit to the
distribution, shown in Fig. 6. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Exponential fit to the degree distribution. Semi-logarithmic plot of the
degree distribution of the transcriptional gene regulatory network (GRN) of E. coli
from the RegulonDB v6.0, compared with the degree distribution of the model
network, averaged over 100 realizations (black discs). The configurational average
is taken over the set of independent realizations of the model network. Error bars
stand for one standard deviation. Numerical results for the fit to ~exp(—k/&) of
the initial range of the empirical and model distributions are given in Table 2. The
vertical axis has been multiplied by the degree averaged over the nodes (and for
the model networks, also the realizations) in order to scale away the fit parameters

-

¢

realizations. The error bars correspond to one standard deviation
in each case. In this semi-log plot, one may discern that the initial
part of the p(k) curve is exponential in both the model and
empirical networks; the difference between the slopes of the
fitted curves is somewhat in excess of the error bars (see Table 2).

By plotting the in- and out-degree distributions separately one
can see that the small degree part of the distribution in Fig. 5
comes essentially from the in-degrees, while the larger degrees
are contributed by the out-degrees. In Fig. 7, the semi-log plot for
the in-degree, and in Fig. 8, the log-log plot for the out-degree
distribution, one has strong qualitative agreement between the
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for one standard deviation. Numerical results for the characteristic in-degree, ¢, found from fitting <p(ki) > consig ~ €Xp(—k/&in)) to the initial ranges of the distributions,
are given in Table 2. The datum point with zero in-degree and the flat tail is truncated in the lower panel.
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Fig. 8. The out-degree distribution. Both the scatter plot and the averages over 100 realizations of the simulation (black discs) are shown, compared with empirical
distribution (red discs). Error bars in the lower panel stand for one standard deviation. Values of the exponents for the fits to {p(k)) config ~ k™7 are given in Table 2. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

model and empirical networks, with, however, a quantitative 2005). Within the model, these peaks arise from the shortest bs
difference in both the average in-degree per node and the power sequences which are most frequently to be encountered in the

in the initial, scaling range of the out-degree (also see Table 2). In longer PRs. As one goes to smaller degrees, the peaks merge and
the clustering of the model points on the far right side of the out- give rise to a continuous distribution.
degree distribution, we see a faint remnant of the discrete peaks We find that the degree distribution of the empirical gene

which would be there for a much larger network (Mungan et al., regulatory network of E. coli, as well as that of yeast (Balcan et al.,
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Fig. 9. Clustering coefficient C(k). The E. coli data from the RegulonDB v6.0 is
shown as red discs. The scatter of black points corresponds to 100 realizations of
the model network. All self-interactions have been removed from the network
before calculating the clustering coefficient. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. The rich-club coefficient r(k). The E. coli data from the RegulonDB v6.0 are
shown as red discs. The scatter of black points corresponds to 100 realizations of
the model network. All self-interactions have been removed from the network
before calculating r(k). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

2007), are much richer than so far suspected. There were early
claims (Barabasi and Oltvai, 2004; Bergmann et al., 2004; Dobrin
et al,, 2004; Vazquez et al., 2004) that gene regulatory networks
were scale free, with the degree distribution decaying as a
universal power law, p(k) ~ k=7, where y ~2, with, perhaps an
exponential cutoff. For this operon-level analysis we find no
evidence for the power law with an exponential cutoff claimed for
the overall degree distribution, and we are not aware of
convincing arguments indicating that a process of preferential
attachment (Barabasi and Albert, 1999) is in operation. On the
other hand, our model reproduces the exponential decay of the in-
degree distribution, also noted by Guelzim et al. (2002) for yeast.
For ease of comparison, it may be useful to supply some numbers.
The putative power law behavior of the out-degree distribution
has an exponent of y ~ 0.3, over a very limited range of about one
decade. For the empirical network, a comparable fit within an
interval of again about a decade yields 0.4 (see Table 2). Note that
both these numbers are much smaller than 3, expected for the
“preferential attachment” model.
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Fig. 11. The degree-degree correlation function. The expected degree of nodes
neighboring a degree-k-node is denoted by kn, (k). All self-interactions have been
removed from the network before calculatingthe correlation function. Since this
correlation function is an extensive quantity, both the vertical and horizontal axis
have been normalized by the average degree. The E. coli data (red disks) is from the
RegulonDB v6.0. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 2
Comparison of the average degrees and degree distributions of the empirical and
model networks.

E. coli Model
Average degree <k) 3.796 2.906
I3 0.46 +0.01 0.35 +0.03
Average in-degree <{ki,> 1.977 1.454
Ein 1.81+0.09 0.94 +0.03
Average out-degree <Koyt » 1.977 1.454
Y 0.40 +0.01 0.3240.01

Only those nodes (operons) with non-zero degree have been included in the
network statistics. The parameters &, &, refer to the exponential fits to the degree
and the in-degree distributions (see Figs. 6 and 7). The out-degree distribution has
a putative power law behavior kg, for relatively small degrees (see Fig. 8). These
numbers are only provided for ease of quantitative comparison of the model and
empirical networks. The power law fits are valid only within a range of about a
decade and do not represent any claims that the respective networks are scale free.
See text, Section 4.1.

4.2. Higher order correlations

Other quantities of interest, which reflect higher order
correlations between the nodes than just pair-wise connectivity,
are the clustering coefficient C(k) as a function of the degree
(Bollobas, 1998; Albert and Barabasi, 2002; Dorogovtsev and
Mendes, 2002), the correlations between the degrees of neighbor-
ing nodes (Colizza et al., 2005) and the rich-club coefficient (Zhou
and Mondragon, 2003; Colizza et al., 2006). These quantities are
defined in Appendix B. Before calculating these three quantities,
we have removed the self-interactions from both the empirical
and model networks. It should be noted that the empirical
network has 93 self-interactions, while the model networks have
between 0 or 1 self interaction per realization. Since the bs and PR
sequences associated with the nodes have been generated
independently, this null model does not incorporate the abun-
dance of self-regulatory interactions in the prokaryotic genome
(Lynch, 2007).

The clustering coefficient C(k) is shown in Fig. 9. The data
points for the E. coli network follow the same qualitative trend as
those for the model network; however, they are systematically
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Fig. 12. The k-core analysis. (a) The empirical E. coli gene regulatory network from the RegulonDB, and (b) a model network (a typical realization, number 48) from our
ensemble of model networks. The k-cores have been visualized using the visualization tool developed by Alvarez-Hamelin et al. (2005), LaNet-vi, which is available online
at (http://xavier.informatics.indiana.edu/lanet-vi/). The color code indicated on the right corresponds to the shell number (coreness), while the size of each ball is
proportional to the degree of the corresponding node. A sample of values are given on the left, the last one being the largest degree on the network. The thickness of the
shells corresponds to the spread in the coreness of the nodes to which members of a given shell are connected.

shifted to higher values, more markedly so for small k values. It is
clear on the log-log plot that the curves followed by both the
empirical and the model data points deviate downwards from a
straight line and therefore the decay is faster than a power law,
contrary to previous claims to this effect by Vazquez et al. (2004).

The simulation results for the rich-club coefficient r(k) (see
Fig. 10) show a more pronounced non-monotonicity where the
empirical network displays a shoulder. There is a shift to higher
values in the high-degree end, indicating a greater incidence of
inter-connections between high-degree nodes than expected on
the basis of uncorrelated binding sequences and PRs. (Both of
these effects also show up in the motif statistics (Milo et al., 2002,
2004), and it will be further discussed below.) Colizza et al. (2006)
find that the rich club coefficient displays a monotonic increase
with the degree for real-world networks such as the internet, air
transportation networks, and scientific collaborations, as well as
random graphs and the scale free networks yielded by the
preferential attachment model of Barabasi and Albert (1999). It is
interesting that the only departure from this behavior is a small
non-monotonicity, or shoulder, for the protein-protein interac-
tion network, which is a constraint-satisfaction type network, like
the gene regulatory network we are considering here.

The average degree of nodes that are nearest neighbor to
degree-k nodes (the so-called k—k correlation, or knn(k)), is plotted
in Fig. 11. Here again, one has close qualitative agreement
between the GRN of E. coli and the set of model networks.
However, in this case the data points are shifted downwards by
almost a factor of four in the small degree region, indicating that
the average degree of neighbors of low-degree nodes is four times
smaller than what one would expect on the basis of the model.
This fact is also reflected in the k-core analysis of the network; see
next subsection. In the E.coli GRN, the low in-degree nodes are
generally those with high out-degrees, regulating a large number
of TUs, which are not themselves regulating. Thus their neighbors
will have degrees that are below the average. In the model, for any
TF-coding node the PR lengths and the length of the bs associated
with the TF are chosen independently. Therefore, there is no
correlation between the in-degree and out-degree of a node.

4.3. Hierarchical structure

A different way of analyzing the graph properties is the k-core
analysis (Bollobas, 1998). The iterative method for determining
the different layers, or shells, is described in Appendix B. The

visualization (Alvarez-Hamelin et al, 2005) of the different
k-shells is a very concise way to display the hierarchical
organization of the graph. In Fig. 12 we show the k-core
analysis of the GRN of E. coli at the operon level and a
representative realization of our model network. Both have five
shells. For this application we chose the overall fraction of
potential regulatory nodes (i.e., those coding transcription factors)
to be such that, the number of actually connected regulatory
nodes was equal to the empirical number, 159 (see Table 1, main
text, and Supplement, Table 1).

The similarity between the k-core visualizations for the
empirical and model networks is very close, with both showing
a very marked hierarchical organization. All the nodes of highest
degree (hubs) reside in the innermost core of the graph and are
highly connected amongst each other. Nodes of different coreness
(residing in different shells) are preferentially connected directly
to the innermost core, with this tendency being more pronounced
in the model network. This structure has also been found in the E.
coli GRN at the gene level. See Ma et al. (2004).

In the Supplement we also provide plots of the shell
populations and the connectivity between nodes belonging to
different shells. It is instructive to contrast the k-core analysis of
the rather similar yeast GRN with that of Barabasi-Albert scale
free graphs of the same size. The latter yield much fewer shells
(only three compared to nine for the empirical and model
networks) and no hierarchical organization, with the nodes in
different shells being connected to each other seemingly at
random (Fig.1, Supporting Text 2, Balcan et al., 2007).

4.4, Motif statistics

Finally let us consider the motif statistics, reported in Figs. 13
and 14. We have used the motif finder program “FANMOD” (freely
available online at http://www.minet.uni-jena.de/~wernicke/
motifs/) developed by Wernicke and Rasche (2006). We see that
in the model network bi-directional edges are totally absent, so
that a number of motifs present in the E. coli GRN are simply ruled
out. However, we may note that although the absolute values of
the Z-scores for the motifs in a randomly selected realization of
the model network are smaller than the values encountered in the
real network, they do consistently have the same sign, i.e., they
depart from the randomized versions in the same direction as the
empirical network. These results may be compared with the motif
statistics at the gene level reported by Ma et al. (2004).
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Size-3 motifs

Motif
Type \ .\
Source “—A * «—k
(46) (14) (6) (36) (38) (12) (166) (164) (78)
RegulonDB | 0.36732 1.0329 92.568 2.7342 0.63246 2.6099 0.0055236 0.046951 0.0027618
(16.301) (-15.981) (15.664) (-12.201) (6.7199) (-6.2338) (1.5481) (-0.84301) (0.28815)
Random 0.053932 1.6352 91.722 3.3329 0.29975 2.8976 0.0020076 0.051191 0.0025905
(0.019225) (0.037689) (0.054002) (0.049074) (0.049511) (0.046151) (0.0022712) | (0.0050301) | (5.946e-004)
Model 95.499 1.8346 0.14321 2.5236
(1.4397) (-1.4494) (1.4492) (-1.4336)
Not found Not found Not found Not found Not found
Random 95.462 1.8732 0.10307 2.5612
(0.02512) (0.026608) (0.027699) (0.026234)

289

Fig. 13. Network motifs. Percentages of size-3 motifs found in the E. coli network generated using data from RegulonDB v6.0 and in one realization of the model.
Corresponding values obtained from 1000 randomized networks are also given. Numbers in the parentheses for the randomized networks stand for the standard deviations
whereas the ones for the original network are the Z-scores for that motif. The Z-score is defined as the difference between the value for the original network and the mean
value over 1000 randomizations divided by the standard deviation. Motifs are ordered in decreasing value of the Z-score for the RegulonDB network from left to right. The

numbers below the graphs identify the motifs.

Size-4 motifs (only the ones with a Z-score above three in the RegulonDB network are listed)

Motif ’ ' P -
Type \ 1 ™ P
N\ \\ iy //”
5 \ e | ae—e
Source
(222) (2462) (2270) (2458) (2202) (666) (396) (2184) (18518)
RegulonDB | 0.21002 0.00020496 | 0.0012981 0.0025962 0.015509 0.00936 0.026645 0.047961 0.00027328
(38.85) (21.559) (20.103) (12.31) (10.935) (9.0363) (-8.518) (-8.0081) (6.7408)
Random 0.0057148 1.3486e-006 | 3.2579¢-005 | 0.00028541 | 0.0030946 0.0020388 0.062474 0.074015 1.5618e-005
(0.005259) (9.445e-006) | (6.295¢-005) | (1.877¢-004) | (0.001135) (8.102¢-004) | (0.004206) (0.003253) (3.823e-005)
Model 0.0398
Not found Not found Not found Not found Not found Not found Not found (-1.2373) Not found
ot foun ot foun ot foun ot foun ot foun ot foun ot foun ot foun
Random X ‘ : : 0.042489
(0.002173)
Motif | get—p S =
Type / N Ny ></
\ \\ "
[ E—— ) Y % :
Source
(2134) (30) (2206) (392) (206) (140) (142) (158) (2766)
RegulonDB | 0.0084718 1.1248 0.001708 0.074743 0.058756 6.0642 1.4287 0.47545 0.00013664
(6.5921) (6.5352) (4.7971) (-4.6899) (4.3935) (-3.8253) (3.6374) (3.1671) (3.0439)
Random 0.0011244 1.8018 0.00039949 0.11711 0.019001 7.1049 0.77002 0.18013 1.2782¢-005
(0.001115) (0.1036) (2.728e-004) | (0.009033) (0.009049) (0.27204) (0.18107) (0.093247) (4.069¢-005)
Model 0.0597 0.022514 5.5056 0.39466
_ _ X (-1.6417) (4.6942) (-1.9132) (1.8919) _ _
Not found Not found Not found Not found Not found
Random 0.071442 0.0055961 5.9085 0.24436
(0.007152) (3.604e-003) | (0.21059) (0.079445)

Fig. 14. The statistics for motifs of size 4.

5. Discussion

In this paper we have presented a null model for a complex
biological system. We have provided a detailed comparison of the
model with the actual biological network, the transcriptional gene
regulatory network of E. coli. We believe this study contributes to
an understanding of how and to what extent such structures
might emerge from combinatoric considerations alone.

Our analysis of the most up to date data on the transcriptional
gene regulatory network of E. coli shows that the somewhat
simplified picture of scale free graphs (Barabasi and Oltvai, 2004;
Dobrin et al., 2004; Vazquez et al., 2004; Bergmann et al., 2004),
with exponents 2<7y<3, and modeled by a “preferential
attachment” growth rule (Barabasi and Albert, 1999), is not

applicable for the statistical features of the E. coli GRN at the
operon level. The success of our combinatoric model lies in its
detailed reproduction of “non-universal” details and trends in the
statistical features of the empirical network.

In Section 4 we have shown that the degree distribution of the
E. coli network is dominated by the in-degree for small degrees,
and has an exponential decay in this region. This behavior is
faithfully reproduced by the model network. The model out-
degree distribution exhibits a putative power law behavior over a
small interval of about a decade, as do the E. coli data, with a small
power comparable to that of the empirical network (see
numerical values in Table 2). The long flat tail of the out-degree
extending beyond the initial scaling region is present in both the
model and the empirical graphs and is not just scatter due to the
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paucity of data, as can be seen from analytic computations
(Mungan et al., 2005; Balcan and Erzan, 2007), albeit for different
sequence length distributions. We find that the clustering
coefficient does not follow a power law as claimed by Vazquez
et al. (2004), while our model is able to reproduce the form of the
variation with the degree. The rich club coefficient displays the
same overall increase, as well as a marked non-monotonicity as a
function of k/<k), at the same values where the graph for the
empirical network displays a shoulder. The k-core analysis and
the k-shell population distribution as a function of the coreness
(see Supplementary material) are in agreement with the main
features of the empirical network.

It should be noted that the data that goes into our model
network is of two kinds. (i) The number of operons, TFs, and the
number of different bs bound by the same TF. These determine
the total size of the network and set lower and upper bounds on
the total number of edges, but cannot in any way lead to even a
qualitative prediction regarding the degree distributions or the
other topological properties of the network. (ii) The distribution of
the information content of the connections, an attribute super-
ficially having nothing to do with the topology. Our model
provides a theoretical framework within which the second type of
data is used to predict the specificity of the connections, and
thereby the statistics of the network topology. It should be noted
that the range of possibilities given just the first kind of data are
nearly infinite in the absence of a model, and therefore even a
qualitative agreement between the empirical and model networks
is an important achievement.

5.1. Quality of the data and the predictive power of the model

The second point we would like to make is that the
quantitative agreement between the empirical GRN and our
model networks improved steadily with the discovery of larger
and larger numbers of regulatory interactions in the E. coli
genome. It can be seen from Fig. 4 that there is rather poor
agreement between different data bases regarding the effective
binary length distribution of the binding sequences. The crucial
increase in the minimum effective information content of the
binding sequences reported in the successive versions of
RegulonDB (starting from v5.6 (Salgado et al., 2006a)), and the
improved distribution we derived from the SwissRegulon data-
base (Pachkov et al., 2007), resulted in a radical improvement in
the agreement between the model networks and the E. coli GRN.
Thus, we may say that given the correct bs and PR length
distributions, the model is able not just to mimic but to virtually
predict qualitative features of the E. coli GRN as reported in the
RegulonDB v6.0.

5.2. Effects that have been neglected

A number of possible reasons can be cited for the small but
persistent difference between the distribution of empirical in-
degrees and those estimated from the model network.

A high degree of overlap is found between consensus
sequences in the relatively short promoter regions of E. coli,
leading us to conjecture that even if more than one interaction is
allowed in principle, only one of them will be realized at any
given time. “Transcriptional interference” (Shearwin et al., 2005),
where interference between RNA polymerase binding two close-
by sites inhibits transcription of one or both of the TUs, has
recently been studied and modeled (Dodd et al., 2007; Sneppen
et al., 2005). Such effects can have further consequences for the
reduction of the actual regulatory interactions from those that are
possible purely on the basis of combinatoric arguments.

Several workers (Buldyrev et al., 1995; Kugiumtzis and
Provata, 2004) have claimed that correlations within intergenic
regions lead to reduced information content (and effective bitwise
length) of PRs, by several percent. This would reduce the real
connectivity of the actual networks to below what we conjecture
on the basis of random PR sequences.

The binding sequences we obtained from the RegulonDB were
slightly anti-correlated on average. We define the average
distance per nucleotide between pairs of binding sequences of
the same length [ as

I 4
h=1-(1/4 S () () 4
1/ )Zn il ;Zs;]; iy, 4
where S, is the set of binding sequences of length [, and |S| is the
size of this set; u and v indicate different binding sequences
within such a set, and pf.f” is the probability matrix for this binding
sequence. Had the binding sequences been totally random, with
the probabilities for the bases A,T,C,G given by 1,1.L,1 we would
have gotten 0.728 for h, whereas from the RegulonDB(v5.7) we
found 0.737, i.e., the binding sequences are farther from each
other on the average than random sequences, by 1%. Thus, the
probability for encountering overlapping binding sequences
within a random PR is actually lower than had the former been
random, but this is a very small effect which is below noise level
in the present discussion. (Note that, in the absence of joint
probabilities for the occurrence of different nucleotides at given
sites of distinct binding sequences, the mutual information
between them, constructed from just the probability matrix, is
identically zero.)

Bilu and Barkai (2005) report that in those cases where more
than one TF is binding a PR region, a lower specificity is tolerated,
i.e., the binding sequences in this region are “fuzzier”. This means
that the effective lengths of the binding sequences sought out by
the same TF may actually vary between different regions of the
genome, an effect we have not taken into account in this model.
By keeping the effective length of the consensus sequences fixed,
independently of the length of the PR in which they are to be
sought, we slightly disadvantage the binding probabilities at the
shorter PRs compared to what seems to be observed. This effect,
however, is of the same order (and opposite sign) as that which
would be induced by the anti-correlation between the binding
sequences, an effect which we ignore. We believe these two small
corrections effectively cancel each other out and that we are not
in error in neglecting both of them.

5.3. Evolution of correlations

Above all, it is necessary to understand that certain features of
the empirical network could never be reproduced by such a naive
null-model as the one we propose. We have already mentioned
the absence of self-interactions in the model networks, where the
protein product of the gene binds its PR and regulates its own
transcription. Besides these, there are highly conserved, very
special regulatory sub-graphs which, say, include regulatory
nodes with extremely large number of connections, even though
the binding sequence which they recognize is highly specific,
requiring the satisfaction of a very large number of constraints.
The correlations between connections, embodied especially in the
clustering coefficient and the motif statistics (Milo et al., 2002,
2004) of the network, are other features which are not included in
our model, where the assignments of all the sequences associated
with the nodes are made independently. It is quite possible, that
in the course of the evolution of the GRN, certain nodes with a
high out-degree, regulating a relatively large number of TUs, were
selected from among those having small in-degrees, introducing a
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negative correlation between these quantities and leading to the
observed discrepancies.

We believe that instead of comparing the empirical motif
statistics with those of purely random networks, it is more
meaningful to compare them with the present null model. The
most striking feature of the motif statistics of the E. coli GRN is the
high incidence of bi-directional interactions, giving rise to motifs
with the highest Z-scores that can be seen in Figs. 13 and 14. Such
bi-directional interactions are in fact present in our model but to a
much smaller extent than in the empirical network. Note, in
Table 2, that the average total degree is very slightly less than the
sum of the in- and out-degrees for the model networks, while it is
markedly different from this sum for the empirical network. The
simplest, and most likely (Berg et al., 2004; Babu et al., 2006)
mechanism to give rise to such interactions is the duplication of
TF-coding genes and their promoter regions, a feature which is
not present in this model, but which can easily be built in and has
already been considered by Sengun and Erzan (2006). Another
feature which could very easily be incorporated into the model is
homologies between the TFs leading to similarities between
binding sequences. The high incidence of the feed-forward loop
(motif number 36, a high Z-score motif) and the large rich-club
coefficient would be accounted for if there were a high overlap
between the binding sequences of TFs which regulate each other
in a cascade. Further work on the evolution of content-based
model genetic networks by non-adaptive processes (Lynch, 2007)
is in progress.

5.4. Comparison with the yeast GRN

It is instructive to compare our findings for E. coli with those
for S. cereviciae (yeast) (Balcan et al., 2007). The two genomes
differ most markedly in the distribution of the lengths of the
promoter regions, with, however, a rather similar distribution of
effective lengths for the binding sites. Comparing the GRN of E.
coli with that of S. cereviciae one finds great qualitative similarities
between the two, with an essentially exponential distribution of
the in-degree, a rather scattered out-degree distribution suggest-
ing a power-law distribution, and clustering coefficients, degree-
degree correlations and rich-club coefficients that qualitatively
look very similar.

Comparing the E. coli and yeast (Balcan et al., 2007) networks
with respect to their k-core decomposition is also interesting. A
sharp difference between the E. coli and yeast GRNs shows up in
the shell population distribution as a function of the coreness: In
the case of yeast, the shell population decreases linearly with
coreness, whereas for E. coli the decrease is exponential. The
model networks mimic these respective behaviors perfectly in
both cases. For E. coli, the very tightly hierarchical connectivity of
the model network, with edges going almost strictly up and down
the coreness hierarchy, is disrupted in the empirical network of E.
coli to a greater extent than is the case for yeast. Although the
exponential growth trend in the connections to the high coreness
nodes is common to both these organisms, a greater incidence of
in-shell (transverse) connections are visible in Fig. 12 than in the
corresponding Fig. 2 of Balcan et al. (2007). This behavior is
graphically illustrated in the Supplementary Fig. 8, where the
empirical graph deviates from the exponential growth of the
connectivity to higher coreness nodes, and shows an excess of
connections to nodes of low coreness. This agrees with a well
known feature of the prokaryotic genome where there is an
abundance of small regulatory loops and self-regulatory interac-
tions (Lynch, 2007).

The quantitative agreement between the E. coli genome and
our model networks is overall less than the corresponding

agreement found for yeast (Balcan et al., 2007). This could be
ascribed to the absence of any fitting parameters in the present
study, while in the case of yeast, the (unknown) exponent of the
length distributions of the promoter regions was optimized to get
the best fits. However, the qualitative dependence of various
network features on this number was very weak. We conjecture
that selective pressures on the very compact prokaryotic genome
might have caused greater departures from purely combinatoric
features in the E. coli, than is the case for the yeast genome.

5.5. Generic features coming from a large number of independent
constraints

In this paper we have constructed a model of the prokaryotic
GRN. We should recall that we do not intend to model the GRN on
a node to node basis, but only with respect to its global statistical
properties. We have checked whether the number of transcription
units (TUs) which a TF regulates is correlated with the informa-
tion content of its binding sequence, and found no correlation at
all, for any of the data bases used. (No such one-to-one
correspondence was found in the case of S. cereviciae either
(Balcan et al., 2007).) Thus the high degree to which our model
predictions are borne out points to a phenomenon of a more
fundamental nature (Gerland et al., 2002). It seems to imply that
the distribution of the specificity of the connections seems to arise
independently of the actual lengths of the binding sequences
recognized by the TFs, but nevertheless has essentially the same
truncated Poisson distribution as the latter.

The clue to this convergence lies in considering an arbitrary
number m of independent conditions for, say, a genomic
interaction to be established. The probability P, for the satisfac-
tion of all m of these conditions will be a product of the individual
probabilities, viz.,

m
Pm= H Di- (5)

i=1
Each of the probabilities p; can be expressed as p; = 2~%, where
o = —Iny(p;). Thus, P, =2~* where 1= S a;. Even if the o; are
not identically distributed, as long as the mean and variance
exists for each «;, and, for example, Lyapunov’s condition (see any
standard text on probability theory, e.g., Koralov and Sinai, 2007)
is fulfilled, we can avail ourselves of the central limit theorem,
to claim that for m sufficiently large, A is Gaussian distributed
around ' <oy with variance Y ["¢?, summed over
the individual variances. At the level of precision of the fit in
Fig. 4, this distribution would be indistinguishable from a
Poissonian, especially for <A) as large as 20, as found here. This
argument is in fact very general and need not apply only to the
establishment of genomic interactions. It has to do with the well-
known fact that the distribution of probabilities for the satisfac-
tion of a large number of independent conditions is log-normally

distributed.
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Appendix A. Information content of sequences

The methodology here closely follows that presented in Balcan
et al. (2007). We define the information content of an ensemble of
sequences of N letters drawn from an alphabet of r letters as
(Shannon, 1949; Avery, 2003),

N
1=y
i=1j

.
pilnpy, (A1)
1

where pj; is the probability of encountering the jth letter in the ith
position. Note that this is a negative quantity, and therefore is
sometimes defined with an overall (—) sign out front, in analogy
with the thermodynamic entropy. It makes sense to subtract from
this expression the information content of a sequence of the
same length but with letters drawn at random, namely
19 =Ny _, p@Inp®, where p{® are the “background” probabil-
ities of the different letters. This gives an information content that
is relative to the random case. We have taken the background
probabilities to be uniformly equal to 1/r in Eq. (1).

A “bit” is a binary variable having the values of 0 and 1, and is
universally accepted as the basic unit of coded information. We
note that any symbol within an alphabet of r letters can be
uniquely assigned a binary (Boolean) code of length n, where n is
the first integer greater than or equal to Inr/In2. Any sequence
coded in an alphabet of r letters can therefore be recoded in 0 and
1s. Thus the nucleic acids of the genomic code, of which there are
four, can be uniquely represented by 00, 01, 10 and 11, i.e., by four
sequences of two bits. The definition we have chosen for the
effective lengths of the binary sequences, Eq. (2), is nothing but
the number of bits necessary to code a binary sequence with
information content equal to that represented by the probability
matrix for the consensus sequence.

The terminology regarding the probability matrices is not at all
uniform. Some authors prefer to quote frequencies rather than
probabilities, as in the “alignment matrices” defined by Li et al.
(2002). “Weight matrices” (Benos et al., 2002), sometimes called
Position Specific Weight Matrices (Gershenzon et al., 2005;
Pachkov et al., 2007) may be used instead of probability matrices,
and they are defined as w{ = Inp{”—Inp!”, where the p/”’ are the
background probabilities for the nucleotides j over the whole
genome; m indexes a particular consensus bs. Within this
convention the (relative) information content of a sequence of
length I, is defined as

(A2)

Im 4
=30 3w

i—1j=1

Note that this differs from our definition, in that the subtracted
quantity is not the information content of the random series but

Im 4 (m) (0)
Ei:] Zj:lp,'j lnpj .

Appendix B. Topological characterization of complex
networks

The in-degree of a node is defined as the number of directed
edges incident upon that node. The out-degree is, conversely, the
number of directed edges leading out of a node. The (total) degree
is the number of distinct neighbors of a node, with the
neighborhood being established either with in- or out-edges, or
both.

The clustering coefficient (Bollobas, 1998; Albert and Barabasi,
2002; Dorogovtsev and Mendes, 2002) as a function of the degree

k is defined as

Ch=1GI"> . >

ieGy p<vuyve

zei,,uv/[k(k_l)]y (A3)

where Gy is the set of nodes of degree k, i ranges over the elements
of this set, |G| is the size (the number of elements) of this set, Q;
is the set of neighbors of the ith node, u and v range over this
neighborhood and e;,, is either zero or one depending upon
whether the uth and vth members of the neighborhood of i are
disconnected or connected.

The degree—degree correlation function (Colizza et al., 2005) is
defined as

knn(k) =" "K'p(k|K'), (A4)

k'

where p(k|k’) is the conditional probability that a node with
degree k has a neighbor of degree k'.

The rich-club coefficient (Zhou and Mondragon, 2003; Colizza
et al., 2006) is the total number of edges connecting nodes with
degree greater than k, normalized by the maximum possible
number of such connections,

r(k)=2e g /[N~ k(N> =1, (A5)

where N .  is the total number of nodes with degree greater than
k and e . | is the total number of edges between such nodes.

The k-core analysis (Bollobas, 1998) of the network into
different layers, or “shells” is performed via the following iterative
procedure: All nodes that are at least of degree 1 will be called the
1-core of the graph. The graph may consist of more than one
connected component. To start the iteration, all nodes which are
connected with one edge only are eliminated by severing that
edge. The process is repeated until no nodes remain which are
singly connected to the graph. What remains of the graph is the
2-core, and all nodes outside it are termed the 1st shell (although
some of them might have had degree greater than unity). At the
second stage, one searches for nodes that are doubly connected to
the rest of the graph and removes them together with their edges,
and the process is repeated until none such are left. This yields the
3-core, and those nodes which have been removed at this stage
make up the 2-shell. In each k-core, the nodes are of degree >k,
and the k-shell consists of those nodes that belong to the k-core
but not to the k+ 1st core. The “coreness” of a node is defined as
the k value of the shell to which it belongs (Alvarez-Hamelin et al.,
2005). One proceeds as outlined above until all nodes are
exhausted. This means that once kmax has been reached,
iteratively removing all nodes with degree kny.x leaves an empty
set of nodes.

Appendix C. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.jtbi.2009.11.017.
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