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Abstract
We define and completely solve a content-based directed network whose nodes
consist of random words and an adjacency rule involving perfect or approximate
matches for an alphabet with an arbitrary number of letters. The analytic
expression for the out-degree distribution shows a crossover from a leading
power law behaviour to a log-periodic regime bounded by a different power
law decay. The leading exponents in the two regions have a weak dependence
on the mean word length, and an even weaker dependence on the alphabet size.
The in-degree distribution, on the other hand, is much narrower and does not
show any scaling behaviour.

PACS numbers: 2.10.Ox, 89.75.Da, 89.75.Hc

1. Introduction

In a previous paper, two of us (Balcan and Erzan) [1] introduced and numerically simulated a
content-based network [2] with random binary strings associated with each node. The network
arose by postulating a directed edge to exist between the nodes i and j if and only if the string,
which can be regarded as a random word associated with the ith node, occurred at least once
in the random word associated with the j th.

The initial motivation for this model [1] was based on RNA interference [3], a mechanism
where short RNA strings bind complementary sequences of mRNA to suppress their translation
into protein molecules. It has since been found that RNA interference is in fact an integral
part of gene regulation. [4] On the other hand, transcriptional regulation of gene expression
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also relies on the recognition of regulatory sequences (RS) by transcription factors (TF) which
are themselves proteins coded by specific genes [5, 6]. In this case the sequence matching
is less direct, being mediated by the short amino acid sequences on the TF which bind the
RS, and binding is also subject to steric constraints [6–11]. Sequence similarity as the basis
for pathogen recognition in mathematical models of the biological immune system has a long
standing history [12] as well. Thus, sequence similarity seems to play an ubiquitous role in
complex networks.

This stochastic network was shown [1] to display a distinctly different topology than
either the classical random networks of Erdös and Renyi [13] or the ‘scale free’ networks
of the preferential-attachment universality class, introduced by Barabasi and Albert [14, 15].
Simulations [1] revealed that the in- and out-degree distributions, were markedly different,
with in-degree distribution being rather localized. The out-degree distribution displayed a
sharp crossover behaviour. For small out-degree d, the distribution n(d) exhibited a putative
scaling behaviour over a very narrow region, where the log–log plot could be fitted with a
straight line with a slope −γ1 � −1, whereas, for larger d, log-periodic oscillations were
found, with an envelope which could again be fitted, on a double logarithmic plot, by a linear
graph with a slope −γ2 � −1/2.

The purpose of this paper is twofold. We first extend the model of Balcan and Erzan [1] to a
broader class of models in which the random strings are derived from an r+1 letter alphabet and
where partial matches are allowed. Second, we obtain analytical expressions for the ensemble
averaged in- and out-degree distributions and investigate the crossover behaviour of the out-
degree distribution. We show that the putative scaling behaviour observed in the simulations
coincides with the leading power law behaviour obtained from our analytical results. We
describe in detail the finite-size corrections to the infinite network limit. Comparison of our
analytical predictions with the numerical data [1] for the r = 2 random bit string model with
perfect matches shows very good agreement.

The paper is organized as follows: In the next section we reformulate the random string
model of [1] for an alphabet of r + 1 letters. Our analytical results depend on the matching
probability p(l, k) that a string of length l selected randomly from the set of all strings of
length l is contained at least once in a string of length k, k � l, that has been selected randomly
from the set of all strings of length k. In section 3 we derive an approximate form for this
probability that is valid for moderately long strings k � rl and that allows for partial matches.
Using the results of section 3, we obtain in section 4 analytical expressions for the in- and
out-degree distributions. We investigate the scaling behaviour of the out-degree distribution in
these models and compare our results with the numerical data of [1]. We conclude this paper
with a discussion of our results in section 5.

2. The random string model

Consider a random sequence C of fixed length L, consisting of letters from an alphabet
A of r + 1 letters. The elements of the sequence C, x ∈ {0, 1, . . . , r} are assumed to be
independently and identically distributed according to

P(x) = pδ(x − r) + (1 − p)
1

r

r−1∑
m=0

δ(x − m). (1)

A subsequence Gi of C, composed of the letters {0, . . . , r −1} only, sandwiched between
the ith and (i + 1)th occurrences of the letter ‘r,’ will be denoted as the ith ‘random word,’ or
‘string,’ and will be associated with the ith vertex of a graph. For convenience, we assume that
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a letter ‘r’ has also been placed at the 0th and the (L + 1)th positions. With these definitions,
the ith string can be written as

Gi = xi,1, xi,2, . . . , xi,�i
, i = 1, 2, . . . , N, (2)

where N is the number of strings (equivalently, vertices), the ‘letter’ xi,λ ∈ {0, r − 1}, λ =
1, . . . , �i , and �i is the length of the ith string Gi . Let n� be the number of strings of length �

and q = 1 − p. It follows that

∑
i

�i = L − N,
∑

�

n� = N, (3)

〈�〉 = p−1 − 1, 〈n�〉 = Lp2q�, 〈N〉 = Lp. (4)

Unless noted otherwise, we will assume that L and Lp are sufficiently large so that fluctuations
in the number and length of the strings for different realizations of the random sequence C
can be neglected when calculating statistical properties of quantities of interest. We will
also discard the cases with � = 0 and construct the graph from the remaining vertices. The
adjacency matrix is defined by the matching condition

wij =
{

1 Gi ⊂ Gj,

0 otherwise.
(5)

By Gi ⊂ Gj we mean that there exists an integer λ such that 0 � λ � �j − �i and

xi,l = xj,λ+l , l = 1, . . . , �i . (6)

Two vertices are said to be connected if the string Gi appears as a subsequence of Gj , or in
other words Gj matches Gi . Thus wij = 1 indicates a directed link (an edge) from Gi to Gj .
We will also consider imperfect matches, where equation (6) is valid only for some values of l

rather than all values. In order to avoid ambiguity we will refer to the former case as a perfect
match. For Lp large enough (p > pc(L), see [1]), which is assumed here, the graph consists
of one giant cluster. We will henceforth refer to this graph as the network, and denote the
vertices, or equivalently, the strings associated with them, as the ‘nodes.’

The resulting network was numerically studied earlier by Balcan and Erzan in [1], for
the case of binary strings, i.e., r = 2, and perfect matches equation (6), where it was shown
that the logarithm of the out-degree distribution behaved linearly over a very narrow, initial
range, with a slope of �−1. Beyond a crossover point the distribution exhibited an oscillatory
behaviour, whose envelope again behaved linearly on a log–log plot, with a different slope,
namely � −1/2. The out-degree distribution is shown in figure 1, where the numerical results
were obtained [1] by averaging the out-degree distributions over 500 graphs, associated with
independently generated sequences of length L = 15 000, and p = 0.05. Note the strong
oscillatory behaviour. It turns out that each peak in the out-degree distribution is supported
predominantly by the out-degrees of genes with the corresponding common length l.

In order to proceed with the analytical treatment, it is convenient to group the Gi into
subsets according to their lengths and we define

Gl = {Gi |�i = l}. (7)

It turns out that the central quantity determining the behaviour of the in- and out-degree
distributions is the probability p(l, k) that a string in Gl has an outgoing edge terminating in
a member of Gk . We therefore turn next to the derivation of p(l, k). The discussion of the
degree distributions will then be taken up in section 4.
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Figure 1. Scaling behaviour of the out-degree distribution. The numerical data (circles) show a
crossover in the scaling behaviour from small values of the out-degree to larger values. The solid
line is the theoretical expression. The dashed lines serve as a guide to the eye for the predicted
scaling behaviour and have been offset for clarity. The crossover occurs at dc = 6.6 and has been
shown as a vertical line.

3. Analytical results for the matching probability

Let x and y be variables such that x, y,∈ {0, . . . , r −1}. Define an interaction u(x, y) between
x and y as

u(x, y) = 1 − δ(x − y). (8)

Let x = (x1, x2, x3, . . . , xl) and y = (y1, y2, y3, . . . , yl), be two strings of l letters and define
their interaction U(x, y) as

U(x, y) =
l∑

t=1

u(xt , yt ). (9)

The function U(x, y), as defined above, counts the number of unmatched letters between
strings x and y.

Introduce an ‘inverse temperature’ β and consider the Boltzmann factor e−βU . In the
‘zero-temperature’ limit we have

lim
β→∞

e−βU(x,y) =
{

1, if x = y
0, otherwise.

(10)

We see that the limit β → ∞ is a ‘no tolerance’ limit [16], enforcing perfect matching of
x and y, i.e. xt = yt , t = 1, 2, . . . , l. Let y = (y1, y2, . . . , yk) be a string of length k � l

and denoted by ya,l = (ya+1, ya+2, . . . , ya+l ) the substring of length l starting at position
a, a = 0, 1, . . . , k − l. Furthermore let

fa(x, y;β) = e−βU(x,ya,l ) (11)

so that we have

fa(x, y) ≡ lim
β→∞

fa(x, y;β) =
{

1, x = ya,l

0, otherwise.
(12)

Thus, fa(x, y) = 1 if and only if x matches y at position a, and zero otherwise.
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Likewise, let f (x, y) be a function that takes on the value one if the k-string y contains
the given l-string x and zero otherwise. Note that the complement of the event that x matches
y is the event that x does not match y anywhere. Thus, using equation (12), we can write

f (x, y) = 1 −
k−l∏
a=0

[1 − fa(x, y)]. (13)

Letting p(l, k; x) denote the probability that a randomly drawn k-string y contains a given
l-string x, we therefore find

p(l, k; x) = 1 − 1

rk

∑
y

k−l∏
a=0

[1 − fa(x, y)], (14)

where rk is the number of distinct k-strings of r-letters, and
∑

y denotes the sum over all such
strings y.

Generalizing the above equation to incorporate partial matches we obtain

p(l, k; x) = lim
β→∞

p(l, k; x, β), (15)

where

p(l, k; x, β) = 1 − 1

rk

∑
y

k−l∏
a=0

[1 − fa(x, y;β)]. (16)

The products in equation (16) can be expanded and we obtain a Mayer-like sum

p(l, k; x, β) = 1

rk

∑
y

∑
a

fa − 1

rk

∑
y

∑
a<b

fafb +
1

rk

∑
y

∑
a<b<c

fafbfc − · · · , (17)

which we can write as

p(l, k; x, β) =
∑

a

W(1)(a; x) −
∑
a<b

W(2)(a, b; x) +
∑

a<b<c

W(3)(a, b, c; x) − · · · , (18)

where

W(1)(a; x) = 1

rk

∑
y

fa(x, y;β)

W(2)(a, b; x) = 1

rk

∑
y

fa(x, y;β)fb(x, y;β)

W(3)(a, b, c; x) = 1

rk

∑
y

fa(x, y;β)fb(x, y;β)fc(x, y;β)

· · ·

(19)

Using equations (8) and (11), we obtain

W(1)(a; x) = 1

rl
[1 + (r − 1) e−β ]l ≡ W(1). (20)

Note that W(1)(a; x) is independent of a and x.
Let us now turn to the second order term, W(2)(a, b; x) in equations (18) and (19). Here,

we need to distinguish two cases: (i) b − a � l and (ii) b − a < l.
In case (i), the set of indices of ya,l and yb,l are distinct and the evaluation of the partition

sum proceeds analogously to equation (20) yielding

W(2)(a, b; x) =
(

1

rl

)2

[1 + (r − 1) e−β ]2l , |b − a| � l. (21)
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In case (ii), |b − a| < l, there is an overlap between the indices of ya,l and yb,l . Letting
|b − a| = m, we find

W(2)(a, b; x) = 1

rl+m
[1 + (r − 1) e−β ]2m

l−m∏
t=1

[1 + (r − 1) e−2β

− u(xt , xm+t )(1 − e−β)2], |b − a| < l. (22)

Note that W(2)(a, b; x), as defined in equations (21) and (22), depends on x only when
|b − a| < l. Next, we perform the x average of W(2)(l, k; x),

1

rl

∑
x

W(2)(a, b; x) = 1

r2l
[1 + (r − 1) e−β ]2l . (23)

The calculations leading to equations (22) and (23) are a little involved and can be found in
the appendix.

Comparing equations (20) and (23), we see that once averaged over x,W(2) factorizes as

W(2) = 〈W(2)(a, b; x)〉x = (W(1))2, (24)

or equivalently,

〈fafb〉y,x = 〈fa〉y,x〈fb〉y,x, a 	= b, (25)

where, for simplicity, we have introduced the short-hand notation 〈· · ·〉y,x to denote averaging
first over y and then x.

Let us therefore make the approximation that all higher moments factorize similarly,〈
fa1fa2 . . . fas

〉
y,x

� 〈
fa1

〉
y,x

〈
fa2

〉
y,x

. . .
〈
fas

〉
y,x

, (26)

with {as} being distinct. It can be readily shown that equation (26) is exact when ai+1 −ai > l,
i.e, there are no overlaps between the segments at position ai . Upon substituting equation (26)
into equation (17) and performing the x average we obtain the matching probability

p(l, k;β) = 〈p(l, k; x, β)〉x, (27)

with

p(l, k;β) = 1 −
(

1 − 1

rl
[1 + (r − 1) e−β ]l

)k−l+1

. (28)

In the ‘zero-temperature’ limit (β → ∞), this becomes

p(l, k) = 1 −
(

1 − 1

rl

)k−l+1

. (29)

For rl 
 k, p(l, k;β) has the asymptotic form

p(l, k;β) = 1 − exp

(
−k − l + 1

rl
[1 + (r − 1) e−β ]l

)
, (30)

which for β → ∞ becomes

p(l, k) = 1 − exp

(
−k − l + 1

rl

)
. (31)

For very large l this further reduces to

p(l, k) = k − l + 1

rl
. (32)
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Figure 2. Comparison of the exact matching probability p(k, l) (circles) with the approximate
expression (29) (lines) for r = 2 and perfect matches. The curves are (from top to bottom) for
values of k = 16, 14, 12, 10, 8, 6, 4, 2.

Note that a finite β acts like an enhanced matching probability, i.e., a false positive match.
In the limit β → 0, the matching probability becomes

lim
β→0

p(l, k;β) = 1. (33)

Hence the ‘high-temperature’ limit of our model corresponds to indiscriminate matches.
Of course, the crucial approximation, equation (26), is not correct in general and one

expects corrections coming from higher order correlations contained in equation (18). These
correlations are due to the fact that if a given string x is matched at a position a, this affects
the likelihood of matching the same string at any nearby location b with |b − a| � l.
Nevertheless, the approximate result for p(l, k), equation (29), is surprisingly good.
Figure 2 shows a comparison of the matching probability obtained from exact enumeration
carried out computationally, with the analytical expression (29) for r = 2 and perfect matches.
As can be seen from the figure, there are only very small discrepancies for small l when
k > 2l , e.g. data points around k = 16, 14, 12 with l = 4, 3, 2. Since our expression for
p(l, k), equation (29), is exact for l = 1, there are no discrepancies at l = 1.

Note that equation (32) is the matching probability that can alternatively be obtained by
assuming the probabilities of matching a string of length l at any position in a string of length k

are independent and equal, 1/rl . Equation (29), on the other hand, is the matching probability
that can also be found assuming the probabilities of not matching a string of length l at any
position in a string of length k are independent and equal, 1 − 1/rl . Thus the factorization
approximation, equation (26), leading to equation (28) implies that the probabilities of not
matching at a given position are independent.

For the regime of interest, k � 2l , this approximation leading to equation (29) is
extremely good. We think that this is due to the fact that the factorization property underlying
our approximation, equation (26), is exact for the two-point correlation function (s = 2),
equation (24). This means that any corrections to this result must be coming from higher
order correlations with strongly overlapping segments, since non-overlapping segments will
factorize and thus reduce to lower order correlators. This is very similar to the connected
cluster expansion in statistical mechanics [17]. Indeed, such an expansion can be set up;
however, the calculations are rather tedious due to the discreteness of the problem and beyond
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the scope of this paper. Yet it is clear that the weight of an s-point correlation function with s
overlapping (connected) segments must be very small for large s, since the overlap imposes
very strong conditions on the structure of the string x to be matched.

For the remainder of the paper it is convenient to define the quantities t and z as

t = 1 − 1

rl
[1 + (r − 1) e−β ]l = 1 − zl (34)

z = 1

r
[1 + (r − 1) e−β ], (35)

where we have suppressed the β, r and l dependence for clarity. Note that the effect of the
number of letters in the alphabet r and the extent of mismatch as parameterized by the ‘inverse
temperature’ β enter into the expression for p(l, k;β) as a single parameter, z, as defined
above. With the above definitions, equation (28) becomes

p(l, k; z) = 1 − tk−l+1 = 1 − (1 − zl)k−l+1. (36)

The ‘zero-temperature’ limit is given by z = r−1, while the ‘high-temperature’ limit is z = 1.
The range of z is therefore, z ∈ (r−1, 1), which for r 
 1, approaches ∈ (0, 1).

We note in passing that the matching probability computed in this section is in the
sense complementary to the problem of sequence alignment [18, 19], which has important
applications in the study of proteins and DNA. The problem there is to identify subsequences
of arbitrary length, showing strong similarity beyond pure statistical chance, within two long
sequences sampling the same alphabet, possibly with different native probabilities. The
pioneering work of Altschul, Karlin et al [18, 19] yields a probability distribution for the
similarity score of such likely regions, under the assumption that the region with the highest
score is unique (i.e., non-degenerate), that the two sequences searched are of comparable
length, and sufficiently long. The scoring scheme is to a large extent arbitrary as long as
the scores corresponding to some degree of matching are rare (and positive) while those
corresponding to mismatches are much more probable (and negative). This arbitrariness
may be removed by proper normalization and scores obtained via different schemes can be
compared in a meaningful way. The matching probability computed in the present paper could
be related to the probability for the highest score (corresponding to an exact match without
gaps), holding for the entire length of the shorter sequence. However, our calculation makes
no assumptions regarding the relative lengths of the two sequences, apart from the obvious
requirement that l � k. The approximation to which we have to resort in the final solution
works best when either the two sequences are almost of the same length, or if k � rl . Moreover,
there is no assumption regarding the number of times the highest score is achieved. More
interestingly, the statistics of multiple high-scoring segments [20] could have been related to
the out-degree statistics of a given node had we taken each high-scoring match in the complete
random sequence to correspond to a different edge. As it is, a single edge corresponds to
the presence of one or more occurrences of a shorter string, say Gi , inside a longer string
Gj . That is, multiple occurrences of the shorter string within a subsequence of the complete
random sequence are bunched together to result in a single edge between the nodes i and j .

We now turn to the calculation of the in- and out-degree distributions.

4. The degree distributions

In section 2 we showed that the subsequences {Gi} of a random sequence C generate a network
whose nodes are associated with these strings, and whose edges are defined by the matching
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relation equation (5). In this section we will derive the in- and out-degree distributions
associated with this network.

Consider a randomly selected string Gi . The in- and out-degree of the corresponding
nodes, din(i) and dout(i), are defined by the total number of edges terminating in and originating
from that node, respectively,

din(i) =
∑

j

wji dout(i) =
∑

j

wij . (37)

The corresponding in- and out-degree distributions are given by

nin(d) =
∑

i

δ(d − din(i)) nout(d) =
∑

i

δ(d − dout(i)). (38)

4.1. The out-degree distribution

Letting Gl denote the set of strings of length l, we can rewrite the out-degree distribution
equation (38) as

nout(d) =
L∑

l=1

nl


 1

nl

∑
j∈Gl

δ(d − dout(j))


 . (39)

For large nl , the quantity in parentheses will approach the (conditional) probability Pout(Xl =
d|l) that a randomly selected string whose length is given to be l has an out-degree d.

In the limit L,N → ∞, such that N/L = p, the ratio of the number of strings, N, to the
length of the whole random sequence, L, remains constant, all the possible rl realizations of
random words of a given length l will be present with equal respective weights and we have

lim
N→∞

1

nlnk

∑
i∈Gl

∑
j∈Gk

wij = p(l, k). (40)

We will refer to this limit as the large-L limit.
The quantity p(l, k), as defined in the above equation, is the probability that a randomly

selected string of given length l matches another independently and randomly selected string
of length k. This probability has been calculated in section 3 for the general case of imperfect
matches, equation (28), as well as perfect matches, equation (29). Equations (39) and (40)
show the self-averaging property of the degree distribution in the large-L limit.

Define the random variable Xlk as the number of edges originating from a randomly
selected string of length l that terminate in strings of length k. Then Xl can be written as a
sum of the random variables Xlk ,

Xl =
∑
k�l

Xlk. (41)

We can therefore write 〈Xl〉 as

〈Xl〉 = 1

nl

∑
i∈Gl

L∑
k=l

∑
j∈Gk

wij , (42)

or,

〈Xl〉 =
L∑

k=l

nk


 1

nlnk

∑
i∈Gl

∑
j∈Gk

wij


 , (43)
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where 〈· · ·〉 denotes an average over all the strings of length l in the complete random sequence,
and we have in going from equation (41) to equation (43) used the weak law of large numbers
under the assumption that L is large.

We see from equations (43) and (40) that in the large-L limit

〈Xlk〉 = nkp(l, k), (44)

and

〈Xl〉 =
L∑

k=l

nkp(l, k). (45)

Note that in the large-L limit Xlk is binomially distributed,

P(Xlk = d|l) =
(

nk

d

)
p(l, k)d(1 − p(l, k))nk−d . (46)

As can be seen from equation (41), Xl is a sum of the random variables Xlk , and thus in
the large-L limit the central limit theorem assures that the distribution for Xl will approach a
Gaussian distribution,

Pout(Xl = d|l) = 1√
2πσl

exp

[
− (d − dl)

2

2σ 2
l

]
, (47)

whose mean dl and standard deviation σl are given by those of Xlk , equation (41), according
to

dl = 〈Xl〉 =
∑
k�l

〈Xlk〉 (48)

σ 2
l = 〈

X2
l

〉 − 〈Xl〉2 =
∑
k�l

〈
σ 2

lk

〉
, (49)

where

σ 2
lk = 〈

X2
lk

〉 − 〈Xlk〉2. (50)

For binomially distributed Xlk we have

〈Xlk〉 = nkp(l, k) (51)

σ 2
lk = nkp(l, k)(1 − p(l, k)). (52)

Using equation (36), one can readily carry out the sums in equations (48) and (49) to find

dl = N

p + qzl
(qz)l (53)

σ 2
l = dl

pt

1 − qt2
. (54)

Noting also that the probability of selecting a string of length l is pql , the total out-degree
distribution is given by

Pout(d) =
L∑

l=1

pqlPout(Xl = d|l), (55)
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and thus in the large-L limit we obtain

Pout(d) =
L∑

l=1

pql 1√
2πσl

exp

[
− (d − dl)

2

2σ 2
l

]
(56)

with dl and σl given by equations (53) and (54), respectively.
As l becomes large, p(l, k) decreases towards zero. Thus with increasing l the binomial

distribution of Xlk , equation (46), will approach a Poisson distribution of the same mean.
Note that the sum of independent and Poisson distributed random variables is also Poisson
distributed with mean equal to the sum of the individual means. Thus for large l, Xl as defined
in equation (41) is Poisson. For a Poisson distributed random variable the variance equals to
its mean so that for large l we expect

σ 2
l = dl, (57)

as can also be directly verified by taking the appropriate limit in equation (54).
Before proceeding we would like to briefly mention the size dependence of the node

degrees and the number of edges of the resulting network. The out-degree d of a node is
an extensive quantity with respect to the number of strings N, or equivalently the length of
the random string L, so that we have d ∼ N ∼ L, as is readily seen from equation (53).
Using equation (53), the average number of edges Ne in the resulting network can be readily
calculated as

Ne =
L∑

l=1

nldl = N2 q2z

1 − q2z
, (58)

where in the last step we have taken the upper limit of the sum to be infinity, since L is assumed
to be very large.

4.1.1. Ensemble averages and finite size effects. The numerical data of [1] have been
obtained from averaging over 500 realizations of a random sequence of length L = 15 000
with N = 750. A finite sample size will cause sample to sample fluctuations in the number
of strings, or ‘random words.’ An average over a large ensemble of different realizations will
yield the same average values for the out-degrees as those obtained from a single random
sequence of infinite length. However, averaging over many realizations will increase the
fluctuations around the mean. It is not hard to see that this will affect predominantly nodes
with large out-degrees (short strings) where there is already self-averaging within the random
sequence, but with a distribution which varies from sample to sample.

Nodes with small out-degrees (long strings) correspond to rare matches and thus for these
nodes there is no self-averaging within the sample. To see this, consider the extreme case,
where a sample contains on average one or less matches for such a node. When an ensemble
average is taken, the dominant contribution to the variance of the out-degree will come from
the sample to sample fluctuations.

Denoting the mean and variance of the out-degree of a node of length l, that has been
corrected for the finite size, by d̃ l and σ̃ 2

l , respectively, we have

d̃ l = dl, σ̃ 2
l → σ 2

l for large l. (59)

In what follows we will re-calculate previously introduced statistics, taking into account the
fluctuations in nk . In order to avoid confusion, these quantities will be denoted with a tilde.

We can estimate σ̃ 2
l as follows. The random variable X̃lk itself is a sum of random

variables:

X̃lk =
∑
j∈Gk

Ylj , (60)
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where Ylj = 1 if the string Gj of length k matches the (given) string of length l and zero
otherwise. Such an event constitutes a Bernoulli trial and its probability is p(l, k). The mean
and variance of Ylj are given by

〈Ylj 〉 = p(l, k) (61)〈
Y 2

lj

〉 − 〈Ylj 〉2 = p(l, k)(1 − p(l, k)). (62)

The number of such trials is ñk , the number of elements of Gk , and hence ñk itself is a
random variable. For sufficiently large N and for values of ñk near the mean, the constraints,
equation (4), can be neglected and the probability of finding ñk strings of length k is
approximately binomially distributed

P(ñk = n) =
(

N

n

)
(pqk)n(1 − pqk)N−n. (63)

We thus find

〈ñk〉 = Npqk (64)

σ̃ 2
nk

= Npqk(1 − pqk). (65)

Finding the distribution of a sum over a finite random number n of independently
distributed random variables Y can be readily worked out using moment generating functions
(see for example Feller [21]). In the case when both ñk and Ylj are binomial it turns out that
the resulting distribution is binomial again, and we find

P(X̃lk = d|l) =
(

N

d

)
[pqkp(l, k)]d [1 − pqkp(l, k)]N−d , (66)

with mean and variance

〈X̃lk〉 = Npqkp(l, k) (67)

σ̃ 2
lk = Npqkp(l, k)[1 − pqkp(l, k)]. (68)

Thus, equation (66) is the finite-size result replacing equation (46), which is valid in the
large-L limit. As remarked before, the means of the two distributions in equations (48) and
(67) are equal, i.e., 〈X̃lk〉 = 〈Xlk〉. However, the variances are different and σ 2

lk < σ̃ 2
lk . Note

that the second term in equation (68) is of the order of (1 − p) ≈ 1 for small p. Thus we find
to order p

σ̃ 2
lk = 〈X̃lk〉, (69)

and consequently to this order the mean and variance of X̃l become

σ̃ 2
l = 〈X̃l〉 = 〈Xl〉 = dl, (70)

where dl is the same mean out-degree that was previously obtained in the large L-limit,
equation (53). The out-degree distribution corrected for finite-size effects thus becomes (c.f.,
equation (56))

P̃ out(d) =
L∑

l=1

pql 1√
2πdl

exp

[
− (d − dl)

2

2dl

]
. (71)

Comparing this expression with the distribution obtained in the large-L limit, equation (56), we
find that finite-size corrections are only present for small l, since we have already shown that
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Figure 3. Comparison of the theoretical out-degree distributions with numerical data (circles)
obtained for L = 15 000. The dotted line shows the theoretical result for a network in the large
L-limit, where the network is self-averaging and thus all possible realizations of a string of a
given length l can be found. The number to the right of each peak refers to the node length l that
contributes predominantly to that peak. The solid line is obtained after correcting for finite-size
effects (see the text for details). In both cases, the locations of the peaks are accurately predicted.
Note that the results for the large-L limit differ strongly in their predictions for the width and height
of each peak for small l (large d). It is evident that the numerical data exhibit finite-size effects for
short nodes, l � 6.

the relation dl = σ 2
l is also valid (viz. equation (57)) in the large l region for the large-L case.

Figure 3 shows a comparison of the numerically obtained out-degree distribution (circles)
with the theoretical expressions with and without finite-size corrections. The solid line is the
analytical result for the out-degree distribution, equation (71), that takes into account finite-
size corrections, while the dotted line corresponds to the case where the network is assumed
to be self-averaging, i.e., equation (56) is satisfied, and thus sample to sample fluctuations can
be neglected. Note the large difference from the observed behaviour for l < 6, (d/L > 0.013)

in the height and broadness of the distributions, when finite-size effects are not taken into
account. The agreement of the finite-size corrected distribution with the numerical data, on
the other hand, is rather good, and we conclude that finite-size effects present in the numerical
data for short nodes are satisfactorily accounted for.

The locations of the peaks, dl , coincide very well with the numerical data and we find
indeed that each peak corresponds to the out-degree of nodes of a given length l. The locations
of the peaks decrease exponentially with increasing l. The labels next to each peak show the
string lengths l contributing predominantly to that peak.

Our reasoning above already shows that the oscillatory part of the out-degree distribution
is highly susceptible to finite-size effects. It turns out that these oscillations are less pronounced
or completely absent when single finite-size realizations of the network are considered. In
other words, these oscillations become apparent only when averaging over many finite-size
realizations, as we have done in our analysis.

We turn next to a discussion of the scaling behaviour.

4.1.2. Scaling behaviour. Our analysis shows that the out-degree distribution is a
superposition of Gaussian peaks with mean dl and a variance that depends on the strength
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of finite-size effects, as discussed in the previous section. For large values of d, (small l)
these peaks are well separated and one can readily obtain the envelope for the peaks. From
equation (71) we see that the height El of a peak centred at dl is

El = Npql

√
2πdl

. (72)

Using equation (53), we obtain the scaling behaviour

E(d) ≈ d−γ2 (73)

with

γ2 = 1

2

ln z − ln q

ln z + ln q
. (74)

For the bit string model with exact matches, i.e., for r = 2 and in the β → ∞ limit, we find

γ2 = 1

2

ln 2 + ln q

ln 2 − ln q
. (75)

For the numerical data shown, q = 0.95, yielding γ2 = 0.43.
For smaller values of d (large l), the analysis presented above ceases to be valid, since

the peaks start to overlap. In this regime, the contributions to the out-degree distributions
come predominantly from matches between long strings which are rare. As was remarked
previously, in this regime the distribution of X̃l will be Poisson, so that we have

p(d|l) = dd
l

d!
e−dl , (76)

with dl as given before in (53). The out-degree distribution for small d is thus given by

p(d) =
∞∑

l=l∗
pql d

d
l

d!
e−dl . (77)

Since for small l the dl values are quite large, the contributions from the small l terms will be
suppressed heavily by the exponential factor, and therefore moving the cutoff l∗ in the above
sum down to 1 will not change the result of the summation significantly. Noting that for
large l

dl = N

p
(qz)l, (78)

we see that dl and �dl = dl+1 − dl approach zero in a geometric fashion. Thus the summation
over l in equation (77) can be converted into an integration over x = dl with �x = dl − dl+1

and we obtain

p(d) = c

d!

∫ x∗

0
xd−γ2− 1

2 e−x dx, (79)

where x∗ = dl∗ and c is an overall numerical constant,

c = p

ln qz

(
N

p

)− 1
2 −γ2

. (80)

The dominant contribution to the integrand comes from x ≈ d < x∗ and we therefore extend
the upper limit to infinity obtaining

p(d) = c
	

(
d + 1

2 − γ2
)

	(d + 1)
, (81)
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where 	(x) is the gamma function. The leading order behaviour of ln 	(x) is given
asymptotically, for largex, by

ln 	(x) =
(

x − 1

2

)
ln x − x +

1

2
ln 2π + O

(
1

x

)
. (82)

Using the above expansion, we obtain after a little algebra

ln p(d) = const. −
(

γ2 +
1

2

)
ln d + O

(
1

d

)
. (83)

It can be readily checked that this approximation for ln p(d) is good even for small values of
d and thus p(d) exhibits scaling behaviour, p(d) ≈ d−γ1 , with scaling exponent

γ1 = 1
2 + γ2. (84)

For the numerical data with z = 1/2 and q = 0.95 we find γ1 = 0.93.
As we have pointed out above, the crossover between the two scaling regimes occurs

when the depression (minimum) between consecutive peaks disappears. This occurs roughly
when

dl+1 +
1√

2dl+1
> dl − 1√

2dl

(85)

yielding, via equation (53),

dl >
1

2

1

1 − √
1 − qz

. (86)

For the values of the parameters employed in the numerical simulations, this gives dl >

6.59, ln dl > 1.9, which is consistent with the data shown in figure 1.
We can also infer the large r behaviour of γ1 and γ2 for perfect matches. This corresponds

to the case z = 1/r , equation (35). We find

γ2 = 1

2

ln r + ln q

ln r − ln q
, (87)

and hence

lim
r→∞ γ2 = 1

2 (88)

and correspondingly 1/2 + γ2 = γ1 → 1 in this limit. Thus, as the number of letters in
the alphabet is increased, the scaling exponents γ1 and γ2 approach the values 1 and 1/2,
respectively. Comparing with the values for r = 2, we see that the dependence of γ1 and γ2

on r, the number of letters in the alphabet, is rather weak.

4.2. The in-degree distribution

Consider a randomly selected string Gi of length l. Then the random variable Xkl that was
introduced before counts the number of edges originating from a string of length k � l and
terminating in Gi . Thus, the in-degree of Gi is given by

Xin,l =
∑
k�l

Xkl. (89)

The statistics of Xkl and hence of Xin,l has been already obtained before and we find in the
large-L limit,

din,l =
∑
k�l

nkp(k, l) (90)
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Figure 4. Comparison of the theoretical in-degree distributions with numerical data (circles) for
L = 40 000 and averaged over 20 000 realizations of the random string. The dotted line shows
the theoretical result for a network in the large L-limit, where the network is self-averaging and
thus almost all possible realizations of a string of a given length l can be found. The solid line is
obtained after correcting for finite-size effects (see the text for further details).

σ 2
in,l =

∑
k�l

nkp(k, l)(1 − p(k, l)). (91)

Noting also that the probability of selecting a string of length l is pql , the total in-degree
distribution in the large-L limit is given by

Pin(d) =
L∑

l=1

pql 1√
2πσin,l

exp

[
− (d − din,l)

2

2σ 2
in,l

]
. (92)

When taking into account finite-size effects, the in-degree distribution becomes
(cf section IV.A.1)

P̃ in(d) =
L∑

l=1

pql 1√
2πσ̃in,l

exp

[
− (d − din,l)

2

2σ̃ 2
in,l

]
, (93)

where

σ̃ 2
in,l =

∑
k�l

Npqkp(k, l)(1 − pqkp(k, l)). (94)

Note again that the average in-degree of a node is an extensive quantity with respect to
the number of strings N, or equivalently the length of the random string L, so that we have
d ∼ N ∼ L, as is readily seen from equations (89) and (90).

Unfortunately, we have not been able to obtain closed-form expressions for din,l and σ̃in,l ,
in a manner analogous to the expressions for the out-degree, equations (53) and (70). In the
case of the in-degree distributions, equation (89) requires a sum over the first argument of
the matching probability, p(·, ·; z), equation (36), rather than the second argument, as was
the case for the out-degree distribution. Due to the complicated dependence of the matching
probability on its first argument this sum is, as far as we can tell, intractable. The necessary
summations were therefore carried out numerically.

Figure 4 shows a comparison of the two theoretical predictions, equations (92) and (93)
with numerical data for L = 40 000 averaged over 20 000 random realizations. Note the stark
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difference between the shape of the in- and out-degree distributions, figures 3 and 4. Apart
from the distinct qualitative features, such as oscillatory behaviour for small d (rather than
large d as in the out-degree distribution), the in-degree distribution is much narrower than the
out-degree distribution.

The in-degree distribution equation (92), and its finite-size corrected form, equation (93),
capture the qualitative features seen in the simulations. Inspecting figure 4, we see that the
large degree behaviour agrees very well with the analytical form equation (92), the same is
true for the very small degrees, but there are discrepancies for intermediate values. Note that
the analytically predicted second peak in the low degree region of figure 4 is absent but instead
we seem to have two neighboring peaks indicated by arrows in the figure.

Both of these peaks turn out to receive contributions from the in-degrees of strings of
length 2. For a binary alphabet the possible values are 01, 10, 00 and 11. A node corresponding
to strings of length 2 can have incoming edges only from identical strings or from strings of
length 1. For each of the strings 01 and 01 the (average) in-degree is therefore equal to
d2,0 = n1 + n2/4, where n1 and n2 are the average number of strings of length 1 and 2,
respectively. For each of the strings 00 and 11 the average in-degree is d2,1 = n1/2 + n2/4,
however. The total number of 2-strings falling into either of the two classes is n2/2, so that
one would expect two peaks in the in-distributions centred at d2,0 and d2,1 with respective
masses n2/2. The expected locations of these peaks have been indicated by the arrows in
figure 4 and we see that they agree with the numerical findings. However, the actual situation
is more involved than sketched above, because the locations of peaks due to other strings turn
out to overlap. Thus for example, the two peaks indicated in figure 4 by arrows, receive also
contributions from the in-degrees of nodes associated with other and longer strings. The same
is also true for the other peaks in figure 4. Nonetheless, the above argument clearly shows that
there is an additional fine structure in the in-degree distribution and that this structure is due
to specific string contents.

5. Discussion

We have obtained analytical expressions for the in- and out-degree distributions of a contents-
based network model which was introduced and studied numerically by Balcan and Erzan in
[1]. We have shown that the behaviour of the out-degree distribution can be divided into two
regimes: a short and putative scaling regime for small out-degrees that crosses over into an
oscillatory regime for large out-degrees. An analytical expression for the crossover point has
been obtained as well. We have found that the behaviour of the out-degree distribution for
large out-degrees depends on the size of the network realizations from which the distribution
was sampled. We have discussed these finite-size effects and have shown analytically how
they effect the behaviour of the out-degree distribution.

Our results were obtained for a generalized class of contents-based network models
in which a small number of imperfect matches (finite, but low, temperature) were allowed
and strings were constructed from an alphabet of r letters. It turns out, however, that such
generalizations do not alter the main numerical findings of the network model of Balcan
and Erzan which involved a two-letter (r = 2) alphabet and perfect matches. The scaling
behaviour which we have found, and even the numerical values of the leading scaling
exponents γ2 and γ1 = γ2 + 0.5 are robust under these generalizations. It should be noted
that, in

γ2 = 1

2

ln z − ln q

ln z + ln q
, (95)
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we have z → 1/r for β → ∞, while z → 1 in the ‘high-temperature’ limit β → 0, thus
r−1 � z � 1. In the ‘low-temperature,’ or perfect matching, limit β → ∞,

γ2 → (1/2)(1 − p/ ln r), (96)

where p is a small number by assumption [1]. Even when allowing for a small number of
mismatches, γ2 depends very weakly on r and p. On the other hand, for either r → 1, the
trivial limit where no information is coded, or the high-temperature limit, where no matching
conditions are satisfied, the scaling relation is altered qualitatively, with γ2 → −1/2.

The fine structure seen in the in-degree distribution is also present in the out-degree
distribution [22], as is apparent from a closer inspection of the peaks in figure 3. It turns
out that for the out-degree the additional structure arises from the fact that the probability of
matching a given random string x of length l inside a random string of length k still depends,
although only weakly, on the particular properties of the string x to be matched [23–25].

Since the in- as well as out-degrees are extensive quantities with respect to the number
of strings N, or equivalently the length of the random string L, the oscillations in the degree
distributions and the fine structure are resolvable only for sufficiently large string lengths L

and number of realizations. Our treatment of the network topology explicitly ignores this
dependency by considering the matching probability averaged over all possible strings x and
can therefore be regarded as a coarse-grained description. The analysis presented can be
readily extended to take this fine structure into account. However, this is beyond the scope of
the current paper and will be left for future work.

It should be noted that in the present application, we have held the total length of the
linear code, L = ∑

l l n(l) + N constant, while N, the number of words (or equivalently, of
delimiters) has been allowed to fluctuate. The single linear code with a special symbol (here the
(r + 1)th letter of the alphabet) indicating the beginning and ends of the ‘words,’ may easily be
replaced by a collection of N strings coded by an alphabet of r letters, obeying an appropriately
chosen length distribution, depending upon different applications. These different approaches
are analogous to the use of the grand canonical as opposed to the canonical ensemble, with
p corresponding to the fugacity. The use of a single linear random code emphasizes the
spontaneous emergence of a nontrivial network of sequence matching interactions between
substrings of the code of length L [18, 19]. It also lends itself to the elaboration of the
evolutionary dynamics of this network, with the introduction of point mutations involving the
random motion of the delimiters, besides random insertions, deletions and replacements of all
elements of the (r + 1)-letter alphabet treated on an equal footing [26].

Finally let us remark that the present model can in fact be considered as a random network
with different types of vertices indexed by l, having the probabilities p(l, k) for the insertion of
directed edges between nodes labelled by the ordered pair (l, k). The Poisson distribution of
the out-degree for each node of type l is a hallmark of this underlying generalized Erdös-Renyi
network. However, the oscillatory nature of the out-degree distribution for the total network,
in the region of large degrees, depends on the precise geometric form of p(l, k) ∝ r−l , which,
combined with the geometric form of n(l), gives rise to the log-periodic form for the positions
of these peaks, namely dl , equation (53). In the regime where the peaks of the Poisson
distributions are spaced more narrowly than their widths, namely, in the small d regime, the
superposition of these Poisson peaks conspire to give rise to a power law on the average.
The exponential l-dependence of n(l) turns out to be algebraically tractable, but it may be
conjectured that any distribution which has a tail that is decaying exponentially with l would
give rise, all else remaining equal, to essentially the same scaling behaviour for the out-degree
distribution in the large l (small d) regime, and therefore that γ1 � 1 has a high degree of
universality.
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Figure 5. A schematic representation of the y and x averages for the function W(2)(a, b; β)

as defined in the text. The case shown in the figure corresponds to l = 7 with a = 2 and
b = 5. The number of overlapping indices in the figure is l − m(=4), with m = b − a(=3).
Because of the overlapping, when averaging over x, these indices fall into m(= 3) disjoint sets:
{x1, x4, x7}, {x2, x5} and {x3, x6}.
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Appendix

Here we outline the calculations leading to equations (22) and (26). In section 3, we defined
the function W(2)(a, b; x) as, equation (19),

W(2)(a, b; x) = 1

rk

∑
y

fa(x, y;β)fb(x, y;β). (A.1)

As we pointed out in the text, when performing the sum over y, two cases must be
distinguished: (i) |b − a| � l and (ii) |b − a| < l. In case (i), the set of indices of ya,l and
yb,l are distinct and the evaluation of the partition sum proceeds in a manner analogous to
equation (20) yielding

W(2)(a, b; x) =
(

1

rl

)2

[1 + (r − 1) e−β ]2l , |b − a| � l. (A.2)

In case (ii) there is an overlap between the indices of ya,l and yb,l . Defining |b − a| = m,
we find that there are l−m overlapping indices, and thus there are k−(l +m) distinct variables
yc that are neither in ya,l nor in yb,l , so that a sum over the values of these indices will give
rk−(l+m). Next, it is convenient to partition the remaining indices, {ya+1, . . . , yb+l}, into the
three disjoint sets, S1 = {ya+1, . . . , ya+m}, S2 = {ya+m+1 = yb+1, . . . , ya+l = yb+l−m+1} and
S3 = {yb+a−m+2, . . . , yb+l}. Figure 5 shows an example for l = 7, with a = 2 and b = 5
along with the sets, S1 = {y3, y4, y5}, S2 = {y6, y7, y8, y9} and S3 = {y10, y11, y12}. With the
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definitions above, we find for |b − a| < l,

W(2)(a, b; x) = 1

rl+m

∑
S1

exp

(
−β

k∑
t=1

u(xt , ya+t )

)∑
S3

exp

(
−β

m∑
t=1

u(xb+l−m+t ), yb+l−m+t

)

×
∑
S2

exp

(
−β

l−m∑
t=1

[u(xt , yb+t ) + u(xm+t , yb+t )]

)
(A.3)

and carrying out the sums over the y variables, we obtain (|b − a| < l),

W(2)(a, b; x) = 1

rl+m
[1 + (r − 1) e−β ]2m

l−m∏
t=1

[1 + (r − 1) e−2β − u(xt , xt+m)(1 − e−β)2].

(A.4)

Next, it is useful to introduce the r × r matrix, M(x, y), as

M(x, y) = 1 + (r − 1) e−2β − u(x, y)(1 − e−β)2, (A.5)

with x, y ∈ {0, 1, 2, . . . , r − 1}. From the properties of u, equation (8), we find that

M(x, y) =
{

1 + (r − 1) e−2β, x = y

(r − 2) e−2β + 2 e−β, x 	= y
(A.6)

and equation (A.4) can therefore be written as

W(2)(a, b; x) = 1

rl+m
[1 + (r − 1) e−β ]2m

l−m∏
t=1

M(xt , xt+m). (A.7)

Proceeding to perform the average over x,

W(2)(a, b) = 1

rl

∑
x

W(2)(a, b; x), (A.8)

observe that in equation (A.7) the variables x can be partitioned into k disjoint sets X with
the additional property that if xt ∈ X, by implication xt+m ∈ X. The situation is shown
schematically in figure (5) for m = 3, where we have the 3 disjoint sets, {x1, x4, x7}, {x2, x5}
and {x3, x6}. Denoting these sets as X1, X2, . . . Xm, and their respective number of elements
as n1, n2, . . . , nm (n1 + n2 + · · · nm = l), we see that the product in equation (A.7) can be
factorized as

l−m∏
t=1

M(xt , xt+m) =
∏

xt∈X1

M(xt , xt+m) · · ·
∏

xt∈Xm

M(xt , xt+m). (A.9)

Performing the summation over each of the factors we have for the first factor∑
X1

∏
xt∈X1

M(xt , xt+m). (A.10)

It can be easily shown that the sum over the variables xt ∈ X1 reduces to an n1 − 1 fold matrix
product. Denoting the matrix elements of the matrix Mn by (Mn)xy , we therefore find∑

X1

∏
xt∈X1

M(xt , xt+m) =
∑
x,y

(Mn1−1)xy (A.11)

and hence

1

rl

∑
x

l−m∏
t=1

M(xt , xt+m) = 1

rl

m∏
s=1

∑
x,y

(Mns−1)xy. (A.12)
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Owing to the structure of the matrix M, equation (A.6), powers of M retain the same
structure, as can be readily shown, and we therefore have

(Mn)(xy) =
{
An, x = y

Bn, x 	= y.
(A.13)

The quantities An and Bn can be evaluated recursively, and one finds after a little algebra,(
An+1

Bn+1

)
= Qn

(
A1

B1

)
, (A.14)

where

Qn = 1

r

(
(r − 1)λn

+ + λn
− −(r − 1)λn

+ + (r − 1)λn
−

−λn
+ + λn

− λn
+ + (r − 1)λn

−

)
, (A.15)

and

λ+ = [1 − e−β]2 (A.16)

λ− = [1 + (r − 1) e−β ]2. (A.17)

We therefore find∑
x,y

(Mn)xy = rAn + r(r − 1)Bn, (A.18)

and thus ∑
x,y

(Mn)xy = r[1 + (r − 1) e−β ]2n. (A.19)

Substituting equation (A.19) back into equation (A.12) we have

1

rl

∑
x

l−m∏
t=1

M(xt , xt+m) = 1

rl

m∏
s=1

r[1 + (r − 1) e−β ]2(ns−1) (A.20)

and noting that n1 + n2 + · · · nm = l, we finally obtain

1

rl

∑
x

l−m∏
t=1

M(xt , xt+m) = 1

rl
rm[1 + (r − 1) e−β ]2(l−m), (A.21)

which when substituted into equations (A.8) and (A.7) yields the final result, equation (23),

1

rl

∑
x

W(2)(a, b; x) = 1

r2l
[1 + (r − 1) e−β ]2l . (A.22)

Note that we obtain the same result as for the case |b − a| > l, equation (A.2). In
particular, we see that once averaged over x,W(2) is independent of a and b.
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