Introduction	$\pi + N$ elastic	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	000000000000000000000000000000000000000		0000000000	00	

Inequalities on spin observables and application to hadronic reactions and structure functions

Jean-Marc Richard j-m.richard@ipnl.in2p3.fr

Insitut de Physique Nucléaire de Lyon Université Lyon 1 – IN2P3 -CNRS 4, rue Enrico Fermi, Villeurbanne, France

Tata Institute, Mumbai, November 2010

Introduction	π + N elastic	$\bar{\rm p}{\rm p} \to \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	00000000	00000000	0000000000	00	

Collaboration with

- Mohktar Elchikh (Oran, Algeria),
- J. Soffer (Temple U.), X. Artru (Lyon) and O. Teryaev (Dubna)

Introduction	000	00000000	000000000	00000000000	00	Outlook
0.11						

Outline

- Introduction
- 2 Simple case: elastic $\pi + N$ elastic
 - Formalism
 - Results
 - Crossed reaction: $\bar{p}p \to \pi\pi$
- 3 Spin observables in $\bar{p}p \to \overline{\Lambda}\Lambda$
 - Mechanisms
 - Formalism of $\bar{p}p \to \overline{\Lambda}\Lambda$
 - Derivation
- 4 Nucleon–nucleon scattering
- Spin observables in pseudoscalar photoproduction
 - η and $\pi^{\rm 0}$ photoproduction
 - K photoproduction
 - Vector-meson photoproduction
- 6 Inclusive reactions
 - Inclusive hadronic reactions
 - Quark distribution functions

7 Outlook

Introduction	$\pi + N$ elastic 000	$\bar{\mathrm{p}}\mathrm{p} \to \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions 00	Outlook
Introd	uction-1	L				

- Spin observables are necessary to test the details of the dynamics,
- For instance, vector mesons anticipated (Breit) from the onset of spin-orbit forces in proton-proton scattering,
- Typical scenario: one or two observables are measured first,
- Question naturally arises: which new observable will provide the best improvement of knowledge,
- Corollary: If two or three observables are measured independently, is it possible to test whether they are compatible, without performing a full amplitude analysis,

Introduction	$\pi + N$ elastic 000	$\bar{p}p \rightarrow \bar{\Lambda}\Lambda$ 00000000	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions 00	Outlook
Introd	uction-2	2				

- If X, Y, Z, etc. are typical spin observables, with standard normalisation $-1 \le X \le +1$
- the domain for $\{X, Y\}$ is often smaller than the square $[-1, +1]^2$
- the domain for $\{X, Y, Z\}$ is often smaller than the cube $[-1, +1]^3$
- Explicit inequalities are obtained relating two or three spin observables, for instance $X^2 + Y^2 \le 1$, $X^2 + Y^2 + Z^2 \le 1$.
- Hence some observables might be very much constrained by previously measured observables,
- While the range of others can be still very much open
- Our study aims at reviewing the inequalities and their physical interpretation (derivation purely algebraic in some early works)

IMR

Introduction	$\pi + N$ elastic	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon-nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	•00	00000000	000000000	00000000000	00	
$\pi \mathrm{N}~\mathrm{sc}$	attering	(1)				

From textbooks

$$\mathcal{M} = -2m\bar{u}(\tilde{p}') \left[-\mathcal{A} + i\gamma \cdot \frac{\tilde{q} + \tilde{q}'}{2} \mathcal{B} \right] u(\tilde{p}) = 8\pi\sqrt{s} \,\chi_f^{\dagger} \left(f + ig \,\boldsymbol{\sigma} \cdot \boldsymbol{n} \right) \chi_i \;,$$

$$\frac{\mathrm{d}\vartheta}{\mathrm{d}\Omega} = I_0 = |f|^2 + |g|^2 , \quad I_0 P_n = I_0 A_n = 2 \operatorname{\mathfrak{I}m}(fg^*) .$$
$$I_0 A = (|f|^2 - |g|^2) \cos \vartheta + 2 \operatorname{\mathfrak{R}e}(fg^*) \sin \vartheta ,$$
$$I_0 R = (|f|^2 - |g|^2) \sin \vartheta - 2 \operatorname{\mathfrak{R}e}(fg^*) \cos \vartheta .$$

and hence

$$P_n^2 + A^2 + R^2 = 1 \; .$$

either ignored in the analysis (and checked after) or used in the analysis.

Introduction	$\pi + N$ elastic $\odot \bullet \odot$	$\bar{p}p \rightarrow \Lambda\Lambda$ 00000000	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
$\pi \mathrm{N}$ sc	attering	(2)				

Large spin effects observed in the crossed reaction (LEAR)

 $\bar{p}p \rightarrow \pi\pi$ Similar identity $A_n^2 + A_{mm}^2 + A_{ml}^2 = 1$ as for πN Hence $A_{mm} = A_{ml} = 0$ when $|A_n| = 1$

JMR

Introduction	π + N elastic 000	$\bar{p}p \rightarrow \Lambda\Lambda$ $\bullet 00000000$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions 00	Outlook
Motiva	tions for	$\overline{\mathrm{p}}\mathrm{p} \to \overline{\Lambda}$	Ā			

 $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$ measured at LEAR to study how strangeness is produced. The most popular possibilities envisaged:

- Kaon exchange, similar to π^{\pm} exchange for $\bar{p}p \rightarrow \bar{n}n$.
- Light quark pair annihilation and $s\bar{s}$ creation in different variants, such as $^3{\rm S}_1$ or 3P_0

Also proposed

• s-channel resonances (Roberts)

During the course of the experiment, a new scenario proposed:

• $s\bar{s}$ extracted from the nucleon (or antinucleon) sea.

Introduction	$\pi + N$ elastic	$\bar{\rm p}{\rm p} \to \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	0000000	00000000	0000000000	00	

Mechanisms

Introduction $\pi + N$ elastic 000 scattering pseudoscalar ph 000000000

pseudoscalar photoproduction

Inclusive reactions Outlool

Spin observables without polarised target-1

Inequalities on spin observables and application to hadronic reactions and stru

Université Claude Bernard 🛞 yon 1 :

 π + N elastic

 $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$

Nucleon-nucleon scattering

pseudoscalar photoproduction

Spin observables without polarised target-2

Université Claude Bernard 🛞 yon 1 :

Towards measurements with a polarised target

- Suggestion to resume with a polarised target,
- Holinde et al., compare K-exchange and simple quark models: transverse depolarisation D_{nn} and transfer K_{nn} well suited to test the dynamics.
- Longitudinal polarisation tests tensor-force effects, as for $\bar{p}p\to\bar{n}n$ (Dover, R.), but gives less observables.
- Alberg, Ellis and Kharzeev proposed the model with extraction of a $s\bar{s}$ pair from the sea, which give a large effect on D_{nn} .
- However, it was pointed out that the existing data on final-state polarisation, and the data on final-state spin-correlation parameters already restrict the allowed domain for D_{nn} . (R., Elchikh+R.) This was the beginning of a systematic investigation of the correlations among observables.

IMR

Introduction	π + N elastic 000	$\bar{p}p \rightarrow \Lambda\Lambda$ 00000000	Nucleon–nucleon scattering 000000000	pseudoscalar photoproduction	Inclusive reactions	Outlook
Results	with a p	olarised	target at 1 637	GeV/c		

Meanwhile, the experiment was carried out, and the analysis lead to D_{nn} and K_{nn} and several other observables.

Results of Paschke et al. at 1.637 GeV/c vs. some popular models

Université Claude Bernard

Introduction	$\pi + N$ elastic	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	0000000000	00000000	0000000000	00	

Results with a polarised target at 1.525 GeV/c

Fig. 4. Measured depolarization D_{an} at 1525 MeV/c (preliminary), with the combined-vector/scalar quark-gluon calculation by Alberg et al. [14] at 1525 MeV/c, and the mixed-kaon-exchange calculation by Haidenbauer et al. [7] for 1546 MeV/c (curve approximated).

Fig. 5. Measured spin transfer K_{nn} at 1525 MeV/c (preliminary), with the combined-vector/scalar quark-gluon calculation by Alberg et al. [14] at 1525 MeV/c, and the mixed-kaon-exchange calculation by Haidenbauer et al. [7] for 1546 MeV/c (curve approximated).

Results at 1.525 GeV/c

Formalism of $\bar{\rm p}{\rm p} \to \Lambda\Lambda$

For
$$\overline{p}p \rightarrow \overline{\Lambda}\Lambda$$
, there are six amplitudes,
 $\mathcal{M} = (a+b)I + (a-b)\sigma_1.\mathbf{n}\sigma_2.\mathbf{n} + (c+d)\sigma_1.\mathbf{m}\sigma_2.\mathbf{m}$
 $+ (c-d)\sigma_1.\mathbf{l}\sigma_2.\mathbf{l} + ie(\sigma_1 + \sigma_2).\mathbf{n} + g(\sigma_1.\mathbf{l}\sigma_2.\mathbf{m} + \sigma_1.\mathbf{m}\sigma_2.\mathbf{l})$,

difficult to anticipate the relations among observables just by looking at their expression in terms of the amplitudes, which are

$$\begin{split} l_0 &= |a|^2 + |b|^2 + |c|^2 + |d|^2 + |e|^2 + |g|^2 , & P_n l_0 &= 2 \Im(ae^* + dg^*) , \\ C_{nn} l_0 &= |a|^2 - |b|^2 - |c|^2 + |d|^2 + |e|^2 + |g|^2 , & A_n l_0 &= 2 \Im(ae^* - dg^*) , \\ D_{nn} l_0 &= |a|^2 + |b|^2 - |c|^2 - |d|^2 + |e|^2 - |g|^2 , & C_{ml} l_0 &= 2 \Re(ag^* - de^*) , \\ K_{nn} l_0 &= |a|^2 - |b|^2 + |c|^2 - |d|^2 + |e|^2 - |g|^2 , & D_{mm} l_0 &= 2 \Re(ag^* - de^*) , \\ C_{mm} l_0 &= 2 \Re(ad^* + bc^* - ge^*) , & D_{ml} l_0 &= 2 \Re(ag^* + bc^*) , \\ C_{ll} l_0 &= 2 \Re(ge^* - a^*d + b^*c) , & K_{mm} l_0 &= 2 \Re(ge^* + be^*) , \\ C_{nmn} l_0 &= 2 \Im(ge^* - a^*d - b^*c) , & C_{nmm} l_0 &= 2 \Im(de^* - ag^*) , \\ C_{mnn} l_0 &= 2 \Im(be^* + cg^*) , & C_{mnn} l_0 &= 2 \Im(de^* - bd^*) , \\ \end{split}$$

The method adopted by Elchikh and R. consists of generating randomly 6 complex amplitudes, compute the observables, look at constraints and then derive the inequality that is observed from the explicit expression of the observables in terms of amplitudes.

Introduction	$\pi + N$ elastic 000	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions 00	Outlook
Case	of three	observ	ables			

The method was extended by Artru, Elchikh and R., later helped by Soffer and Teryaev, to the case of three simultaneous observables. Several shapes observed for the allowed domain: sphere, cone, pyramid, tetrahedron octahedron, intersection of two cylinders, intersection of three cylinders, some "coffee filter". In particular:

- any triple is constrained,
- constraint even if all pairs are unconstrained,

For instance the tetrahedrons (next slide) has $\left[-1,+1\right]^2$ projection on all faces.

Introduction	$\pi + N$ elastic	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	00000000	00000000	0000000000	00	

Some remarkable cases

Fictitious observables $\{A_n, D_{mm}, K_{ml}\}$ obtained with amplitudes whose real and imaginary parts are chosen to be either 0 or ± 1 , shown against the unit sphere (left) or the intersection of the three unit cylinders.

Introduction	$\pi + N$ elastic	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	00000000	000000000	0000000000	00	

Domain for $\{P_n, C_{ml}, C_{nn}\}$ (left) and $\{P_n, A_n, C_{nn}\}$ (right).

Introduction	$\pi + N$ elastic	$\bar{p}p \rightarrow \Lambda \Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	000000000	00000000	0000000000	00	

Domain for $\{P_n, A_n, D_{nn}\}$ (left) and $\{C_{nn}, C_{mm}, C_{II}\}$ (right).

Introduction	$\pi + N$ elastic	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	0000000	000000000	0000000000	00	

Observables $\{P_n, C_{mm}, C_{nn}\}$ (left) and $\{C_{mm}, C_{II}, C_{nmm}\}$ (right).

Introduction	π + N elastic	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000000	00	

Phenomenological applications

When PS185/3 (with polarised target) was proposed, much emphasis was put on D_{nn} . But $C_{zz}^2 + D_{nn}^2 \le 1$ and similar constraints, and

 $|C_{zz}|$ already large from data without target polarisation.

Introduction	π + N elastic	$\bar{p}p \rightarrow \Lambda\Lambda$ Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	●0000000000000●	0000000000	00	
1.	1. A.	and the second	11.1		

Understanding the observed inequalities

- From the algebraic expressions of the observables in terms of a set of amplitudes
 - case by case (see the πN example),
 - $\bullet\,$ Systematic (Fierz transformation, see Tabakin for $\gamma N \to K Y$
- Without requiring explicit amplitudes
 - Anticommutation: If $\{X, Y\} = 0$, then $X^2 + Y^2 \le 1$ and similarly, if $\{X, Y\} = \{Y, Z\} = \{Z, X\} = 0$, then $X^2 + Y^2 + Z^2 \le 1$ This implies that if $X^2 + Y^2 \le 1$, and $Y^2 + Z^2 \le 1$, and $Z^2 + X^2 \le 1$, in most of the cases, this is due to anticommutation, and then $X^2 + Y^2 + Z^2 \le 1$ is expected; But there are counterexamples. This means that some of the disk constraints are *not* due to anticommutation.
 - Positivity of the initial state density matrix and final-state density matrix,
 - Positivity of the density matrix describing the crossed reaction $\overline{p} + p + \Lambda + \overline{\Lambda} \rightarrow \emptyset$ necessary to write down all possible inequalities.

Introduction	π + N elastic 000	$pp \rightarrow \Lambda\Lambda$ Nucleon–nucleon scatter	ing pseudoscalar photoproduction	Inclusive reactions	Outlook
Nucle	on-nucle	eon scattering			

- Historical importance Prediction of vector mesons (Breit), determination of the NN potential
- Beautiful experiments at low energy with polarised beam and target
- Crucial to point out necessary refinements of 3-body forces
- High energy? Current wisdom, based on perturbative QCD: spin effects small at large *s* and |*t*|
- But dramatic effect found by Krisch et al.

Liniversité Claude Bernard 🛞 yon 1 :

Introduction	$\pi + N$ elastic	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	00000000	00000000	0000000000	00	
Nuela	مام سيما م					

Nucleon-nucleon-2

۲

$$\alpha = M_{++,++}$$
, $\beta = M_{+-,+-} = M_{-+,+-}$, $\delta = M_{--,++}$

•
$$I_0 = |\alpha|^2 + 2|\beta|^2 + |\delta|^2$$

 $I_0 A_{nn} = 2 \Re e(\alpha^* \delta) + 2|\beta|^2$
 $I_0 A_{II} = |\alpha|^2 + |\delta|^2 - 2|\beta|^2$
 $I_0 A_{mm} = -2 \Re e(\alpha^* \delta) + 2|\beta|^2$

 $A_{nn} + A_{ll} + A_{mm} = 1 \;, \quad A_{nn} + A_{ll} > 0 \;, \quad A_{nn} + A_{mm} > 0 \;, \quad A_{ll} + A_{mm} > 0 \;.$

• Unfortunately, $A_{nn} = 0.8$ leaves the interval [-0.8, 1] available for both A_{II} and A_{mm} .

IMR

Bussey et al. (1976) for η , GRAAL (2005) for π^0

Spin observables in $\gamma N \rightarrow K \Lambda$

 $\gamma + \mathrm{N} \rightarrow \mathrm{K} + Y$, and similar, have 4 amplitudes only (Chew et al., 1959). All triples of observables are constrained in a domain smaller than the $[-1,+1]^3$ cube.

For instance, for

- A = T =target asymmetry
- P = polarisation of recoil baryon
- $\Sigma = \text{beam asymmetry}$

Tetrahedron domain limiting the observables x = T, y = P and $z = \Sigma$.

000 00000000000 000000 00					
introduction $\pi + i$ elastic pp $\rightarrow hh$ Nucleon-nucleon scattering pseudoscalar photoproduction inclusive reactions Out	\rightarrow nn inclusive reactions constrained processing processing processing processing processing processing processing constraints constrained by the constraint processing constraints cons	000000000	$pp \rightarrow nn$	$\pi + 1$ elastic	Introduction

- The reaction $\gamma N \rightarrow K\Lambda$ recently measured by GRAAL (Grenoble) and CLAS (Jlab) at about the same energies, but with different spin observables.
- It is perhaps premature to attempt an unambiguous amplitude analysis combining both data sets, but our inequalities (Phys.Rev.C75:024002,2007, see also, Tabakin et al., Goldstein et al., etc.) can be used to check whether GRAAL and CLAS are compatible.

ntroduction $\pi + N$ elastic 000

pseudoscalar photoproduction

Inclusive reactions Outlook

Beam recoil O_x and O_z

Inequalities on spin observables and application to hadronic reactions and stru

Introduction	π + N elastic	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	00000000	00000000	0000000000	00	

Target asymmetry T

Introdu	ction	π + N elastic	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
		000	000000000	0000000	0000000000	00	

Some inequalities for $\gamma N \rightarrow K \Lambda$

- A = T =target asymmetry
- P = polarisation of recoil baryon
- $\Sigma = \text{beam asymmetry}$
- $O_i = beam-recoil$
- $C_i = target-recoil$

$$\begin{split} C_x^2 + C_z^2 + O_x^2 + O_z^2 &= 1 + T^2 - P^2 - \Sigma^2 \ , \\ (P \text{ or } \Sigma)^2 + (O \text{ or } C)_x^2 + (O \text{ or } C)_z^2 &\leq 1 \ , \\ |T \pm P| &\leq 1 \mp \Sigma \ . \\ |O \text{ or } C|_{x,z}| &\leq \min\{\sqrt{1 - \Sigma^2}, \sqrt{1 - P^2}\} \ , \end{split}$$

etc.

Introduction $\pi + N$ elastic 000

pseudoscalar photoproduction

Inclusive reactions Outlook

 $(P^2 + O_x^2 + O_z^2)^{1/2} \le 1$, $(\Sigma^2 + O_x^2 + O_z^2)^{1/2} \le 1$, $(\Sigma^2 + C_x^2 + C_z^2)^{1/2} \le 1$ and

Introduction $\pi + N$ elastic 000 $\begin{array}{l} \bar{\rm p}{\rm p} \rightarrow \bar{\Lambda}\Lambda & \mbox{Nucleon-nucleon scattering} \\ 00000000000000000 \end{array}$

pseudoscalar photoproduction

Inclusive reactions Out 00

 $(P^2 + O_x^2 + C_z^2)^{1/2} \le 1$, $(\Sigma^2 + O_z^2 + C_x^2)^{1/2} \le 1$, $(\Sigma^2 + O_x^2 + C_x^2)^{1/2} \le 1$ and $(P^2 + O_z^2 + C_z^2)^{1/2} \le 1$

IMR

From a combination of CLAS data (C_x, C_z) and GRAAL data (O_x, O_z)

Introduction	$\pi + N$ elastic	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	000000000	00000000	000000000	00	

Test of the tetrahedron inequality $|T \pm \Sigma| \mp P \leq 1$

Case of 1222 MeV data.

Vector	-meson	nhoto	production			
	000	00000000	00000000	000000000	00	
Introduction	π + N elastic	$\bar{p}p \rightarrow \Lambda\Lambda$	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook

 $\gamma+\mathrm{N}\to\phi+\mathrm{N}$ and similar, with 12 amplitudes. Some triples of observables are unconstrained. Note that if the vector meson is identified through its decay into two pseudoscalars, such as $\rho\to\pi\pi$ or $\phi\to\mathrm{KK},$ only the *tensor* polarisation is accessed. To get the axial polarisation, one needs other decay modes.

Université Claude Bernard

Introduction	π + N elastic	$\bar{p}p \rightarrow \Lambda\Lambda$ Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions	Outlook
	000	0000000000000000	0000000000	•0	

Inclusive hadronic reactions

For $a({
m spin}\ 1/2) + b({
m unpolarised}) o c({
m spin}\ 1/2) + X$, then

$$(1 \pm D_{NN})^2 \ge (A_{aN} \pm P_{cN})^2 + (D_{LL} \pm D_{SS})^2 + (D_{LS} \mp D_{SL})^2 \; .$$

in particular for $\mathrm{p}^{\uparrow}\mathrm{p} \to \Lambda^{\uparrow} X$, $1 \pm D_{NN} \ge |P_{\Lambda} \pm A_{N}|$,

The allowed domain corresponding to the constraints (*left*). The slice of the full domain for $D_{NN} = 0$ (*middle*) and for $D_{NN} = 1/3$ (*right*).

Introduction π

pseudoscalar photoproduction

Inclusive reactions Outle

Quark distribution function, Soffer's inequality

Let q(x) be a quark distribution function,

 $q_{\pm}(x)$ the quark distributions of definite helicity,

with $q(x) = q_+(x) + q_-(x)$ and $\Delta q(x) = q_+(x) - q_-(x)$ the usual spin-dependent distribution.

The positivity of each q_{\pm} implies $q(x) \ge \Delta q(x)$.

To construct the transversity distributions, one also needs the non-diagonal term in the helicity basis, δq . ($\delta q = q_{\uparrow} - q_{\downarrow}$ for a N_{\uparrow})

The Soffer inequality

 $[q + \Delta q]/2 \ge \delta q$ can be viewed as in the figure, similar the the triangle inequality on some pairs of observables for $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$.

Introduction	π + N elastic 000	$\bar{p}p \rightarrow \Lambda\Lambda$ 00000000	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions OO	Outlook
Outlo	ok-1					

- Rediscovery of the works by Michel, Minnaert, etc., and further development of limits on the domain allowed for spin observables (Artru, Elchikh, Soffer, etc.),
- Constraints useful when a few observables are measured
 - to see whether they are compatible
 - to determine which of the yet unknown observables has the widest range left
- Identities and inequalities on spin observables first derived by algebraic methods
- Better understood from the positivity of the density matrices describing the reaction and the crossed reactions
- Link with the theory of quantum information: a quantum state (initial spin) undergoes a quantum process (scattering), leading to a new state (final state). This is submitted to the usual restrictions, differences between pure and entangled spin states, the increase of entropy, etc.

Introduction	$\pi + N$ elastic 000	$\bar{\mathrm{p}}\mathrm{p} \to \bar{\Lambda}\Lambda$ 00000000	Nucleon–nucleon scattering	pseudoscalar photoproduction	Inclusive reactions 00	Outlook
Outlo	ok-2					

- Promising field of spin observables, particularly stimulated by recent experiments
 - ${\rm \bar{p}p} \to \overline{\Lambda}\Lambda$,
 - photoproduction,
 - parton distributions,
 - etc.
- Possibility of better polarised targets in the future
- Possibility of new polarised beams (POSIPOL workshops for positrons, some old and new ideas considered for antiprotons, etc.)

• Ongoing analysis of
$$\overrightarrow{N} + \overrightarrow{d}$$

