Monte Carlo Simulation

Jayant K. Singh
Department of Chemical Engineering
IIT Kanpur

Overview

O To understand basic Molecular Simulation structure
O To understand basic MC code: NVT
O Modification for NPT, $\mu \mathrm{VT}$

Molecular Simulation: System Size

$$
\langle U\rangle=\frac{1}{Z_{N}} \frac{1}{N!} \int d r^{N} U\left(r^{N}\right) e^{-\beta U\left(r^{N}\right)}
$$

- Typical system size: 500-1000
- Molecules at the surface $\mathrm{O}\left(\mathrm{N}^{-1 / 3}\right)$ - How do we mimic infinite bulk large system?

Periodic boundary conditions

Two -dimensional version of PBC

- Number density of the central box is conserved (and hence the entire system)
- It is not necessary to store the coordinates of all the images in a simulation; just the central box molecules.

PBC: Suppression of fluctuation

O For cube of side L, the periodicity will suppress any density waves with a wavelength greater than L

- Thus not possible to simulate a liquid close to v-l critical point, where the range of critical fluctuation is macroscopic
O PBC has little effect on the equilibrium thermodynamic properties and structure of fluids away from phase transitions and where the interactions are short-ranged.
O Check if this is true for each model studied.
O Standard practice is to increase the number of molecules and the box to keep the same number density and rerun the simulations

PBC: Macroscopic vs. Microscopic

O Important to ask if the properties of a small infinitely periodic system and the macroscopic system which it represents are the same?
O Depends on the range of intermolecular potential and the phenomenon under investigation
○ LJ fluid: possible to obtain bulk equilibrium properties with $\mathrm{L}=6 \sigma$

○ If $\mathrm{U} \sim \mathrm{r}^{-v}$ where $v<d$ of the system

- Substantial interaction between a particle and its own images in the neighbouring boxes
○ Methods to treat long range interactions
- $\quad U \sim 1 / r$ (charges) $U \sim 1 / r^{3}$ (dipolar fluids)

Truncating the potential

O Most extensive calculation in $\mathrm{MC} / \mathrm{MD}$ simulation is the calculation of U of the configuration or F acting on all molecules
O Must include interaction between molecule i with every other molecule j (assuming pairwise additivity): $N-1$ terms
O But, in principle, we must also include all interactions between molecule I and images in the neighbouring boxes.

- Impossible to calculate

○ For a short range U, we may calculation this summation by making an approximation

- Truncation

Implementing Cubic Periodic Boundaries: Central-image codes

O Involved in most time-consuming part of simulation
○ (-1/2, 1/2), decision based

- if $(r(0)>0.5)$ r.x $=r . x-1.0$
- if(r(0) < -0.5) r.x = r.x+1.0; //only first shell
- examples: $-0.2 \rightarrow-0.2 ;-1.4 \rightarrow-0.4 ;+0.4 \rightarrow+0.4 ;+0.6 \rightarrow-0.4 ;+1.5 \rightarrow+0.5$

○ ($0, \mathrm{bs}$), function based (aint; rounding)
if $($ xnew $<0.0)$ xnew $=x n e w+b s$

If $($ xnew $>b s)$ xnew $=$ xnew-bs
if $($ xnew $>$ bs) xnew $=$ xnew $-\mathrm{bs} *$ aint $($ xnew $/$ bs $)$
if $($ xnew <0.0) xnew $=$ xnew - bs * aint $($ xnew $/$ bs -1.0$)$
$\operatorname{aint}(x)=0$ if $x<1$ and if $x>1$ it returns the largest whole no
that does not exceed its magnitude
$\operatorname{nint}(\mathrm{x})$ rounds its argument to the nearest whole number.

Implementing Cubic Periodic Boundaries: Nearest-image codes

○ Simply apply $(-1 / 2,1 / 2)$ central-image code to raw difference!

OOr...

```
- dxij = xj -xi; //true box length
if(dxij > bs-dxij) dxij=dxij-bs
if(dxij <-bs-dxij) dxij=dxij+bs
```


O Take care not to lose correct sign, if doing force calculation
O Nearest image for non-cubic boundary not always given simply in terms of a central-image algorithm

Structure of Molecular Simulation 1

Initialization

Initialize the lattice, read variables such as T, rho etc., initialize all other variables

Perform MC Cycle

Perform, MC move such as displacement move. During each cycle displacement for every atom is attempted. During equibriation period number of cycles (~ 5000 cycles) are performed to relax the structure (to "forget" artificial initial configuration)

If production cycle, record average and write out

Averages are accumulation only after equibriation period. Write out running average. Configuration output is also generated typically even during equibriation period for debugging/rerunning mode

Structure of a Molecular Simulation 2

Structure of a Molecular Simulation 2

Structure of a Molecular Simulation 2

Initial Configuration

Read from a FileO Placement on a lattice is a common choice
2D; square lattice : $\mathrm{N}=2 \mathrm{n}^{2}(8,18,32,50,72,98,128, \ldots)$
3 D , face-center cubic : $\mathrm{N}=4 \mathrm{n}^{3}(32,128,256, \ldots)$
○ Other options involve "simulation"

- place at random, then move to remove overlaps
- randomize at low density, then compress
- other techniques invented as needed
\bigcirc Orientations done similarly
- lattice or random, if possible

Monte Carlo Move: generating new configuration

Basic MC structure

```
Program mc_nvt
Integer :: i,j, k
    call readinfo! Input file
    call lattice ! Creating the lattice from scratch or reading from the file
    do \(\mathrm{k}=1,2\)
        ncycle=Nequil
        if(k .eq. 2) ncycle \(=\) Nprod
        do \(i=1\), ncycle
        do \(\mathrm{j}=1\), npart
            call displace(success)
            natt \(=\) natt +1
            if(success) nacc=nacc +1
        end do
        if( k .eq. 1) then
            if (mod (i, nadjust) .eq. 0\()\) call newMaxima
        else
            if( \(\bmod (i\), nsample) .eq. 0\()\) call sample
            end if
        end do
End do
End
```


Metropolis Algorithm

O Given a desired limiting probability distribution, for example, $\pi=\pi_{\mathrm{NVT}}$, what transition probabilities will yield π.Construct transition probabilities to satisfy detailed balanceMetropolis Algorithm

- with probability τ_{ij}, choose a trial state j for the move (note: τ_{ij} $=\tau_{\mathrm{ji}}$)
- if $\pi_{j}>\pi_{i}$, accept j as the new state
- otherwise, accept state j with probability $\pi_{j} / \pi_{\mathrm{i}}$
generate a random number R on $(0,1)$; accept if $\mathrm{R}<\pi_{j} / \pi_{i}$
- if not accepting j as the new state, take the present state as the next one in the Markov chain

Generating the desired distribution: Detailed balance

$$
\pi_{i} \pi_{i j}=\pi_{j} \pi_{j i}
$$

$$
\begin{aligned}
& \pi_{i j}=\tau_{i j} \operatorname{acc}(i \rightarrow j)=\tau_{i j} \min (1, \chi) \\
& \pi_{j i}=\tau_{j i} a c c(j \rightarrow i)=\tau_{j i} \min \left(1, \frac{1}{\chi}\right)
\end{aligned}
$$

$$
\frac{\operatorname{acc}(i \rightarrow j)}{\operatorname{acc}(j \rightarrow i)}=\frac{\pi_{j} \tau_{j i}}{\pi_{i} \tau_{i j}}
$$

Implementation of Metropolis Method

\checkmark Necessary to specify the underlying stochastic matrix τ
\checkmark Freedom to choose τ but $\tau_{m n}=\tau_{\mathrm{nm}}$
\checkmark A useful but arbitrary definition of neighbouring state
\checkmark Displace one atom random from its position r_{i}^{m} With equal probability to any point r_{i}^{n} inside the square/cube R of side $2 \delta_{\text {max }}$ and is centered at r_{i}^{m}
system in m state
-Large but finite no. of new position, N_{R}, for atom i and
$-\tau_{\mathrm{mn}}=1 / \mathrm{N}_{\mathrm{R}} \quad$ if r_{i}^{n} belongs to R

- $\quad=0 \quad$ if r_{i}^{n} does not belongs to R
$-\delta_{\text {max }}$: maximum displacement is adjustable parameter that
$\mathrm{o}_{\text {max }} \times$ maxims the size of the region R and controls the convergence of the Markov Chain.

Displacement Trial Move

O Gives new configuration of same volume and number of molecules
O Basic trial:

- displace a randomly selected atom to a point chosen with uniform probability inside a cubic volume of edge 2δ centered on the current position of the atom

Examine underlying transition probabilities to formulate acceptance criterion

Prob of selecting a molecule X Prob of moving a new

$$
\tau_{i j}=\frac{1}{N} \frac{1}{(2 \delta)^{d}}=\tau_{j i}^{p}
$$

NVT-ensemble

Limiting probability distribution

$$
\pi_{i} \propto \exp [-\beta U(i)]
$$

$$
\begin{aligned}
& \frac{\operatorname{acc}(i \rightarrow j)}{\operatorname{acc}(j \rightarrow i)}=\frac{\pi_{j} \tau_{j i}}{\pi_{i} \tau_{i j}} \\
& \frac{\operatorname{acc}(i \rightarrow j)}{\operatorname{acc}(j \rightarrow i)}=\exp [-\beta(U(j)-U(i))]
\end{aligned}
$$

Acceptance probability

Subroutine displace move

Subroutine displace(success)
mol=int(Nmol*rand(seed))+1
call energy(mol, enmolOld)
xold $=\mathrm{X}(\mathrm{mol})$
$\mathrm{dx}=(2.0 *$ rand (seed) -1.0$) * \mathrm{bs} * \mathrm{ds}$
Xnew=xold+dx
If(xnew $>\mathrm{bs}$) xnew=xnew-bs*aint(xnew/bs)
$\operatorname{If}(x n e w<0)$ xnew $=x n e w-b s * a i n t(x n e w / b s-1.0)$
$X(\mathrm{~mol})=x n e w$
call energy(mol, enmolNew)
lnpsi=-beta*(enmolNew-enmolOld)
if(rand(seed) .lt. $\exp (-$ beta*(enmolNew-enmolOld)) then
! Success
else
! Reject

$$
\mathrm{X}(\mathrm{~mol})=\text { xold ! Note old conf is retained }
$$

end if
End if

Need to consider old configuration again?

Transition probability:

$$
\begin{aligned}
& \pi_{i j}=\tau_{i j} \times \operatorname{acc}(i \rightarrow j) \\
& \sum_{j} \pi_{i j}=1
\end{aligned}
$$

Probability to accept the old configuration:

$$
\pi_{i i}=1-\sum_{j, j \neq i} \pi_{i j}
$$

Keeping old configuration?

Displacement: not too small, not too big!

Displacement Trial Move :
 Tuning

O Size of step is adjusted to reach a target rate of acceptance of displacement trials

- typical target is 50%
- though there is no theoretical basis
- for hard potentials target may be lower (rejection is efficient)
- Large step leads to less acceptance but bigger moves
- Small step leads to less movement but more acceptance

Subroutine: adjust

Subroutine newMaxima
tarRatio $=0.5$
If(natt >0) then
simRatio=nacc/natt
if(simRatio > tarRatio) ds=ds*1.05
if(simRatio < tarRatio) ds=ds*0.95
$\mathrm{ds}=\min (\mathrm{ds}, 0.5)$
End if
nacc=0
natt=0
End subroutine

Lennard Jones potentials

-The Lennard-Jones potential

$$
u^{L J}(r)=4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right]
$$

-The truncated Lennard-Jones potential

$$
u(r)=\left\{\begin{array}{cc}
u^{L J}(r) & r \leq r_{c} \\
0 & r>r_{c}
\end{array}\right.
$$

-The truncated and shifted Lennard-Jones potential

$$
u(r)=\left\{\begin{array}{cc}
u^{L J}(r)-u^{L J}\left(r_{c}\right) & r \leq r_{c} \\
0 & r>r_{c}
\end{array}\right.
$$

Pair correlation function

O Environment around a given molecule

$g(\mathrm{r})=$ pair correlation function aka RDF

$$
\begin{aligned}
& g(r)=\frac{\text { average number of particle in shell between } \mathrm{r}, \mathrm{r}+\mathrm{dr}}{\text { number of particle in random system }} \\
& g(r)=\frac{\text { average number of particle in shell between } \mathrm{r}, \mathrm{r}+\mathrm{dr}}{4 \pi r^{2} d r \rho}
\end{aligned}
$$

$$
\begin{aligned}
& U / N=\frac{1}{2} \rho \int_{0}^{\infty} u(r) g(r) d \vec{r}=2 \pi \rho \int_{0}^{\infty} u(r) g(r) r^{2} d r \\
& P=\frac{\rho}{\beta}-\frac{1}{6} \rho^{2} \int_{0}^{\infty} \frac{d u(r)}{d r} g(r) d \vec{r}=\frac{\rho}{\beta}-\frac{2}{3} \pi \rho^{2} \int_{0}^{\infty} \frac{d u(r)}{d r} g(r) r^{3} d r
\end{aligned}
$$

Correction to thermodynamic properties

$g(\mathrm{r})=1, r>r_{\mathrm{c}}$: uniform distribution beyond cut off

$$
u(r)=\left\{\begin{array}{cc}
u^{L J}(r) & r \leq r_{c} \\
0 & r>r_{c}
\end{array} \quad u^{\text {tail }}=\frac{8}{3} \pi \rho\left[\frac{1}{3}\left(\frac{1}{r_{c}}\right)^{9}-\left(\frac{1}{r_{c}}\right)^{3}\right]\right.
$$

$p=\rho k T+\frac{v i r}{V}$
$\operatorname{vir}=\frac{1}{3} \sum_{i} \sum_{j>i} \vec{f}\left(r_{i j}\right) \cdot{ }_{i j} \overline{r_{i j}}$

$$
p^{\text {tail }}=\frac{16}{3} \pi \rho^{2}\left[\frac{2}{3}\left(\frac{1}{r_{c}}\right)^{9}-\left(\frac{1}{r_{c}}\right)^{3}\right]
$$

$$
\mu_{t a i l}=\rho \int_{r c u t}^{\infty} u(r) 4 \pi r^{2} d r=2 \frac{U_{t a i l}}{N}
$$

For $r_{\mathrm{c}}=2.5 \sigma$, these are about $5-10 \%$ of total values.

Phase diagrams of Lennard Jones fluids

Energy Subroutine

Subroutine energy(mol, energ)

do $\mathrm{j}=1$,Nmol

if(j .eq. mol) cycle

$$
d x i j=X(j)-x i
$$

if(dxij > bs-dxij)dxij=dxij-bs
if(dxij <-bs-dxij)dxij=dxij+bs
! Similar for y and z
drij2 $=$ dxij*dxij + dyij*dyij + dzij*dzij
if(drij2 < rcut2) then

$$
\mathrm{r} 2=1.0 / \mathrm{rij} 2
$$

$$
\mathrm{r} 6=\mathrm{r} 2 * \mathrm{r} 2 * \mathrm{r} 2
$$

$$
\mathrm{r} 12=\mathrm{r} 6 * \mathrm{r} 6
$$

$$
\text { energ }=\text { eneg }+4.0 *(r 12-r 6)
$$

end if
return
End

Lennard-Jones EOS

Direct evaluation of phase coexistence by molecular simulation via integration along the saturation line

David A. Kofke
Depariment of Chemical Engineering State University of New York at Buffalo, Bi New York 14260-4200
(Received 23 October 1992; accepted 4 December 1992)

TABLE IIL Simulation results from series (o), (r), and (t). All quantities are given in Lennard-Jones units. β is the ntemperature (provided for convenience), $P(p / c)$ is the final value of the pressure as estimated by the corrector formuli report simulation averages for the pressure, molar density, and molar energy in each phase. The small subscripts indicat so 5.85_{1} means 5.85 ± 0.01; this reflects only the statistical error of the simulations, and does not attempe to incorporate a result from the predictor-corrector integration method. The quantity $\Delta(\beta \mu)$ is the change in chemical potential from it $\beta=1.35$ [given by a series (e) simulation], and it is determined from the simulation data of each phase by applying simp the Gibbs-Duhem equation as written $d(\beta \alpha)=h d \beta+\beta P / \rho d \ln P$, where the molar enthalpy $h=\mu+P / \rho$. Entries with no considered "best" results for the temperatare and are provided only for comparison; these data are not presented in Fig .9 the critical properties.								
β	T	P(p/c)	P (sim)		ρ		-	
			vapor	liguid	vapor	liquid	vapor	liqu
Series (o)								
1.35	0.741	0.00229	0.00225	0.02_{2}	0.00313	0.835	0.0360	6.0:
1.30	0.769	0.00321	0.00316_{2}	0.042	0.00433,	0.815 ${ }_{1}$	$0^{0.0487}$	5.8:
1.25	0.800	0.00452	0.00445 ,	0.01 ,	0.00591_{4}	0.801,	0.054	5.7:
1.20	0.833	0.00633	0.00627 s	0.02 ,	0.00807 。	0.786,	0.086_{2}	5.61
1.15	0.870	0.00836	$0.00877^{\text {a }}$	0.00,	$0.0110{ }_{7}$	0.769,	0.113,	5.41
1.10	0.509	0.0124	0.0124_{1}	-0.00 ${ }^{2}$	$0.0151{ }_{1}$	0.750\%	0.151 ,	5.21
1.05	0.952	0.0173	0.0174_{2}	-0.01)	$\mathrm{O}_{0} 0.0207_{2}$	0.726 ${ }^{\text {a }}$	$0.200{ }^{\text {, }}$	5.9\%
1.00	1.000	0.0242	0.0246_{2}	0.04,	0.0284	0.705_{2}	0.265 ;	4.9 :
0.95	1.053	0.0338	0.0343^{4}	0.02	0.0395 ,	0.672,	0.3604	4.61
0.90	1.111	0.0471	0.0475 。	0.06	-0.357.	$0.635{ }_{3}$	0.488 ;	4.31
0.85	1.176	0.0659	0.0655_{5}	0.07,	0.0810_{8}	0.578_{4}	0.689 ,	3.91
0.30	1.250	0.0911	0.093	0.09,	0.118,	0.47,	0.95,	3.2

Molecular Physics, 1993, Vol. 78, No. 3, 591-618

The Lennard-Jones equation of state revisited

By J. KARL JOHNSON, JOHN A. ZOLLWEG and KEITH E. GUBBINS
School of Chemical Engineering, Cornell University, Ithaca, NY 14853, USA

Monte Carlo: other ensemble

In the classical limit, the partition function becomes

$$
\begin{aligned}
\Delta & =\frac{1}{\Lambda^{3 N} N!} \int d V \exp (-\beta P V) \int d r^{N} \exp \left[-\beta U\left(r^{N}\right)\right] \\
& =\frac{1}{\Lambda^{3 N} N!} \int d V \exp (-\beta P V) V^{N} \int d s^{N} \exp \left[-\beta U\left(s^{N} ; L\right)\right]
\end{aligned}
$$

Probability density to find a particular configuration (s^{N})

$$
\pi_{N P T}\left(V, \mathbf{s}^{N}\right) \propto V^{N} \exp [-\beta P V] \exp \left[-\beta U\left(\mathrm{~s}^{N} ; L\right)\right]
$$

Sample a particular configuration by two kind of moves

- Change of volume (volume move)
- Change of particle coordinate (displacement move)

Acceptance rules : apply detailed balanced

Volume-change Trial Move

O Gives new configuration of different volume and same N and \mathbf{s}^{N} O Basic trial:

Volume-change Trial Move

O Gives new configuration of different volume and same N and \mathbf{s}^{N}
O Basic trial:
by some amount within $\pm \delta V$

Select a random value for volume change

Volume-change Trial Move

O Gives new configuration of different volume and same N and \mathbf{s}^{N}
O Basic trial:

- increase or decrease the total system volume by some amount within $\pm \delta V$,

Volume-change Trial Move

O Gives new configuration of different volume and same N and \mathbf{s}^{N}
O Basic trial:

- increase or decrease the total system volume by some amount within $\pm \delta V$, scaling all molecule centers-of-mass in proportion to the linear scaling of the volume

Volume-change Trial Move

O Gives new configuration of different volume and same N and \mathbf{s}^{N}
O Basic trial:

- increase or decrease the total system volume by some amount within $\pm \delta V$, scaling all molecule centers-of-mass in proportion to the linear scaling of the volume

Volume-change Trial Move

O Gives new configuration of different volume and same N and \mathbf{s}^{N}
O Basic trial:

- increase or decrease the total system volume by some amount within $\pm \delta V$, scaling all molecule centers-of-mass in proportion to the linear scaling of the volume
O Limiting probability distribution
- isothermal-isobaric ensemble
Examine underlying
transition
probabilities to
formulate
acceptance criterion

$$
\pi\left((V \mathbf{s})^{N}\right)=\frac{1}{\Delta} e^{-\beta U\left((V \mathbf{s})^{N}\right)-\beta P V} V^{N} d \mathbf{s}^{N} d V
$$

Volume-change Trial Move Analysis of Transition Probabilities

O Detailed specification of trial move and transition probabilities

- First select Vnew and second accept the move
- Forward-step transition probability =

$$
\frac{1}{2 \delta V} \times \min (1, \chi)
$$

- Reverse step transition probability $=\quad \frac{1}{2 \delta V} \times \min \left(1, \frac{1}{\chi}\right)$

Volume-change Trial Move Analysis of Detailed Balance

$\begin{array}{ll}\text { Forward-step } \\ \text { transition } \\ \text { probability }\end{array} \quad \frac{1}{2 \delta V} \times \min (1, \chi) \quad \begin{aligned} & \text { Reverse-step } \\ & \text { transition } \\ & \text { probability }\end{aligned} \quad \frac{1}{2 \delta V} \times \min \left(1, \frac{1}{\chi}\right)$

Limiting distribution

$$
\pi\left((V \mathbf{s})^{N}\right)=\frac{1}{\Delta} e^{-\beta U\left((V \mathbf{s})^{N}\right)-\beta P V} V^{N} d \mathbf{s}^{N} d V
$$

Volume-change Trial Move Analysis of Detailed Balance

Detailed balance

$$
\left[\begin{array}{c}
\pi_{i} \\
{\left[\frac{e_{i j}}{-\beta\left(U^{\text {old }}+P V^{\text {old }}\right)}\left(V^{\text {old }}\right)^{N}\right.} \\
\Delta_{N}
\end{array}\right]\left[\frac{1}{2 \delta V} \times \min (1, \chi)\right]=\left[\frac { \pi _ { j } } { e _ { j i } } \left[\begin{array}{c}
-\beta\left(U^{\text {new }}+P V^{\text {new }}\right) \\
\Delta_{N} \\
\left.V^{\text {new }}\right)^{N}
\end{array}\left[\frac{1}{2 \delta V} \times \min \left(1, \frac{1}{\chi}\right)\right]\right.\right.
$$

$$
\begin{aligned}
& \text { Detailed balance } \\
& \pi_{i} \quad \pi_{i j} \\
& \pi_{j} \quad \pi_{j i} \\
& {\left[\left[\frac{e^{-\beta\left(U^{\text {old }}+P V^{\text {old }}\right)}\left(V^{\text {old }}\right)^{N}}{\not V^{N}}\right]\left[\frac{1}{2 \Delta V} \times \min (1, \chi)\right]=\left[\frac{e^{-\beta\left(U^{\text {new }}+P V^{\text {new }}\right)}\left(V^{\text {new }}\right)^{N}}{\Delta}\right]\left[\frac{1}{28 V} \times \min \left(1, \frac{1}{\chi}\right)\right]\right.} \\
& e^{-\beta\left(U^{\text {old }}+P V^{\text {old }}\right)}\left(V^{\text {old }}\right)^{N} \chi=e^{-\beta\left(U^{\text {new }}+P V^{\text {new }}\right)}\left(V^{\text {new }}\right)^{N}
\end{aligned}
$$

Acceptance probability

Volume-change Trial Move

O Step in $\ln (\mathrm{V})$ instead of $\mathrm{V} \quad(\ln V)^{\text {new }}=(\ln V)^{\text {old }}+\delta(\ln V)$

- larger steps at larger volumes, smaller steps at smaller volumes

$$
\begin{aligned}
\Delta(N, P, T) & =\frac{1}{\Lambda^{3 N} N!} \int d V \exp (-\beta P V) V^{N} \int d s^{N} \exp \left[-\beta U\left(s^{N} ; L\right)\right] \\
& =\frac{1}{\Lambda^{3 N} N!} \int d(\ln V) \exp (-\beta P V) V^{N+1} \int d s^{N} \exp \left[-\beta U\left(s^{N} ; L\right)\right]
\end{aligned}
$$

Probability density to find a particular configuration $\left(\mathrm{s}^{\mathrm{N}}\right) \quad \pi\left(V ; s^{N}\right) \propto V^{N+1} \exp (-\beta P V) \exp \left[-\beta U\left(s^{N} ; L\right)\right]$

Acceptance probability $\min (1, \chi)$

$$
\chi=\exp \left[-\beta(\Delta U+P \Delta V)+(N+1) \ln \left(V^{\text {new }} / V^{\text {old }}\right)\right]
$$

Algorithm: NPT

O Randomly change the position of a particle
O Randomly change the volume

Basic NPT code

Subroutine npt
call readinfo
call lattice

$$
\text { do } \mathrm{k}=1,2
$$

ncycle=Nequil

$$
\text { if(k .eq. 2) ncycle }=\text { Nprod }
$$

do $\mathrm{I}=1$, ncycle
do $\mathrm{j}=1$, ndisp+nvol
$\mathrm{j}=\mathrm{int}(\mathrm{ndisp}+\mathrm{nvol})+1$
if(j le. ndisp) then call displace()
else call volChange() end if
end do
if (mod(i,nsample) .eq. 0) call sample(i)
End do
End do
End

Volume change move

```
Subroutine VolChange
call energy(enOld)
vold=bs**3
lnvn=log(vold)+(2.0*ran2()-1.0)*vmax
vnew=exp(lnvn)
bsnew=vnew**(1.0/3.0)
do i=1, Nmol
    X(i)=X(i)*bsnew/bs ! scaling
end do
call energy(enNew)
chi=exp(-beta*((enNew-enOld)+p*(vNew-vOld))+(Nmol+1)*log(vnew/vold))
if(ran2() .gt. chi) then! Reject
    ! Scale it back
    do i=1,Nmol
        X(i)=X(i)*bs/bsnew
        end do
end if
return
```

End subroutine

MuVT Ensemble

In the classical limit partition function is:

$$
\Xi=\sum_{N=0}^{N=\infty} \frac{\exp (\beta \mu N)}{\Lambda^{3 N} N!} \int \exp \left(-\beta U\left(\vec{r}^{N}\right)\right) d \vec{r}^{N}
$$

Probability to find a particular configuration:

$$
\pi_{\mu V T}\left(V, \mathbf{s}^{N}\right) \propto \frac{\exp (\beta \mu N) V^{N}}{\Lambda^{3 N} N!} \exp \left[-\beta U\left(\mathrm{~s}^{N} ; L\right)\right]
$$

Sample a particular configuration:

- Change of the number of particles
- Displacement of particle

Basic GCMC subroutine

Subroutine GCMC
do $\mathrm{I}=1$, ncycle
do $\mathrm{j}=1$, ndisp+nexch
$j=$ int(ndisp+nexch)+1
if(j .le. Ndisp) then
call displace()
else call addRemove()
end if
end do
if (mod(I,nsample) .eq. 0) call sample
End do

End

$\mu V T$-ensemble

Insertion and removal of particles

$$
\begin{aligned}
& \operatorname{acc}(N \rightarrow N+1)=\min \left[1, \frac{V \exp (\beta \mu) \exp (-\beta \Delta U)}{\Lambda^{3}(N+1)}\right] \\
& \operatorname{acc}(N \rightarrow N-1)=\min \left[1, \frac{\Lambda^{3} N \exp (-\beta \mu) \exp (-\beta \Delta U)}{V}\right]
\end{aligned}
$$

Summary

\checkmark PBC: test different system size
\checkmark Extension to molecular system
\checkmark Rotation move
\checkmark Configuration bias move
\checkmark Reptation move
\checkmark Bias move: associating fluids, dense system
\checkmark Detailed balance for acceptance criteria
\checkmark Efficient algorithms
\checkmark Neighbor list, cell list
\checkmark Long range interaction
\checkmark Ewald sum
\checkmark Reaction field
\checkmark Phase Equilibria
\checkmark Gibbs Ensemble MC, Gibbs Duhem Integration

