Facets of Order

Mark Bowick Syracuse University

JAKS Bangalore 2012

Art Silverman Poydras St, New Orleans

Faceting of elastic shells

HK97 Viral Capsid Lidmar, Mirny, Nelson: PRE (2003) Bruinsma & Gelbart

Vernizzi, Sknepnek and Olvera de al Cruz: PNAS (2011)

2D Order

Phase	Order
Crystalline	Quasi-Long Range Translational Truly Long-Range Bond- Orientational
Nematic	Orientational
Smectic	One-Dim Translational
Hexatic	Quasi-Long Range Bond- Orientational

Membranes

Crystalline (Polymerized)

What about nematic or smectic membranes?

Hexatic

Smectic Polymer Vesicles

Lin Jia,^{†, ††} Amin Cao,[‡] Daniel Lévy,[†] Bing Xu,[†] Pierre-Antoine Albouy,[§] Xiangjun Xing[#],

Mark J. Bowick[#] and Min-Hui Li^{*†}

Soft Matter 5, 3446 (2009)

PEG: flexible and hydrophilic PAChol: liquid-crystalline and hydrophobic

Friday, February 3, 12

Phase Sequence of PAChol Homopolymer

- 1. Glassy smectic at room temperature (irrelevant for vesicle formation)
- 2. Isotropic-Smectic first order transition, no intermediate nematic phase

Smectic Polymer Vesicles

Shape change driven by smectic order - defects inevitable

PEG2000-b-PAChol (28/72)

Model Free Energy

(MJB, H. Shin, X. Xing and Z. Yao)

$$H_{\rm m} = \frac{1}{2} \int \sqrt{g} \, d^2 x \begin{bmatrix} K \, (\vec{D}\hat{n})^2 + \kappa \, (H - H_0)^2 \end{bmatrix}$$

Frank constant Bending Rigidity

Generically:

- 2 Frank constants: K_1 (splay) K_3 (bend)
- 3 bending rigidities 3 mean spontaneous curvature components

Simplify to above

Nematic Vesicles: $K = K_1 = K_3$ (one Frank constant approx) Smectic Vesicles: $F = \frac{K_1}{2} \int (D \cdot n)^2 + \frac{K_3}{2} \int (D \times n)^2$ $K_3 \to \infty$ $D \times n = 0 \implies (\vec{n} \cdot \vec{D})\vec{n} = 0$ (Director follows geodesics) $K = K_1$

Minimizing the Free Energy

 $\begin{array}{ll} \mbox{Minimizing Frank free energy} \implies Dn = 0 \implies \\ \mbox{Gaussian curvature vanishes} \implies \mbox{developable surface} \\ \mbox{e.g. plane, cylinder, cone} \\ \mbox{Minimizing the bending energy} \implies H = H_0 \\ \implies \mbox{cylindrical monolayer w/} & R = 1/H_0 & \mbox{Nanofibers} \end{array}$

Bilayers

$$H_{\rm m} = \frac{1}{2} \int \sqrt{g} \, d^2 x \left[K \, (\vec{D}\hat{n})^2 + \kappa \, H^2 \right] \quad \text{2 copies}$$

Possibilities:

- 1. Flat bilayer contains line energy at boundary
- 2. Closed vesicle favored for large system size (Helfrich: 1974)

Closed Bilayer Polymer Vesicles

Assume spherical topology

$$\int K(x)d^2x = 4\pi \neq 0$$
Gaussian curvature

Thus LC Frank free energy (K) competes with bending energy (κ)

Limit 1(stiff)
$$K \ll \kappa \implies$$
 Round sphere

Anisotropic bending rigidity will lead to a deformed sphere

Cryo-TEM of Copo2 100nm scale bar $P = 4.3 \pm 0.1$ nm

Smectic

Minimizing the (dominant) Frank free energy with non-vanishing integrated Gaussian curvature constraint possible with

faceted polyhedra

Gaussian curvature vanishes everywhere but at a discrete number of (singular) vertices

Singular sources of curvature ideal sites for *requisite* LC defects:

$$\sum_{i} s_i = 2: s_i = 1/2, 1$$

1. 2 (+1) defects
2. 1 (+1), 2 (+¹/₂) defects
3. 4 +¹/₂ defects

Need at least 4 points to span a non-degenerate polyhedron

 \implies Ground state shape of a *liquid crystalline* vesicle with $\kappa \ll K$ is a faceted tetrahedron with a ½ disclination at each vertex!

The space of all tetrahedral shapes is 5-dimensional but not all tetrahedra support a suitable nematic defect configuration: Covariantly constant director field requires that the sum of the angles at each vertex is 180deg. Gives 3 constraints. Leaves a **two-dimensional manifold** of ground states. The space of all tetrahedral shapes is 5-dimensional but not all tetrahedra support a suitable nematic defect configuration: Covariantly constant director field requires that the sum of the angles at each vertex is 180deg. Gives 3 constraints. Leaves a **two-dimensional manifold** of ground states.

Generic Tetrahedral Smectic Vesicle

For $\kappa \neq 0$ total energy proportional to sum of edge lengths (plus defect energy) \implies regular tetrahedron is the ground state

Simulations

a-c local Frank energy d-f bending energy a & d: $\kappa = 100$ g & h: $K_3/K_1 \approx 2$ b & e: $\kappa = 0.3$ $\kappa = 0.04$ c & f: $\kappa = 0.05$

Comparison with experiments $K_3/K_1 \approx 2$

Nanotube vs Tetrahedron

Nanotube:

$$H_{nt} = \kappa \frac{A}{a^2} \propto \kappa A$$
 (a = nanotube radius)

Tetrahedron:

$$H_{tet} = 4\kappa L/b \propto \kappa \sqrt{A}$$
f
radius of curvature of ridges

Tetrahedron favored for large system size $L > L_c \sim a^2/b$

Tilt & Smectic Order on NPs

SAM consisting of 2 types of thiolterminated ligands (1-nonanethiol and 4-methybenzenethiol) on Au

DeVries et al (Stellacci): Science (2007)

Functionalization by MUA

Single-Species Thiols on Gold/Silver (SAMs)

L. Giomi, X. Ma, A. Majumdar, MJB

Preferred tilt angle of thiols projects to a vector field on the nanoparticle surface

Landau-Ginzburg free-energy $E = \int dA \left[\frac{1}{2} K_A \nabla_i t_j \nabla^i t^j + \frac{1}{4} \lambda (t^2 - t_0^2)^2 \right]$ In frame $(\mathbf{e_1}, \mathbf{e_2})$ $\mathbf{t} = \cos \alpha \, \mathbf{e_1} + \sin \alpha \, \mathbf{e_2}$ $A_i = \mathbf{e}_1 \cdot \partial_i \mathbf{e}_2$ (spin connection) $\Delta t + \left(\frac{\lambda}{K_{\Lambda}}t_0^2 - |\nabla \alpha - \mathbf{A}|^2\right)t - \frac{\lambda}{K_{\Lambda}}t^3 = 0$ $\nabla \cdot \left[t^2 (\nabla \alpha - \mathbf{A}) \right] = 0$ \equiv LG equations for superconductors External magnetic field Gaussian curvature \leftrightarrow High Curvature/Small R ↔ Normal phase Superconducting Low curvature/Large R \leftrightarrow

Simplest Solution

$$\alpha = \text{constant} ; \mathbf{A} = A_{\phi}\hat{\phi} ; A_{\phi} = -\cos\theta$$

$$\partial_{\theta}^2 u + \cot \theta \,\partial_{\theta} u + (2/\epsilon^2 - \cot^2 \theta) u - (2/\epsilon^2) \, u^3 = 0$$

$$u = t/t_0$$
; $\epsilon^2 = 2K_A/\lambda t_0^2 R^2$

Phase Diagram

Conclusions: Facets of Order

Block Copolymer Vesicles

Order Drives Faceting

LC order drives faceting for floppy vesicles: Faceted Liquids

Coated Nanoparticles

Shape Drives Order