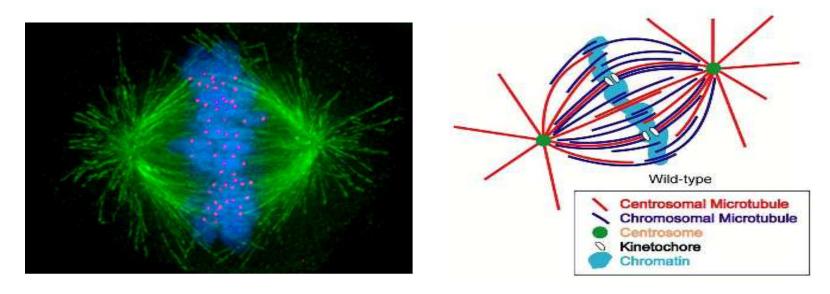
Mechanical stability of bipolar spindle assembly

Sudipto Muhuri

Department of Physics Savitribai Phule Pune University

Collaborator: Paolo Malgaretti (MPI Stuttgart)

Mitotic spindle



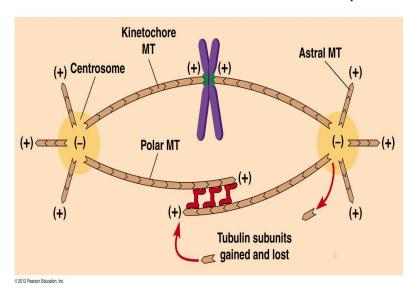
Mitotic Cell Division

- Replication of genomes and segregation of copies in daughter cells
- Process mediated with formation of Spindle
- Microtubules(MTs) from centrosomes overlap
- Chromosomes are arranged in the midzone during metaphase
- MTs interact with chromosomes, motors and kinetochores

What determines the stability of spindle structure?

Model of Spindle Assembly

Schematic of centrosomes separated by distance 2x



Forces between the centrosomes:

- (a) MTs interacting with chromosome arms
- (b) Motors sliding overlapping MTs
- (c) MTs getting joined by kinetochore
- (d) Astral MTs interacting with cell cortex

Net Force - Single Chromosome

MTs nucleating from centrosomes interacting with single chromosome

- ullet MTs nucleating from centrosome have length distribution: $N(l) \propto e^{-l/L}$
- (a) Force due to MTs interacting with chromosome arm: $F_a \propto e^{-x/L}$
- (b) Force due to motors sliding MTs: $F_b \propto 2xe^{-2x/L}$
- (c)Force due MT-kinetochore interaction is constant
- (d) Astral MT- cell cortex interaction: $\propto e^{-R_c/L}$, where R_c is the cell radius

$$F(x) = Ae^{-x/L} + 2Bxe^{-2x/L} - C + De^{-R_c/L}$$

Ferenz et.al Curr.Biol 19,1833 (2009) Sutradhar et.al PRE 92, 042714 (2015)

Model for spindle formation

•Force between centrosomes when N chromosomes:

$$F_x = 2Bxe^{-2x/L} + \sum_{i=1}^{N} \frac{x}{R_i} \left(Ae^{-R_i/L} - C \right)$$

- Short range repulsion between chromosomes linear in separation
- Equations of motions for centrosomes and N chromosomes in overdamped limit

Results

- Relative strength of the different interactions regulate spindlelength
- Final spindle configuration is seen to be sensitive to initial conditions
- Chromosomes are distributed on a disc or a ring configuration

Sutradhar et.al PRE 92, 042714 (2015)

Chromosomes distributed over disc

For homogenous distribution of chromosomes lying on disc,

$$F = 2Bxe^{-2x/L} + \frac{Nx}{\pi R_d^2} \int_0^{R_d} \int_0^{2\pi} \frac{rdrd\theta}{\sqrt{x^2 + r^2}} \left(Ae^{-\sqrt{x^2 + r^2}/L} - C \right)$$

Estimate R_d :

Each chromosome occupies a surface area πr_{ch}^2 within the disc, where r_{ch} is the radius of a single chromosome with $R_d \sim r_{ch} \sqrt{N}$.

Scaling variables

$$x_o = x/L$$
, $F_o = \frac{FR_d^2}{2NAL^2}$, $R_o = R_d/L$, $C_o = C/A$, $B_o = \frac{BR_d^2}{NAL}$.

Force in terms of Scaling variables

$$F_o(x_o) = x_o \left[B_o e^{-2x_o} + e^{-x_o} - e^{-\sqrt{x_o^2 + R_o^2}} - C_o \left(\sqrt{x_o^2 + R_o^2} - x_o \right) \right]$$

Condition for Mechanical Stability

Effective potential energy (V_o)

$$V_o = \frac{C_o}{3} \left[\left(\sqrt{x_o^2 + R_o^2} - x_o \right)^{\frac{3}{2}} - x_o^3 \right] - e^{-x_o} (x_o + 1)$$
$$- e^{-\sqrt{x_o^2 + R_o^2}} \left(\sqrt{x_o^2 + R_o^2} + 1 \right) - \frac{B_o}{4} e^{-2x_o} (2x_o + 1)$$

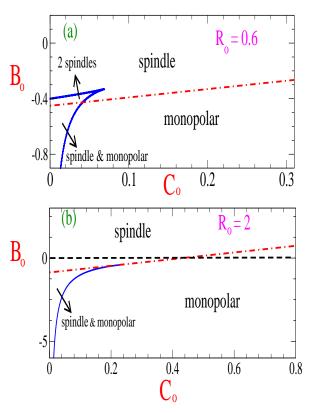
Condition for mechanical stability:

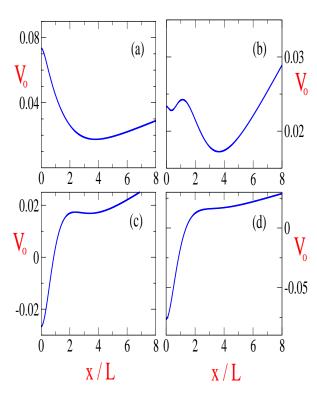
$$F(x_e) = 0$$
, $\left(\frac{dF}{dx}\right)_{(x=x_p)} < 0$

This determines the stability diagram in terms of B_o and C_o

Stability Diagram: Chromosomes on disc

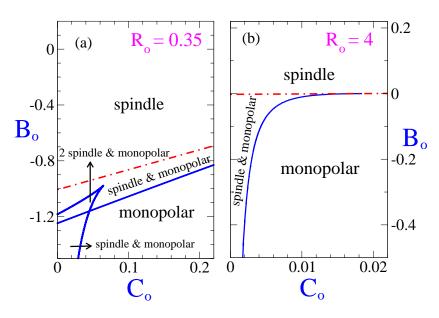
$$C_o = 0.02$$
, $R_o = 0.6$





- (a) $B_o = -0.2$, only bipolar spindle stable
- (b) $B_o = -0.4$, 1 stable bipolar spindle + monopolar stable.
- (b) $B_o = -0.6$: 2 stable bipolar spindles + monopolar stable
- (d) $B_o = -0.8$, only monopolar solution stable

Stability Diagram: Chromosomes on ring



Here $R_r=4$, obtained by estimating for N=46 and L=4

For ring geometry, even for relatively low value of \mathcal{C} , the bipolar spindle can be unstable, consistent with results of computational model

As R_o is increased, stability of the bipolar spindle decreases

Comparison with Computational model

Parameter values: $L=4\,\mu m$, N=46, $C=10\,pN$, $A=125\,pN$

Computational Model results: (Sutradhar et.al PRE 92, 042714 (2015))

For B=0 and $C_o>0.08$ bipolar spindle was unstable

Predictions from our stability diagram

Bipolar spindle configuration is unstable for B=0 only for $C_o>0.4$.

However for lower values of B i.e; $(B=-25\,pN/\mu m)$, bipolar spindle is unstable

Summary and Conclusions

- Analyzed stability of spindle structure using a minimal model which incorporates the interactions between MTs with Chromosomes and kinetochore, and sliding forces on MT due to motors
- if there is a net outward sliding forces by motors (B > 0) then bipolar spindle is stable, whereas fo (B < 0), monopolar configuration is stable.
- ullet For B<0, below a threshold value of C, there are regimes of bistability.
- Bistable behavior can be associated with multiple minima in the potential energy function

Paolo Malgaretti and SM, EPL 28001 (2016)

THANKS