

Onset of of thermalisation in turbulence Insights from the Burgers equation

Samriddhi Sankar Ray

with Divya Venkataraman, Proceedings of the Royal Society A 473 (2017)

International Centre for Theoretical Sciences
Tata Institute of Fundamental Research
Bangalore, India

18th February, 2017

ssray@icts.res.in

Indian Statistical Physics Community Meeting, Bangalore

Background

- Numerical solutions of the Navier-Stokes equation, for small enough viscosities, consistent with turbulent flows.
 - Energy cascade.
 - Intermittency and Multiscaling.
 - $E(k) \sim k^{-5/3}$.
- Numerical solutions of the Burgers equation, small enough viscosities, consistent with theoretical results.
 - Energy cascade.
 - Bifractal.
 - $E(k) \sim k^{-2}$.

Background

Fact

Numerical solutions of the Euler (Navier-Stokes with $\nu=0$) or the inviscid Burgers equation (entropy solutions) very different from the actual solutions.

Reason

On the computer what we solve is not the infinite-dimensional partial differential equation but their finite-dimensional Galerkin-truncated *avatars*.

Consequence

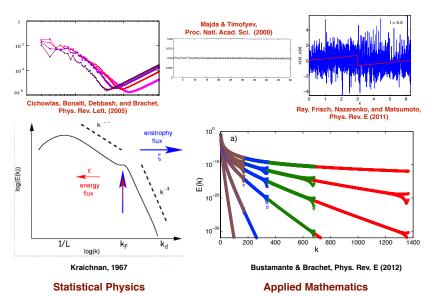
Finite-dimensional, inviscid system which conserves energy and volume in phase space yielding thermalised solutions with

$$E(k) \sim k^{d-1}$$

Footnote

 $\label{thm:linear_viscosity} \mbox{Viscosity saves the day when solving the viscous Navier-Stokes or Burgers equation.}$

Consequence of Galerkin Truncation



Galerkin Truncation: The Burgers Equation

The inviscid Burgers equation:

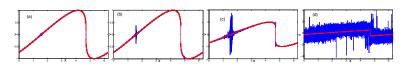
$$\partial_t u + \partial_x (u^2/2) = 0;$$
 $u(x,0) = u_0(x).$

Define the Galerkin projector, via the truncation wavenumber
 K_C ∈ Z⁺:

$$P_{K_{G}}u(x) = \sum_{|k| \le K_{G}} e^{ikx} \hat{u}_{k}.$$

The associated Galerkin-truncated Burgers equation

$$\partial_t v + P_{K_G} \partial_x (v^2/2) = 0;$$
 $v_0 = P_{K_G} u_0.$



Ray, Frisch, Nazarenko, and Matsumoto, Phys. Rev. E (2011) Banerjee & Ray, Phys. Rev. E (R) (2014) Venkataraman & Ray, Proc. Roy. Soc. A (2017)

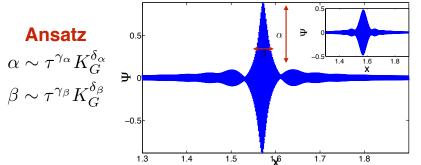
Harbinger of Thermalisation: Tygers

A resonant particle-wave interaction leads to thermalised solutions, asymptotically, for the truncated Euler or Burgers equation.

Question: Can we predict the time scale τ_c for the onset of thermalisation?

Answer: $\tau_c \sim K_{\rm G}^{\,\,\xi} \qquad \xi = -4/9$

Outline of Theory



Onset time: Coincident with bulge asymmetry

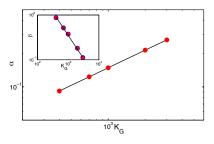
Bulge asymmetry: Finite Reynolds stress

$$\alpha^2/\beta = \mathcal{O}(1) \implies \tau_c \sim K_G^{\xi}$$

$$\left(\xi = \frac{\delta_\beta - 2\delta_\alpha}{2\gamma_\alpha - \gamma_\beta}\right)$$

Fixing the Exponents

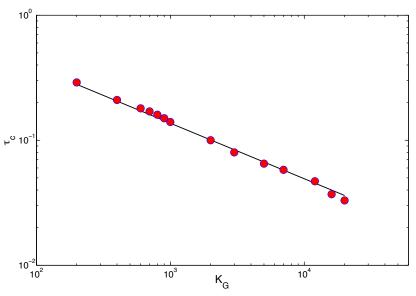
- Resonance and phase mixing: $\gamma_{eta} = \delta_{eta} = -1$
- Energy conservation: $2\delta_{\alpha}+\delta_{\beta}=0 \implies \delta_{\alpha}=1/2$
- The cubic singularity of the entropy solution: $\gamma_{lpha}=7/4$



$$\xi = \frac{\delta_{\beta} - 2\delta_{\alpha}}{2\gamma_{\alpha} - \gamma_{\beta}} = -4/9$$

	$\alpha \sim \tau^{\gamma_{\alpha}} K_{G}^{\delta_{\alpha}}$		$eta \sim au^{\gamma_{eta}} K_G^{\delta_{eta}}$		$ au_c \sim {K_{ m G}}^{\xi}$
	γ_{α}	δ_{α}	γ_{eta}	δ_{eta}	ξ
Theory	7/4	1/2	-1	-1	$\xi = \frac{\delta_{\beta} - 2\delta_{\alpha}}{2\gamma_{\alpha} - \gamma_{\beta}} = -4/9$
Simulations	1.74 ± 0.04	0.50 ± 0.01	-0.97 ± 0.08	-1.01 ± 0.02	-0.46 ± 0.07

Onset of Thermalisation



Venkataraman & Ray, Proc. Roy. Soc. A (2017)

Summary

Implication

- Numerical simulations for tracing complex singularities, in ideal equations of hydrodynamics, by using the method of the analyticity strip.
 - The temporal measurement of the distance, to the real domain, of the nearest singularity, is limited not only by computing power but also by the onset of thermalisation.

Perspective

- Does a similar scaling argument hold for the incompressible three-dimensional Euler equation?
- \circ The onset of thermalisation is accompanied by the generation of Fourier harmonics other than $K_{\rm G}.$ The precise mechanism of this is yet to be understood.
- A systematic theory which explains the full transition to thermalised states, accompanied by beating effects.