Kinetics of Swelling and Collapse in Polyelectrolyte Systems

Arindam Kundagrami

Department of Physical Sciences &
Centre for Advanced Functional Materials,
Indian Institute of Science Education & Research (IISER) Kolkata,
Mohanpur

ISPCM 2017

December 17-19, 2017
International Centre for Theoretical Sciences, Bangalore

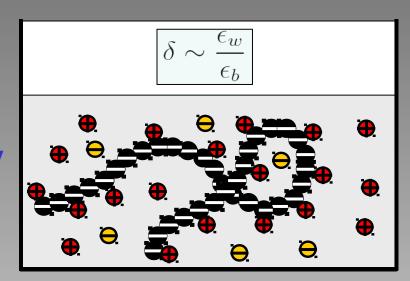
18 February 2017

Funding: Indian Institute of Science Education Research (IISER) Kolkata (An MHRD Institute)

<u> Charged polymers – energy and entropy:</u>

Do all Na+ ions dissolve? NO!

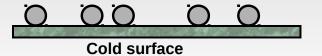
Counterion condensation. WHY?


Effective \in low close to backbone

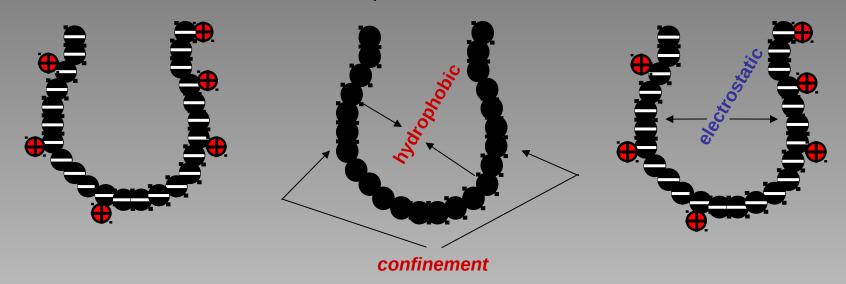
Condense \longrightarrow gain in Coulomb energy

Let's predict qualitatively:

Remember: *E - TS*


$$-\frac{e^2}{4\pi\epsilon_0\epsilon d}$$

E = Coulomb energy, **S** = free ion entropy
$$\longrightarrow k_B T$$


- 1. $T \downarrow \longrightarrow S$ fixed, *E/ion-pair* fixed \longrightarrow more ion-pairs \longrightarrow less charge
- 2. \in \longrightarrow S fixed, T fixed, E/ion-pair increases \longrightarrow more ion-pairs
- 3. $V \upharpoonright \longrightarrow S$ increases, T fixed, E/ion-pair fixed \longrightarrow less ion-pairs

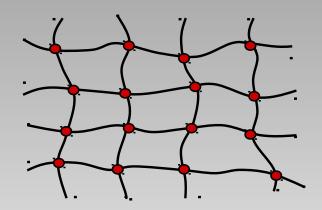
Interactions (energy) in a charged polymer chain:

E - TS, but is it so simple? What are the contributions?

Chain entropy: maximized if Gaussian coil

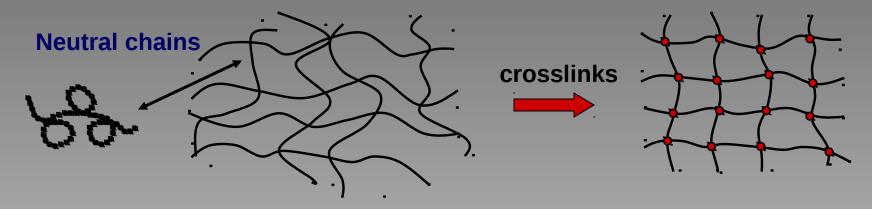
Excluded volume: chemical affinity (hydrophilicity), or mismatch (hydrophobicity)

Coulomb repulsion: between bare charges --- chain expansion


EXAMPLE – Mutual Dependency:

poor solvent --- Collapsed chain --- Ion condensation

SCHEME: *E - TS* must be **MINIMIZED.** But, **SIZE** and **CHARGE** coupled.


DOUBLE MINIMIZATION: SELF-CONSISTENCY

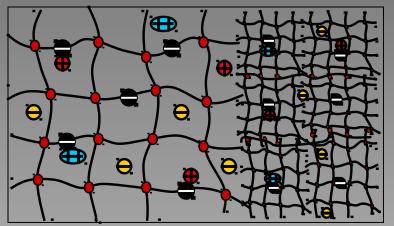
Kinetics of swelling of polymer gels

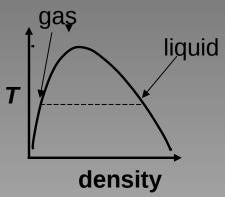
More details: Poster by Swati Sen

Polymer gels - uncharged:

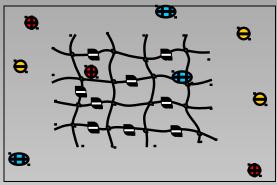
Gel: large single molecule – different kind

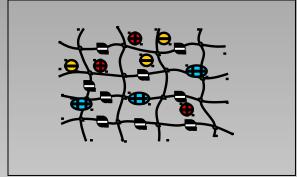
Many chains connected at different points


Strand between two crosslinks similar to single chain

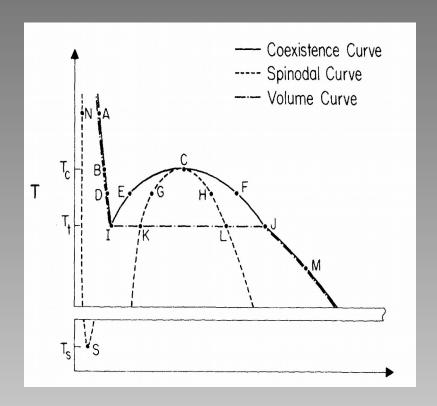

Follows all properties of a single chain one-to-one correspondence

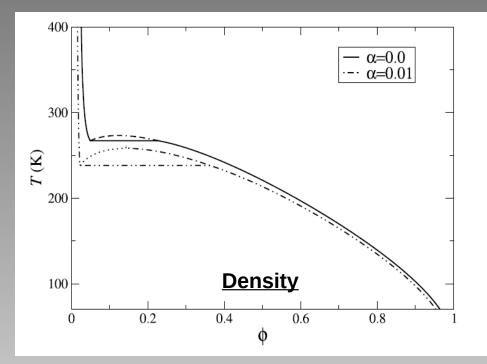
Contribution to free energy (E - TS)?

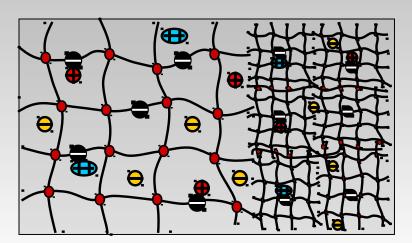

<u>Phase transition – charged gels - schematic:</u>


Issues

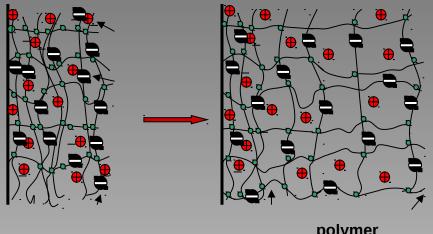
- A. Coexistence in charged polymer gels,
- B. Interplay of hydrophobic and electrostatic interactions


Repulsion - monomers

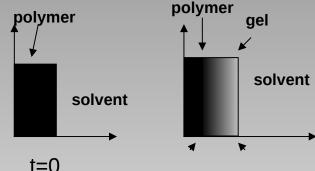

What does swell the gel? Electrostatics or free ion entropy?


Entropy - counterions

Phase behaviour – charged gels - theory:



Swati Sen and A. Kundagrami, JCP, 143, 224904 (2015)



<u>Swelling kinetics of a charged gel – Aim of study:</u>

Swelling starts with a homogenous gel, ends with a homogeneous gel

In between, density, charge, osmotic pressure/stress, – inhomogenous and evolves with time

We want to find:

Spatial and temporal profiles of density, charge, osmotic pressure/stress

as functions of

- a) charge content / dielectric constant
- b) hydrophobicity
- c) cross-link density

Displacement (strain)

 $\langle \mathbf{u}(\mathbf{r}, t \to \infty) \rangle = 0$

(a) Initial Homogeneous State
t=0
(b) Final Swollen State : Neutral Gel
$t=t', \alpha=0 (t' \rightarrow \infty)$
(c) Final Swollen State : Polyelectrolyte Gel $t{=}t' \ (\alpha_2 > \alpha_1) \ (t' {\longrightarrow} \infty)$
$\alpha = \alpha_1$
α=α2

<u>Effective Bulk Modulus of a Polyelectrolyte (PE) Gel:</u>

$$\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \nabla \cdot \tilde{\sigma} - f \frac{\partial \mathbf{u}}{\partial t}$$

Bulk Modulus Method

$$u_{ik} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_i} + \frac{\partial u_i}{\partial x_k} \right)$$
$$\sigma_{ik} = K \nabla \cdot \mathbf{u} \delta_{ik} + 2\mu \left(u_{ik} - \frac{1}{3} \nabla \cdot \mathbf{u} \delta_{ik} \right)$$

$$\frac{\partial \mathbf{u}}{\partial t} = \left(K + \frac{4\mu}{3}\right) \nabla \left(\nabla \cdot \mathbf{u}\right) + \frac{\mu}{f} \nabla^2 \mathbf{u}$$

$$\frac{\partial \mathbf{u}}{\partial t} = \frac{K}{f} \frac{\partial^2 u}{\partial x^2}$$

$$\sigma_x = K \frac{\partial u}{\partial x}$$

Stress Relaxation Method

$$\frac{\partial \mathbf{u}}{\partial t} = \frac{1}{f} \frac{\partial}{\partial x} \sigma_{xx} \left(\phi, \alpha, \delta, \chi, S \right)$$

$$\Pi(\phi, \alpha, \chi, S, T) = \frac{K_B T}{\nu_c} \left[\phi \left(\frac{\partial f_{\text{en}}}{\partial \phi} \right)_T - f_{\text{en}} \right]$$

$$\phi(x,t) = \frac{\phi_f}{1 - \frac{\partial u}{\partial x}}$$

$$F \sim f_{\rm en}\Omega$$
 $F(\phi, \alpha, \chi, S, T)$

$$K \frac{\partial u}{\partial x} \longrightarrow \sigma_{xx} (\phi, \alpha, \delta, \chi, S)$$

<u>Aim:</u> To find an <u>effective bulk modulus</u> for the Polyelectrolyte gel from the kinetics of relaxation of osmotic stress

Swati Sen and A. Kundagrami, JCP, 143, 224904 (2015).

Polyelectrolyte gel - free energy:

$$f_s = \frac{\phi}{N} \log \phi + \phi_c \log \phi_c + \phi_s \log \phi_s$$

$$f_{sa} = [\alpha \log \alpha + (1 - \alpha)\log(1 - \alpha)]\phi$$

$$f_{\chi} = \chi \phi \phi_s$$
 FLORY SALT FREE

$$f_{el} = 2\pi\alpha^{2}\ell_{B}\phi^{2} \frac{N^{2/3}}{\left[\frac{3^{4/3}\pi^{7/6}}{2^{5/3}}\phi^{2/3} + \tilde{\kappa}^{2}N^{2/3}\right]}$$

$$f_{fl,i} = -\frac{1}{4\pi} \left[\log(1+\tilde{\kappa}) - \tilde{\kappa} + \frac{1}{2}\tilde{\kappa}^2 \right]$$

$$\phi = nN\ell^3/\Omega$$

$$\phi_c = \alpha nN\ell^3/\Omega$$

$$\phi + \phi_c + \phi_s = 1$$

$$\tilde{\kappa}^2 = 4\pi \tilde{\ell}_B \alpha \phi$$

Lever rule

$$\phi = x\phi^a + (1-x)\phi^b$$

Minimize the TOTAL free energy (the sum of both coexisting phases), w.r.t. 4 variables – 2 densities, 2 charges of two phases.

$$f_{ad} = -(1 - \alpha)\phi \tilde{\ell}_B \delta$$

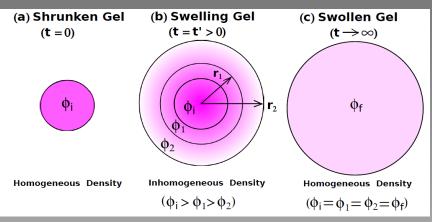
$$f = f_s + f_{sa} + f_{\chi} + f_{el} + f_{ad} + f_{fl,i}$$

$$f_{elast} = \frac{3}{2} S \phi_0^3 \left[\left(\frac{\phi}{\phi_0} \right)^{1/3} - \frac{\phi}{\phi_0} + \frac{1}{3} \frac{\phi}{\phi_0} \ln \frac{\phi}{\phi_0} \right]$$

M. Muthukumar, J. Hua, and A. Kundagrami JCP, 132, 084901 (2010).

Osmotic pressure from free energy of a PE gel:

$$[\Pi(\phi, \alpha, \chi, S, T)]$$

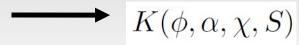

Polyelectrolyte gel

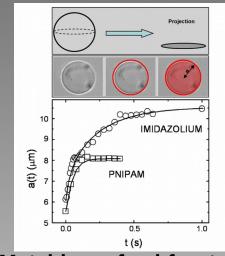
$$\sigma_{xx} = \frac{K_B T}{\nu_c} \left[-\phi - \ln(1 - (1 + \alpha)\phi) - \chi \phi^2 (1 + \alpha) + S\phi_0^3 \left(\frac{\phi}{2\phi_0} - \left(\frac{\phi}{\phi_0} \right)^{\frac{1}{3}} \right) + \frac{1}{4\pi} \left\{ \ln(1 + \tilde{\kappa}) - \frac{\tilde{\kappa}}{2(1 + \tilde{\kappa})} - \frac{\tilde{\kappa}}{2} \right\} + \frac{2\pi b\alpha^2 N^{\frac{2}{3}} \tilde{I}_B}{3} \frac{\phi^{8/3}}{\left(b\phi^{2/3} + N^{\frac{2}{3}} \tilde{\kappa}^2 \right)^2} \right],$$

Polymer (uncharged) gel

$$\sigma_{xx} = \pi_{os} = \frac{K_B T}{\nu_c} \left[-\phi - \ln(1 - \phi) - \chi \phi^2 + S\phi_0^3 \left\{ \frac{\phi}{2\phi_0} - \left(\frac{\phi}{\phi_0}\right)^{\frac{1}{3}} \right\} \right].$$

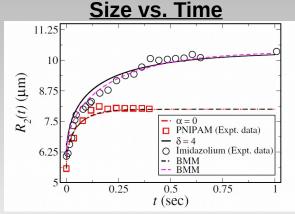
<u>Swelling of PE gels – variable degree of ionization:</u>

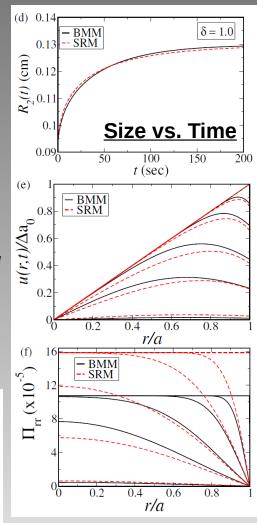



Schematic of swelling

$$\frac{\partial u}{\partial t} = \frac{K}{f} \frac{\partial}{\partial r} \left(\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 u_r \right) \right) \text{BMM}$$

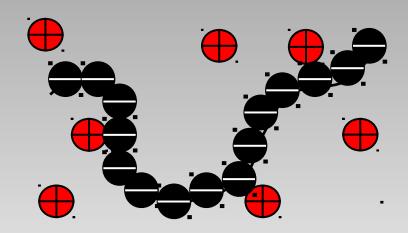
$$\frac{\partial u}{\partial t} = \frac{1}{f} \frac{\partial}{\partial r} \Pi_{rr} \frac{\text{SRM w/}}{\text{charge-regularization}} \\ \partial f_{\text{en}} / \partial \alpha|_{\phi} = 0$$

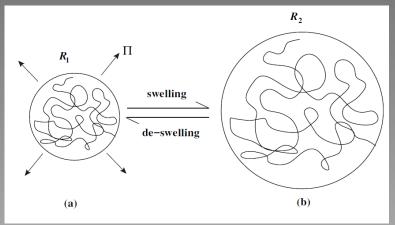

$$\Pi = \Pi_0 + K \left(\frac{\partial u}{\partial r} + 2 \frac{u}{r} \right)$$



Matching of gel-front wl Experiments: BMM

I. J. Suarez et al. Colloids and Surfaces A: Phys. Eng. Asp. 343, 33 (2009)


Matching of gel-front w/ Experiments: SRM


Matching between BMM & SRM: Size & Osmotic Pressure

Swati Sen and A. Kundagrami, to be submitted

Kinetics of swelling and collapse of a <u>single polymer chain</u>

<u> Equation of motion – osmotic and viscous forces:</u>

Swelling and collapse of:

Single, isolated, flexible polyelectrolyte (PE) chain

Uniform spherical expansion model

EOM for surface element – osmotic stress and viscous force

$$\sigma_s \Delta S \frac{d^2 R}{dt^2} = -\zeta \Delta S \frac{dR}{dt} + \Pi \Delta S$$

Osmotic stress obtained through the free energy

$$\Pi = -\left(\frac{\partial F}{\partial V}\right)_{N,T} = -\frac{1}{4\pi R^2} \frac{\partial F}{\partial R} \bigg|_{N,T}$$

Free energy

$$F(\tilde{l}_1, f, N, T)$$

Equation of Motion:

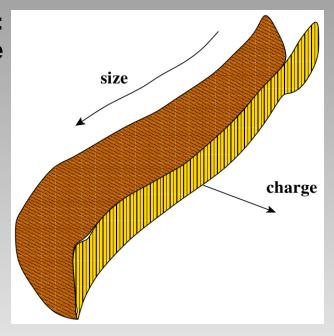
$$\zeta \frac{d\tilde{l}_1}{dt} + \frac{1}{\pi} \left(\frac{6}{Nl^2} \right)^2 \frac{\partial F}{\partial \tilde{l}_1} = 0$$

$$\tilde{l}_1 = \left(\frac{6}{Nl^2}\right) R_g^2,$$

Charge regularization:

Assumption: Motion of counterions much faster than that of monomers

- 1. Counterions re-adjust themselves with virtually frozen configuration of polymer
- 2. Gel is stable with respect to counterion density variation chemical equilibrium


Downhill in free energy with size But, minimum in charge

General expression:

$$\left| \frac{\partial F}{\partial \tilde{l}_1} \right|_{N,T} = \left| \frac{\partial F}{\partial \tilde{l}_1} \right|_{f,N,T} + \left| \frac{\partial F}{\partial f} \right|_{\tilde{l}_1,N,T} \left(\frac{\partial f}{\partial \tilde{l}_1} \right)$$

Special condition applicable to this system:

$$\left| \frac{\partial F}{\partial f} \right|_{\tilde{l}_1, N, T} = 0$$

Expression of derivative of free energy for fixed charge applies!

A free-energy to derive the osmotic pressure:

$$F(\tilde{l}_1, f, N, T)$$

$$F_{1} = f \log f + (1 - f) \log(1 - f)$$

$$F_{2} = (f\tilde{\rho} + \tilde{c}_{s}) \log(f\tilde{\rho} + \tilde{c}_{s}) + \tilde{c}_{s} \log \tilde{c}_{s} - (f\tilde{\rho} + 2\tilde{c}_{s})$$

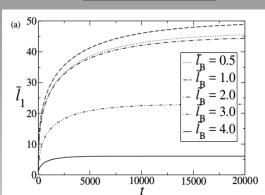
$$F_{3} = -\frac{1}{3}\sqrt{4\pi}\tilde{l}_{B}^{3/2}(f\tilde{\rho} + 2\tilde{c}_{s})^{3/2}$$

$$F_{4} = -(1 - f)\delta(l_{B}/l)$$

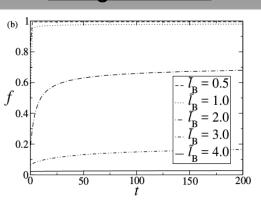
$$F_{5} = \frac{3}{2N}[\tilde{l}_{1} - 1 - \log\tilde{l}_{1}] + \frac{4}{3}\left(\frac{3}{2\pi}\right)^{3/2}\frac{w}{\sqrt{N}}\frac{1}{\tilde{l}_{1}^{3/2}} + \frac{w_{3}}{N\tilde{l}_{1}^{3}} + 2\sqrt{\frac{6}{\pi}}f^{2}\tilde{l}_{B}\frac{N^{1/2}}{\tilde{l}_{1}^{1/2}}\Theta_{0}(a)$$

$$\Theta_0(a) = \frac{\sqrt{\pi}}{2} \left(\frac{2}{a^{5/2}} - \frac{1}{a^{3/2}} \right) \exp(a) \operatorname{erfc}(\sqrt{a}) + \frac{1}{3a} + \frac{2}{a^2} - \frac{\sqrt{\pi}}{a^{5/2}} - \frac{\sqrt{\pi}}{2a^{3/2}}$$

$$a = \tilde{\kappa}^2 N \tilde{l}_1/6 \ \tilde{\kappa}^2 = 4\pi \tilde{l}_B (f\tilde{\rho} + 2\tilde{c}_s) \ \tilde{l}_B = e^2/4\pi\epsilon\epsilon_0 l k_B T$$


<u>Swelling profiles:</u>

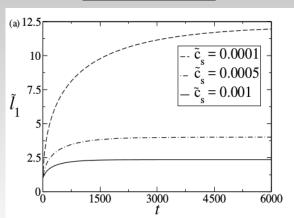
$$f = \frac{-(\tilde{c}_s + e^{-\delta \tilde{l}_B}) + \sqrt{(\tilde{c}_s + e^{-\delta \tilde{l}_B})^2 + 4\tilde{\rho}e^{-\delta \tilde{l}_B}}}{2\tilde{\rho}}$$


Expression of charge – expanded state

A. Kundagrami and M. Muthukumar, Macromolecules, 43, 2574 (2010)

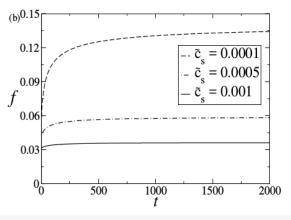
Size vs. Time

Charge vs. Time

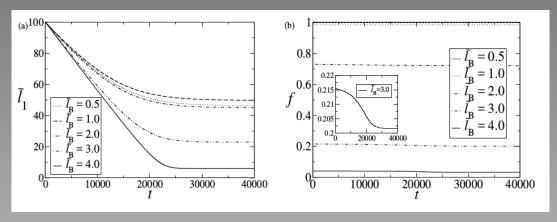


Swelling at different temperatures:

- 1. Swells faster and farther for higher *T.*
- 2. Lower temperature condensation reduces final size
- 3. Extended chain charge is not dependent on size


Swelling at different <u>salt</u>:

- 1. Swells faster and farther for lower monovalent salt.
 - 2. Extended chain charge is \tilde{l}_1 not dependent on size



Size vs. Time

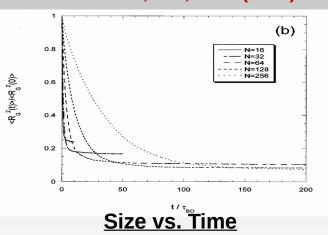
Charge vs. Time

De-swelling profiles:

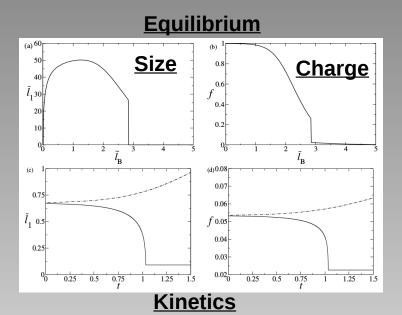


De-swelling at different temperatures:

- 1. De-swells faster and deeper for lower *T*
- 2. Lower temperature condensation reduces final size
- 3. Extended chain charge is not dependent on size

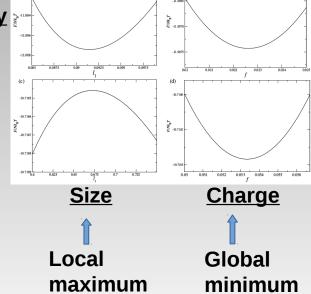

Charge vs. Time

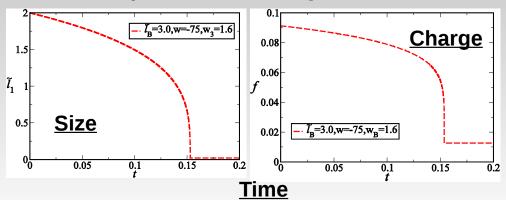
De-swelling for different molecular weights:


- 1. De-swells slower for higher molecular weight
- 2. Matches qualitatively with experimental results with PMMA gels

Simulations: Chang and Yethiraj, JCP, 114, 7688 (2001)

Collapse profiles:


- 1. Poor solvent hydrophobic negative two-body parameter
- 2. Size goes below Gaussian \tilde{I}_1 <1


Equilibrium result – first order transition – both in size and charge

Local maximum prohibits direct collapse to the global minimum

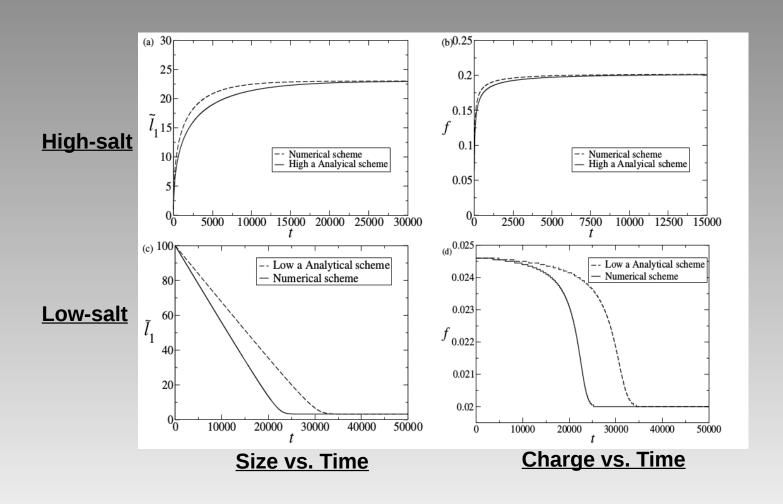
Free energy

Direct collapse: extended to globule

<u> Low- and high-salt limits – equations of motion:</u>

Low-salt limit:

$$\zeta' \frac{d\tilde{l}_1}{dt} + \frac{T}{N} \left\{ \frac{3}{2N} \left[1 - \frac{1}{\tilde{l}_1} \right] - 2 \left(\frac{3}{2\pi} \right)^{3/2} \frac{w}{\sqrt{N}} \frac{1}{\tilde{l}_1^{5/2}} - \frac{3}{N} \frac{w_3}{\tilde{l}_1^4} - \frac{2}{15} \sqrt{\frac{6}{\pi}} f^2 \tilde{l}_B \frac{N^{1/2}}{\tilde{l}_1^{3/2}} \right\} = 0$$


High-salt limit:

$$\left| \zeta' \frac{d\tilde{l}_1}{dt} + \frac{T}{N} \left\{ \frac{3}{2N} \left[1 - \frac{1}{\tilde{l}_1} \right] - 2 \left(\frac{3}{2\pi} \right)^{3/2} \frac{w}{\sqrt{N}} \frac{1}{\tilde{l}_1^{5/2}} - \frac{3}{N} \frac{w_3}{\tilde{l}_1^4} - \frac{3}{2} \left(\frac{6}{N} \right)^{1/2} \frac{1}{\pi^{3/2}} \frac{f^2}{(f\tilde{\rho} + 2\tilde{c}_s)} \frac{1}{\tilde{l}_1^{5/2}} \right\} = 0 \right|$$

$$w' = w + \frac{f^2}{(f\tilde{\rho} + 2\tilde{c}_s)}$$

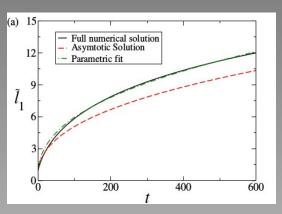
- 1. Simpler differential equations analytical expressions for derivatives of free energy
- 2. In high-salt limit, electrostatic interaction is screened and becomes Short-ranged. Hence, just the two-body interaction parameter is re-scaled

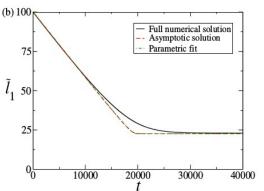
Limiting results – comparison to full numerical results:

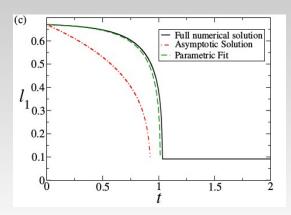
Size vs. Time

Swelling:

$$\left| ilde{l}_1^{5/2} - ilde{l}_{10}^{5/2} = rac{5}{2} rac{T}{N\zeta'} rac{2}{15} \sqrt{rac{6}{\pi}} f^2 ilde{l}_B N^{1/2} t
ight|$$
 Low-salt


$$\left| \tilde{l}_1^{7/2} - \tilde{l}_{10}^{7/2} = \frac{7}{8\zeta'} \left(\frac{6}{N\pi} \right)^{3/2} \frac{Tf^2}{f\tilde{\rho} + 2\tilde{c}_s} t \right| \text{ High-salt}$$


De-swelling:


$$(\tilde{l}_1 - \tilde{l}_{1f}) \exp(\tilde{l}_1) = \exp(\tilde{l}_{10})(\tilde{l}_{10} - \tilde{l}_{1f}) \exp\left(-\frac{3T}{2N^2\zeta'}t\right)$$

Collapse:

$$\tilde{l}_{1}^{7/2} - \tilde{l}_{10}^{7/2} = \frac{7}{2} \frac{2T}{N\zeta'} \left(\frac{3}{2\pi}\right)^{3/2} \frac{wt}{\sqrt{N}}$$

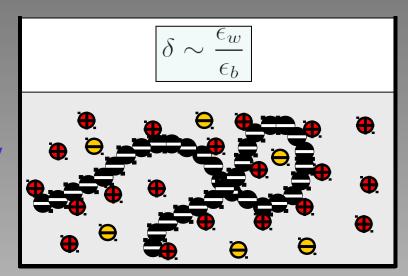
Conclusions:

- 1. Swelling of polyelectrolyte systems both gels and isolated chains can be treated in the same footing motion of polymer through the solvent osmotic stress vs. viscous damping
- 2. Motion of small-ion charge species much faster than polymer:
- charge is regularized (self-adjusted) all along the kinetics
- 2. Swelling of a polymer gel: for small deformation is diffusive
- single chain: <u>sub-diffusive</u>
- 3. Effective bulk-modulus of polyelectrolyte gels decreases with charge
- small deformation
- 4. Single polyelectrolyte chain:
 - a) swells faster and farther for higher temperature
 - b) de-swells faster and deeper for higher salt
 - c) kinetics is slower for higher molecular weight
 - d) self-consistent dependency between size and charge strong in the vicinity of the Gaussian size

<u>Charged polymers – energy and entropy:</u>

Do all Na+ ions dissolve? NO!

Counterion condensation. WHY?


Effective \in low close to backbone

Condense \longrightarrow gain in Coulomb energy

Let's predict qualitatively:

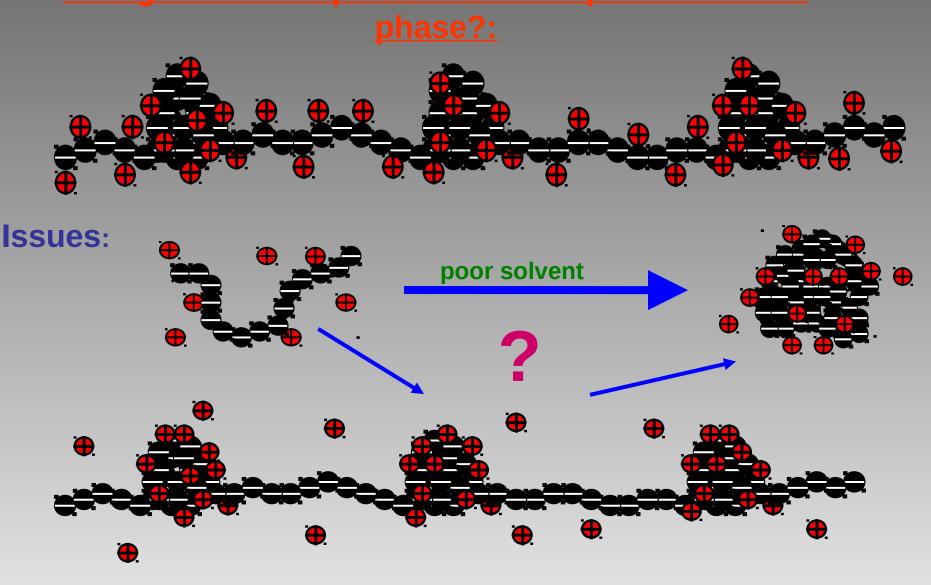
Remember: *E - TS*

 $-\frac{e^2}{4\pi\epsilon_0\epsilon d}$

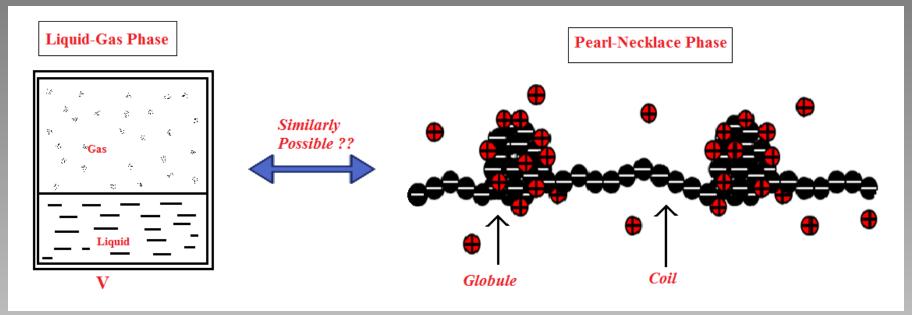


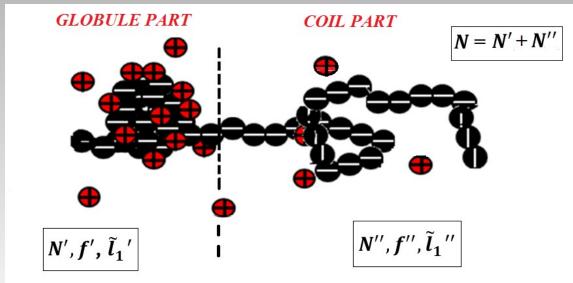
$$\boldsymbol{E}$$
 = Coulomb energy, \boldsymbol{S} = free ion entropy $\longrightarrow k_B T$

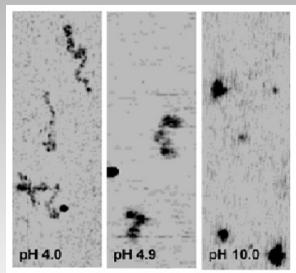
- 1. $T \downarrow \longrightarrow S$ fixed, *E/ion-pair* fixed \longrightarrow more ion-pairs \longrightarrow less charge
- 2. \in \downarrow \longrightarrow S fixed, T fixed, E/ion-pair increases \longrightarrow more ion-pairs
- 3. $V \upharpoonright$ S increases, T fixed, E/ion-pair fixed less ion-pairs


Similar to \overline{DEW} formation: at low T, air can't hold vapor \longrightarrow condensation

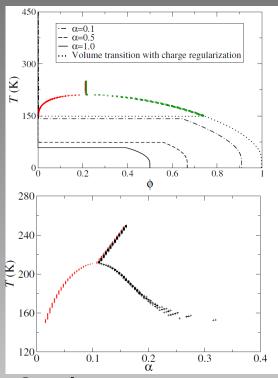
SALT WET WEATHER

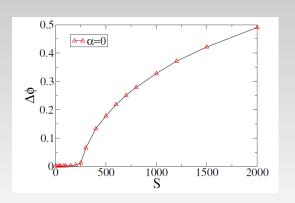


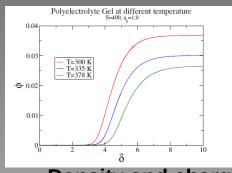

Simulations do not consider oily backbone —— Low dielectric constant

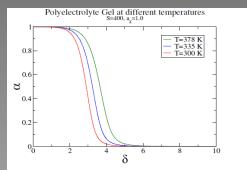

Can free ion entropy win over electrostatic energy gain of bound pairs?

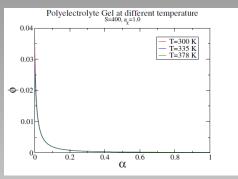
<u>IPhD student: Sourav Sadhukhan (joined August 2014)</u>

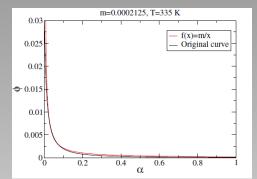

<u> Coexistence of coil and globule in a single chain – stability? :</u>



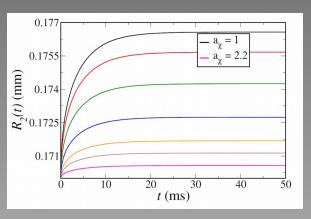


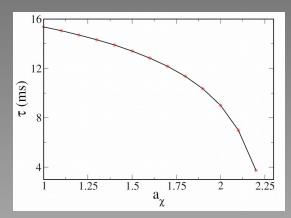

L. J. Kirwan, G. Papastavrou, M. Borkovec, Nano Lett., 4, 149 (2004)

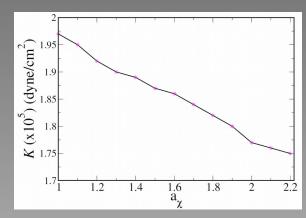

Coexistence curves: **Density and charge**



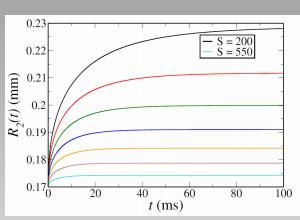
Density and charge vs. Coulomb strength

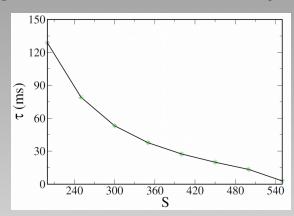

Density vs. charge: invariant with Coulomb strength; product is constant

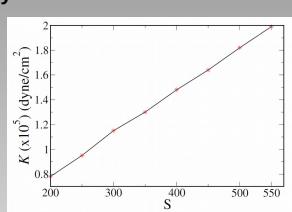

Density vs. charge:

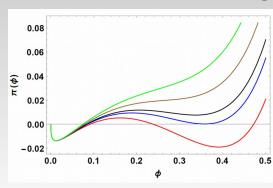

Collapse volume change with crosslink density: **Critical exponent?**

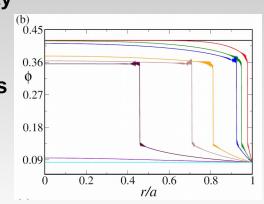
PhD student: Swati Sen (SRF)


<u>Swelling: solvent quality, crosslink density, critical dynamics</u>

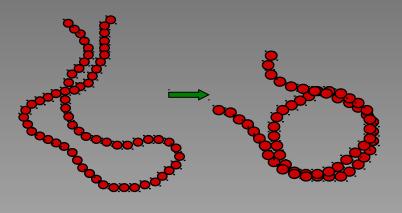





Swelling characteristics: solvent quality



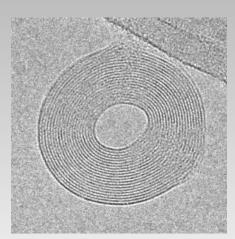
Swelling characteristics: crosslink density

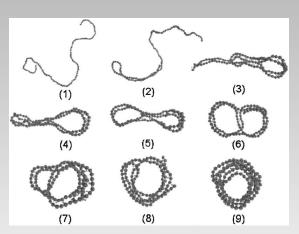

Critical dynamics

PhD student: Swati Sen (SRF)

Future Directions

Collapse of a semi-flexible chain - toroids:




Issues:

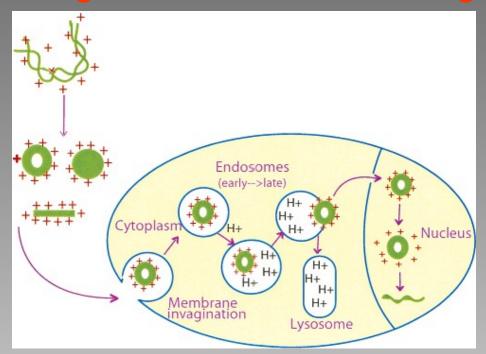
stiff chain condensing agent no globules toroids

Kinetics of nucleation and growth of toroids

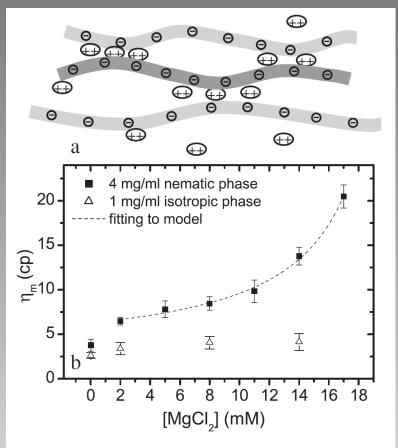
All PE issues: free energy, phase diagrams – important for dsDNA

Simulations: Ou, Muthukumar, UMass

Experiments: Nick Hud, Georgia Tech.


Issues: Protein - both positive and negative charged zones Role of chain entropy: benefactor or **Positive** prohibitor? **Negative** Simple theories of overcharging inapplicabl **Human Serum Albumin**

Possible aggregation and detachment depending on salt


Examples: aggregation of flexible anionic polyion (sodium polyacrylate) and DOTAP lipids

Extensions: anionic dendrimers-cationic polymers, colloid-anionic polymer

<u> Charge inversion and ion-bridging – applications, effects:</u>

V. Vijayanathan et al., Biochemistry, 41, 14085 (2002)

J. He et al. **PRL 99**, 068103 (2007)

- 1. DNA uptake for gene therapy: condensing DNAs to nanoparticles
- 2. Reduced diffusivity of F-actin filaments near isotropic-nematic transition