RFIM once more!

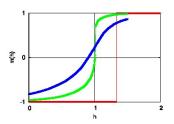
(general criteria for infinite avalanches)

Prabodh Shukla (Happily Retired) most work done by Diana Thongjaomayum for her PhD please visit her poster for details

February 17, 2017

$$H = -J\sum_{i,j} s_i s_j - h\sum_i s_i - \sum_i h_i s_i$$

$$s_i = \pm 1$$
; $m(h) = \frac{1}{N} \sum_i s_i$ at $T = 0, -\infty < h < \infty$; $h_i \Rightarrow N(0, \sigma^2)$



if no disorder, infinite avalanche at J=2d; infinite avalanche \Rightarrow discontinuity in m(h)! does it survive in presence of quenched disorder?

▶ YES sc lattice (d = 3, z = 6) if $\sigma < \sigma_c$

- ▶ YES sc lattice (d = 3, z = 6) if $\sigma < \sigma_c$
- ▶ YES square lattice (d = 2, z = 4) if $\sigma < \sigma_c$

- ▶ YES sc lattice (d = 3, z = 6) if $\sigma < \sigma_c$
- ▶ YES square lattice (d = 2, z = 4) if $\sigma < \sigma_c$
- ▶ YES triangular lattice (d=2,z=6) if $\sigma<\sigma_c$

- ▶ YES sc lattice (d = 3, z = 6) if $\sigma < \sigma_c$
- ▶ YES square lattice (d = 2, z = 4) if $\sigma < \sigma_c$
- ▶ YES triangular lattice (d = 2, z = 6) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice ($z \ge 4$) if $\sigma < \sigma_c$

- ▶ YES sc lattice (d = 3, z = 6) if $\sigma < \sigma_c$
- ▶ YES square lattice (d = 2, z = 4) if $\sigma < \sigma_c$
- ▶ YES triangular lattice (d = 2, z = 6) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice ($z \ge 4$) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice of mixed connectivity $z4: z3:: c_4: 1-c_4$ if $c_4>0$, $\sigma<\sigma_c$

- ▶ YES sc lattice (d = 3, z = 6) if $\sigma < \sigma_c$
- ▶ YES square lattice (d = 2, z = 4) if $\sigma < \sigma_c$
- ▶ YES triangular lattice (d = 2, z = 6) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice ($z \ge 4$) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice of mixed connectivity $z4: z3:: c_4: 1-c_4$ if $c_4>0, \ \sigma<\sigma_c$
- ► YES Bethe lattice z=4 diluted if c>0.557, $\sigma<\sigma_c$ z4+z3+z2+z1+z0:0::c:1-c
- ▶ NO honeycomb lattice (d = 2, z = 3)

- ▶ YES sc lattice (d = 3, z = 6) if $\sigma < \sigma_c$
- ▶ YES square lattice (d = 2, z = 4) if $\sigma < \sigma_c$
- ▶ YES triangular lattice (d = 2, z = 6) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice ($z \ge 4$) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice of mixed connectivity $z4: z3:: c_4: 1-c_4$ if $c_4>0, \ \sigma<\sigma_c$
- ► YES Bethe lattice z=4 diluted if c>0.557, $\sigma<\sigma_c$ z4+z3+z2+z1+z0:0::c:1-c
- ▶ NO honeycomb lattice (d = 2, z = 3)
- ▶ NO 1d lattice (Bethe z = 2)

- ▶ YES sc lattice (d = 3, z = 6) if $\sigma < \sigma_c$
- ▶ YES square lattice (d = 2, z = 4) if $\sigma < \sigma_c$
- ▶ YES triangular lattice (d = 2, z = 6) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice ($z \ge 4$) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice of mixed connectivity $z4: z3:: c_4: 1-c_4$ if $c_4>0, \ \sigma<\sigma_c$
- ► YES Bethe lattice z = 4 diluted if c > 0.557, $\sigma < \sigma_c$ z4 + z3 + z2 + z1 + z0 : 0 :: c : 1 - c
- ▶ NO honeycomb lattice (d = 2, z = 3)
- ▶ NO 1d lattice (Bethe z = 2)
- ▶ NO Bethe lattice z = 3

- ▶ YES sc lattice (d = 3, z = 6) if $\sigma < \sigma_c$
- ▶ YES square lattice (d = 2, z = 4) if $\sigma < \sigma_c$
- ▶ YES triangular lattice (d = 2, z = 6) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice ($z \ge 4$) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice of mixed connectivity $z4: z3:: c_4: 1-c_4$ if $c_4>0, \ \sigma<\sigma_c$
- ► YES Bethe lattice z = 4 diluted if c > 0.557, $\sigma < \sigma_c$ z4 + z3 + z2 + z1 + z0 : 0 :: c : 1 - c
- ▶ NO honeycomb lattice (d = 2, z = 3)
- ▶ NO 1d lattice (Bethe z = 2)
- ▶ NO Bethe lattice z = 3

- ▶ YES sc lattice (d = 3, z = 6) if $\sigma < \sigma_c$
- ▶ YES square lattice (d = 2, z = 4) if $\sigma < \sigma_c$
- ▶ YES triangular lattice (d = 2, z = 6) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice ($z \ge 4$) if $\sigma < \sigma_c$
- ▶ YES Bethe lattice of mixed connectivity $z4: z3:: c_4: 1-c_4$ if $c_4>0, \ \sigma<\sigma_c$
- ▶ YES Bethe lattice z = 4 diluted if c > 0.557, $\sigma < \sigma_c$ z4 + z3 + z2 + z1 + z0 : 0 :: c : 1 - c
- ▶ NO honeycomb lattice (d = 2, z = 3)
- ▶ NO 1d lattice (Bethe z = 2)
- ▶ NO Bethe lattice z = 3

Is there a general criteria?

▶ there is a critical disorder σ_c below which the system can stay in an ordered metastable state upto an applied field h_c . At $h = h_c$ the system rearranges itself into another ordered state via an infinite avalanche.

- ▶ there is a critical disorder σ_c below which the system can stay in an ordered metastable state upto an applied field h_c . At $h = h_c$ the system rearranges itself into another ordered state via an infinite avalanche.
- criteria for existence of $\sigma_c > 0$ is same as that of infinite avalance.

- ▶ there is a critical disorder σ_c below which the system can stay in an ordered metastable state upto an applied field h_c . At $h = h_c$ the system rearranges itself into another ordered state via an infinite avalanche.
- criteria for existence of $\sigma_c > 0$ is same as that of infinite avalance.
- what determines σ_c ?

- ▶ there is a critical disorder σ_c below which the system can stay in an ordered metastable state upto an applied field h_c . At $h = h_c$ the system rearranges itself into another ordered state via an infinite avalanche.
- ightharpoonup criteria for existence of $\sigma_c > 0$ is same as that of infinite avalance.
- what determines σ_c ?
- ▶ d?, z?, or something else?

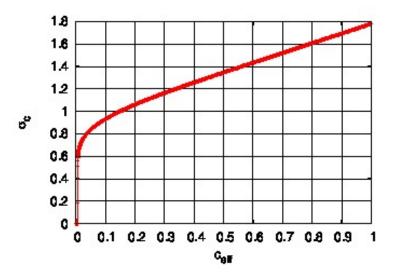
- ▶ there is a critical disorder σ_c below which the system can stay in an ordered metastable state upto an applied field h_c . At $h = h_c$ the system rearranges itself into another ordered state via an infinite avalanche.
- criteria for existence of $\sigma_c > 0$ is same as that of infinite avalance.
- what determines σ_c ?
- ▶ d?, z?, or something else?
- whenever a σ_c exists, there are some z4 (four-coordinated) spins on the lattice.

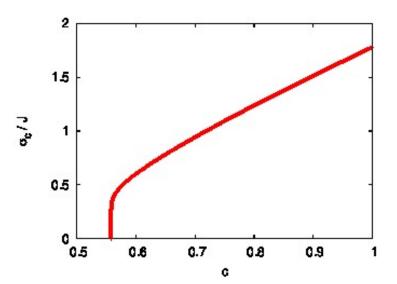
- ▶ there is a critical disorder σ_c below which the system can stay in an ordered metastable state upto an applied field h_c . At $h = h_c$ the system rearranges itself into another ordered state via an infinite avalanche.
- criteria for existence of $\sigma_c > 0$ is same as that of infinite avalance.
- what determines σ_c ?
- ▶ d?, z?, or something else?
- whenever a σ_c exists, there are some z4 (four-coordinated) spins on the lattice.
- ▶ fraction of z4 spins 100% in one case, $0 + \epsilon$ in another case, $\approx 5\%$ in the third case !

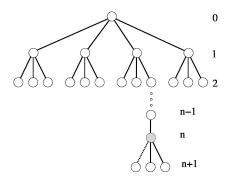
- ▶ there is a critical disorder σ_c below which the system can stay in an ordered metastable state upto an applied field h_c . At $h = h_c$ the system rearranges itself into another ordered state via an infinite avalanche.
- riteria for existence of $\sigma_c > 0$ is same as that of infinite avalance.
- what determines σ_c ?
- ▶ d?, z?, or something else?
- whenever a σ_c exists, there are some z4 (four-coordinated) spins on the lattice.
- ▶ fraction of z4 spins 100% in one case, $0 + \epsilon$ in another case, $\approx 5\%$ in the third case !
- ▶ at the minimum threshold of z4 spins, σ_c increases very very rapidly from the value $\sigma_c = 0$.

- ▶ there is a critical disorder σ_c below which the system can stay in an ordered metastable state upto an applied field h_c . At $h = h_c$ the system rearranges itself into another ordered state via an infinite avalanche.
- riteria for existence of $\sigma_c > 0$ is same as that of infinite avalance.
- what determines σ_c ?
- ▶ d?, z?, or something else?
- whenever a σ_c exists, there are some z4 (four-coordinated) spins on the lattice.
- ▶ fraction of z4 spins 100% in one case, $0 + \epsilon$ in another case, $\approx 5\%$ in the third case !
- ▶ at the minimum threshold of z4 spins, σ_c increases very very rapidly from the value $\sigma_c = 0$.

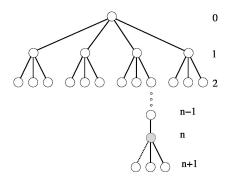
- ▶ there is a critical disorder σ_c below which the system can stay in an ordered metastable state upto an applied field h_c . At $h = h_c$ the system rearranges itself into another ordered state via an infinite avalanche.
- riteria for existence of $\sigma_c > 0$ is same as that of infinite avalance.
- what determines σ_c ?
- ▶ d?, z?, or something else?
- whenever a σ_c exists, there are some z4 (four-coordinated) spins on the lattice.
- ▶ fraction of z4 spins 100% in one case, $0 + \epsilon$ in another case, $\approx 5\%$ in the third case !
- ▶ at the minimum threshold of z4 spins, σ_c increases very very rapidly from the value $\sigma_c = 0$.



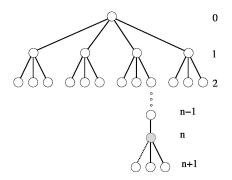




we can solve the model exactly on a Cayley tree. Start with all spins down. Relax surface, then next layer, then next.... if h < J, $Q^0(h,\sigma) < Q^1(h,\sigma) < Q^2(h,\sigma) \ldots < Q^*(h,\sigma)$



we can solve the model exactly on a Cayley tree. Start with all spins down. Relax surface, then next layer, then next.... if h < J, $Q^0(h,\sigma) < Q^1(h,\sigma) < Q^2(h,\sigma) \ldots < Q^*(h,\sigma)$ at h = J, $Q^0(J,\sigma) = Q^1(J,\sigma) = Q^2(J,\sigma) \ldots = Q^*(J,\sigma) = 0.5$



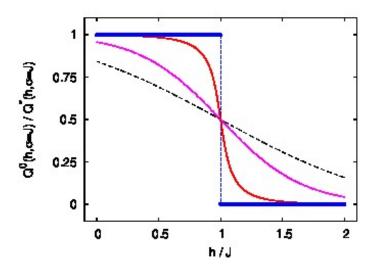
we can solve the model exactly on a Cayley tree. Start with all spins down. Relax surface, then next layer, then next.... if h < J, $Q^0(h,\sigma) < Q^1(h,\sigma) < Q^2(h,\sigma) \ldots < Q^*(h,\sigma)$ at h = J, $Q^0(J,\sigma) = Q^1(J,\sigma) = Q^2(J,\sigma) \ldots = Q^*(J,\sigma) = 0.5$ $Q^*(J,\sigma) = 0.5$ is stable for z = 2 and z = 3 but unstable for z = 4! why?

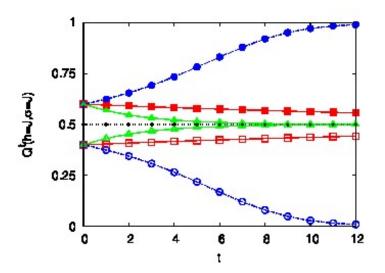
turn down an up spin on surface. what is the prob that its neighbor if up would also turn down? $\delta Q^1(J,\sigma) = B_z \delta Q^0(J,\sigma)$.

$$B_z = (z-1)\frac{1}{2^{z-2}}\sum_{m=0}^{z-2} {z-2 \choose m} (q_{z,m+2} - q_{z,m+1})$$

 $q_{z,k}$ is the prob that a z-coordinated spin is down if k of its neighbors are down.

In the limit $\sigma \to 0$, $B_2 \to 1$, $B_3 \to 1$, and $B_4 \to 3/2$. B2, B3, B4 all decrease with increasing σ . B2 < 1 and B3 < 1 for $\sigma > 0$ making $Q^*(J,\sigma) = 1/2$ a stabe fixed point. Hence no infinite avalanche on z=2 or z=3 lattice. $B_4 \to 1$ as $\sigma \to \sigma_c \approx 1.781$. Thus $Q^*(J,\sigma) = 1/2$ is unstable on a z=4 lattice if $\sigma < \sigma_c$ and there is an infinite avalanche.





dilute z4 lattice

the devil is in details!

As $\sigma \to 0$, perturbation $\delta Q^0(J,0)$ to $Q^*(J,\sigma) = 1/2$ passes through z3 and z2 sites unchanged. It gets enhanced by a factor 3/2 by a z4 site. Here z1 sites also play a role. They break a spanning path. The perturbation is boosted with the probability $\frac{3}{2}z_4$, and terminated with probability $\frac{3}{4}z_1$. At the critical point $z_1 = 2z_4$. Using $z_4 = c^5$, $z_1 = 4c^2(1-c)^3$, the critical value of c is given by $c^3 = 2(1-c)^3$, or $c_{min} = 2^{1/3}/(1+2^{1/3}) \approx 0.5575$. On the z3 + z4 lattice, the path from the surface to the center is never broken, therefore an arbitrarily small fraction z_4 creates a gap in $Q^*(J, \sigma)$ in the deep interior of the tree.

finally, the criteria for infinite avalanches

Following conditions must be fulfilled:

- $ightharpoonup \sigma$ must be sufficiently small
- there must be a spanning cluster of occupied sites on the lattice
- ▶ the spanning cluster must have a fraction of sites, even an arbitrarily small fraction, with connectivity $z \ge 4$.

finally, the criteria for infinite avalanches

Following conditions must be fulfilled:

- $ightharpoonup \sigma$ must be sufficiently small
- there must be a spanning cluster of occupied sites on the lattice
- ▶ the spanning cluster must have a fraction of sites, even an arbitrarily small fraction, with connectivity $z \ge 4$.

THANK YOU FOR YOUR PATIENCE